12,989 research outputs found

    Data Driven Discovery in Astrophysics

    Get PDF
    We review some aspects of the current state of data-intensive astronomy, its methods, and some outstanding data analysis challenges. Astronomy is at the forefront of "big data" science, with exponentially growing data volumes and data rates, and an ever-increasing complexity, now entering the Petascale regime. Telescopes and observatories from both ground and space, covering a full range of wavelengths, feed the data via processing pipelines into dedicated archives, where they can be accessed for scientific analysis. Most of the large archives are connected through the Virtual Observatory framework, that provides interoperability standards and services, and effectively constitutes a global data grid of astronomy. Making discoveries in this overabundance of data requires applications of novel, machine learning tools. We describe some of the recent examples of such applications.Comment: Keynote talk in the proceedings of ESA-ESRIN Conference: Big Data from Space 2014, Frascati, Italy, November 12-14, 2014, 8 pages, 2 figure

    MOLNs: A cloud platform for interactive, reproducible and scalable spatial stochastic computational experiments in systems biology using PyURDME

    Full text link
    Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools, a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments

    BDGS: A Scalable Big Data Generator Suite in Big Data Benchmarking

    Full text link
    Data generation is a key issue in big data benchmarking that aims to generate application-specific data sets to meet the 4V requirements of big data. Specifically, big data generators need to generate scalable data (Volume) of different types (Variety) under controllable generation rates (Velocity) while keeping the important characteristics of raw data (Veracity). This gives rise to various new challenges about how we design generators efficiently and successfully. To date, most existing techniques can only generate limited types of data and support specific big data systems such as Hadoop. Hence we develop a tool, called Big Data Generator Suite (BDGS), to efficiently generate scalable big data while employing data models derived from real data to preserve data veracity. The effectiveness of BDGS is demonstrated by developing six data generators covering three representative data types (structured, semi-structured and unstructured) and three data sources (text, graph, and table data)

    Distributed-based massive processing of activity logs for efficient user modeling in a Virtual Campus

    Get PDF
    This paper reports on a multi-fold approach for the building of user models based on the identification of navigation patterns in a virtual campus, allowing for adapting the campus’ usability to the actual learners’ needs, thus resulting in a great stimulation of the learning experience. However, user modeling in this context implies a constant processing and analysis of user interaction data during long-term learning activities, which produces huge amounts of valuable data stored typically in server log files. Due to the large or very large size of log files generated daily, the massive processing is a foremost step in extracting useful information. To this end, this work studies, first, the viability of processing large log data files of a real Virtual Campus using different distributed infrastructures. More precisely, we study the time performance of massive processing of daily log files implemented following the master-slave paradigm and evaluated using Cluster Computing and PlanetLab platforms. The study reveals the complexity and challenges of massive processing in the big data era, such as the need to carefully tune the log file processing in terms of chunk log data size to be processed at slave nodes as well as the bottleneck in processing in truly geographically distributed infrastructures due to the overhead caused by the communication time among the master and slave nodes. Then, an application of the massive processing approach resulting in log data processed and stored in a well-structured format is presented. We show how to extract knowledge from the log data analysis by using the WEKA framework for data mining purposes showing its usefulness to effectively build user models in terms of identifying interesting navigation patters of on-line learners. The study is motivated and conducted in the context of the actual data logs of the Virtual Campus of the Open University of Catalonia.Peer ReviewedPostprint (author's final draft

    Intelligent Management and Efficient Operation of Big Data

    Get PDF
    This chapter details how Big Data can be used and implemented in networking and computing infrastructures. Specifically, it addresses three main aspects: the timely extraction of relevant knowledge from heterogeneous, and very often unstructured large data sources, the enhancement on the performance of processing and networking (cloud) infrastructures that are the most important foundational pillars of Big Data applications or services, and novel ways to efficiently manage network infrastructures with high-level composed policies for supporting the transmission of large amounts of data with distinct requisites (video vs. non-video). A case study involving an intelligent management solution to route data traffic with diverse requirements in a wide area Internet Exchange Point is presented, discussed in the context of Big Data, and evaluated.Comment: In book Handbook of Research on Trends and Future Directions in Big Data and Web Intelligence, IGI Global, 201

    On statistics, computation and scalability

    Full text link
    How should statistical procedures be designed so as to be scalable computationally to the massive datasets that are increasingly the norm? When coupled with the requirement that an answer to an inferential question be delivered within a certain time budget, this question has significant repercussions for the field of statistics. With the goal of identifying "time-data tradeoffs," we investigate some of the statistical consequences of computational perspectives on scability, in particular divide-and-conquer methodology and hierarchies of convex relaxations.Comment: Published in at http://dx.doi.org/10.3150/12-BEJSP17 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Collaborative recommendations with content-based filters for cultural activities via a scalable event distribution platform

    Get PDF
    Nowadays, most people have limited leisure time and the offer of (cultural) activities to spend this time is enormous. Consequently, picking the most appropriate events becomes increasingly difficult for end-users. This complexity of choice reinforces the necessity of filtering systems that assist users in finding and selecting relevant events. Whereas traditional filtering tools enable e.g. the use of keyword-based or filtered searches, innovative recommender systems draw on user ratings, preferences, and metadata describing the events. Existing collaborative recommendation techniques, developed for suggesting web-shop products or audio-visual content, have difficulties with sparse rating data and can not cope at all with event-specific restrictions like availability, time, and location. Moreover, aggregating, enriching, and distributing these events are additional requisites for an optimal communication channel. In this paper, we propose a highly-scalable event recommendation platform which considers event-specific characteristics. Personal suggestions are generated by an advanced collaborative filtering algorithm, which is more robust on sparse data by extending user profiles with presumable future consumptions. The events, which are described using an RDF/OWL representation of the EventsML-G2 standard, are categorized and enriched via smart indexing and open linked data sets. This metadata model enables additional content-based filters, which consider event-specific characteristics, on the recommendation list. The integration of these different functionalities is realized by a scalable and extendable bus architecture. Finally, focus group conversations were organized with external experts, cultural mediators, and potential end-users to evaluate the event distribution platform and investigate the possible added value of recommendations for cultural participation
    • …
    corecore