133,364 research outputs found

    The spectrum of big data analytics

    Get PDF
    Big data analytics is playing a pivotal role in big data, artificial intelligence, management, governance, and society with the dramatic development of big data, analytics, artificial intelligence. However, what is the spectrum of big data analytics and how to develop the spectrum are still a fundamental issue in the academic community. This article addresses these issues by presenting a big data derived small data approach. It then uses the proposed approach to analyze the top 150 profiles of Google Scholar, including big data analytics as one research field and proposes a spectrum of big data analytics. The spectrum of big data analytics mainly includes data mining, machine learning, data science and systems, artificial intelligence, distributed computing and systems, and cloud computing, taking into account degree of importance. The proposed approach and findings will generalize to other researchers and practitioners of big data analytics, machine learning, artificial intelligence, and data science. © 2019 International Association for Computer Information Systems

    Attentive Dual Embedding for Understanding Medical Concept in Electronic Health Record

    Full text link
    Electronic health records contain a wealth of information on a patient’s healthcare over many visits, such as diagnoses, treatments, drugs administered, and so on. The untapped potential of these data in healthcare analytics is vast. However, given that much of medical information is a cause and effect science, new embedding methods are required to ensure the learning representations reflect the comprehensive interplays between medical concepts and their relationships over time. Unlike one-hot encoding, a distributed representation should preserve these complex interactions as high-quality inputs for machine learning-based healthcare analytics tasks. Therefore, we propose a novel attentive dual embedding method called MC2Vec. MC2Vec captures the proximity relationships between medical concepts through a two-step optimization framework that recursively refines the embedding for superior output. The framework comprises a Skip-gram model to generate the initial embedding and an attentive CBOW model to fine-tune the embedding with temporal information gleaned from sequences of patient visits. Experiments with two public datasets demonstrate that MC2Vec’s produces embeddings of higher quality than five state-of-the-art methods

    National Conference on COMPUTING 4.0 EMPOWERING THE NEXT GENERATION OF TECHNOLOGY (Era of Computing 4.0 and its impact on technology and intelligent systems)

    Get PDF
    As we enter the era of Computing 4.0, the landscape of technology and intelligent systems is rapidly evolving, with groundbreaking advancements in artificial intelligence, machine learning, data science, and beyond. The theme of this conference revolves around exploring and shaping the future of these intelligent systems that will revolutionize industries and transform the way we live, work, and interact with technology. Conference Topics Quantum Computing and Quantum Information Edge Computing and Fog Computing Artificial Intelligence and Machine Learning in Computing 4.0 Internet of Things (IOT) and Smart Cities Block chain and Distributed Ledger Technologies Cybersecurity and Privacy in the Computing 4.0 Era High-Performance Computing and Parallel Processing Augmented Reality (AR) and Virtual Reality (VR) Applications Cognitive Computing and Natural Language Processing Neuromorphic Computing and Brain-Inspired Architectures Autonomous Systems and Robotics Big Data Analytics and Data Science in Computing 4.0https://www.interscience.in/conf_proc_volumes/1088/thumbnail.jp

    Methodological challenges and analytic opportunities for modeling and interpreting Big Healthcare Data

    Full text link
    Abstract Managing, processing and understanding big healthcare data is challenging, costly and demanding. Without a robust fundamental theory for representation, analysis and inference, a roadmap for uniform handling and analyzing of such complex data remains elusive. In this article, we outline various big data challenges, opportunities, modeling methods and software techniques for blending complex healthcare data, advanced analytic tools, and distributed scientific computing. Using imaging, genetic and healthcare data we provide examples of processing heterogeneous datasets using distributed cloud services, automated and semi-automated classification techniques, and open-science protocols. Despite substantial advances, new innovative technologies need to be developed that enhance, scale and optimize the management and processing of large, complex and heterogeneous data. Stakeholder investments in data acquisition, research and development, computational infrastructure and education will be critical to realize the huge potential of big data, to reap the expected information benefits and to build lasting knowledge assets. Multi-faceted proprietary, open-source, and community developments will be essential to enable broad, reliable, sustainable and efficient data-driven discovery and analytics. Big data will affect every sector of the economy and their hallmark will be ‘team science’.http://deepblue.lib.umich.edu/bitstream/2027.42/134522/1/13742_2016_Article_117.pd

    Enabling Inter-organizational Analytics in Business Networks Through Meta Machine Learning

    Get PDF
    Successful analytics solutions that provide valuable insights often hinge on the connection of various data sources. While it is often feasible to generate larger data pools within organizations, the application of analytics within (inter-organizational) business networks is still severely constrained. As data is distributed across several legal units, potentially even across countries, the fear of disclosing sensitive information as well as the sheer volume of the data that would need to be exchanged are key inhibitors for the creation of effective system-wide solutions -- all while still reaching superior prediction performance. In this work, we propose a meta machine learning method that deals with these obstacles to enable comprehensive analyses within a business network. We follow a design science research approach and evaluate our method with respect to feasibility and performance in an industrial use case. First, we show that it is feasible to perform network-wide analyses that preserve data confidentiality as well as limit data transfer volume. Second, we demonstrate that our method outperforms a conventional isolated analysis and even gets close to a (hypothetical) scenario where all data could be shared within the network. Thus, we provide a fundamental contribution for making business networks more effective, as we remove a key obstacle to tap the huge potential of learning from data that is scattered throughout the network.Comment: Preprint, forthcoming at Information Technology and Managemen

    Insights from Learning Analytics for Hands-On Cloud Computing Labs in AWS

    Get PDF
    [EN] Cloud computing instruction requires hands-on experience with a myriad of distributed computing services from a public cloud provider. Tracking the progress of the students, especially for online courses, requires one to automatically gather evidence and produce learning analytics in order to further determine the behavior and performance of students. With this aim, this paper describes the experience from an online course in cloud computing with Amazon Web Services on the creation of an open-source data processing tool to systematically obtain learning analytics related to the hands-on activities carried out throughout the course. These data, combined with the data obtained from the learning management system, have allowed the better characterization of the behavior of students in the course. Insights from a population of more than 420 online students through three academic years have been assessed, the dataset has been released for increased reproducibility. The results corroborate that course length has an impact on online students dropout. In addition, a gender analysis pointed out that there are no statistically significant differences in the final marks between genders, but women show an increased degree of commitment with the activities planned in the course.This research was funded by the Spanish "Ministerio de Economia, Industria y Competitividad through grant number TIN2016-79951-R (BigCLOE)", the "Vicerrectorado de Estudios, Calidad y Acreditacion" of the Universitat Politecnica de Valencia (UPV) to develop the PIME B29 and PIME/19-20/166, and by the Conselleria d'Innovacio, Universitat, Ciencia i Societat Digital for the project "CloudSTEM" with reference number AICO/2019/313.Moltó, G.; Naranjo-Delgado, DM.; Segrelles Quilis, JD. (2020). Insights from Learning Analytics for Hands-On Cloud Computing Labs in AWS. Applied Sciences. 10(24):1-13. https://doi.org/10.3390/app10249148S1131024Motiwalla, L., Deokar, A. V., Sarnikar, S., & Dimoka, A. (2019). Leveraging Data Analytics for Behavioral Research. Information Systems Frontiers, 21(4), 735-742. doi:10.1007/s10796-019-09928-8Siemens, G., & Baker, R. S. J. d. (2012). Learning analytics and educational data mining. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge - LAK ’12. doi:10.1145/2330601.2330661Blikstein, P. (2013). Multimodal learning analytics. Proceedings of the Third International Conference on Learning Analytics and Knowledge - LAK ’13. doi:10.1145/2460296.2460316Hewson, E. R. F. (2018). Students’ Emotional Engagement, Motivation and Behaviour Over the Life of an Online Course: Reflections on Two Market Research Case Studies. Journal of Interactive Media in Education, 2018(1). doi:10.5334/jime.472Kahan, T., Soffer, T., & Nachmias, R. (2017). Types of Participant Behavior in a Massive Open Online Course. The International Review of Research in Open and Distributed Learning, 18(6). doi:10.19173/irrodl.v18i6.3087Cross, S., & Whitelock, D. (2016). Similarity and difference in fee-paying and no-fee learner expectations, interaction and reaction to learning in a massive open online course. Interactive Learning Environments, 25(4), 439-451. doi:10.1080/10494820.2016.1138312Charleer, S., Klerkx, J., & Duval, E. (2014). Learning Dashboards. Journal of Learning Analytics, 1(3), 199-202. doi:10.18608/jla.2014.13.22Worsley, M. (2012). Multimodal learning analytics. Proceedings of the 14th ACM international conference on Multimodal interaction - ICMI ’12. doi:10.1145/2388676.2388755Spikol, D., Prieto, L. P., Rodríguez-Triana, M. J., Worsley, M., Ochoa, X., Cukurova, M., … Ringtved, U. L. (2017). Current and future multimodal learning analytics data challenges. Proceedings of the Seventh International Learning Analytics & Knowledge Conference. doi:10.1145/3027385.3029437Ochoa, X., Worsley, M., Weibel, N., & Oviatt, S. (2016). Multimodal learning analytics data challenges. Proceedings of the Sixth International Conference on Learning Analytics & Knowledge - LAK ’16. doi:10.1145/2883851.2883913Aguilar, J., Sánchez, M., Cordero, J., Valdiviezo-Díaz, P., Barba-Guamán, L., & Chamba-Eras, L. (2017). Learning analytics tasks as services in smart classrooms. Universal Access in the Information Society, 17(4), 693-709. doi:10.1007/s10209-017-0525-0Lu, O. H. T., Huang, J. C. H., Huang, A. Y. Q., & Yang, S. J. H. (2017). Applying learning analytics for improving students engagement and learning outcomes in an MOOCs enabled collaborative programming course. Interactive Learning Environments, 25(2), 220-234. doi:10.1080/10494820.2016.1278391Drachsler, H., & Kalz, M. (2016). The MOOC and learning analytics innovation cycle (MOLAC): a reflective summary of ongoing research and its challenges. Journal of Computer Assisted Learning, 32(3), 281-290. doi:10.1111/jcal.12135Ruiperez-Valiente, J. A., Munoz-Merino, P. J., Gascon-Pinedo, J. A., & Kloos, C. D. (2017). Scaling to Massiveness With ANALYSE: A Learning Analytics Tool for Open edX. IEEE Transactions on Human-Machine Systems, 47(6), 909-914. doi:10.1109/thms.2016.2630420Er, E., Gómez-Sánchez, E., Dimitriadis, Y., Bote-Lorenzo, M. L., Asensio-Pérez, J. I., & Álvarez-Álvarez, S. (2019). Aligning learning design and learning analytics through instructor involvement: a MOOC case study. Interactive Learning Environments, 27(5-6), 685-698. doi:10.1080/10494820.2019.1610455Tabaa, Y., & Medouri, A. (2013). LASyM: A Learning Analytics System for MOOCs. International Journal of Advanced Computer Science and Applications, 4(5). doi:10.14569/ijacsa.2013.040516Shorfuzzaman, M., Hossain, M. S., Nazir, A., Muhammad, G., & Alamri, A. (2019). Harnessing the power of big data analytics in the cloud to support learning analytics in mobile learning environment. Computers in Human Behavior, 92, 578-588. doi:10.1016/j.chb.2018.07.002Klašnja-Milićević, A., Ivanović, M., & Budimac, Z. (2017). Data science in education: Big data and learning analytics. Computer Applications in Engineering Education, 25(6), 1066-1078. doi:10.1002/cae.21844Logglyhttps://www.loggly.com/Molto, G., & Caballer, M. (2014). On using the cloud to support online courses. 2014 IEEE Frontiers in Education Conference (FIE) Proceedings. doi:10.1109/fie.2014.7044041Caballer, M., Blanquer, I., Moltó, G., & de Alfonso, C. (2014). Dynamic Management of Virtual Infrastructures. Journal of Grid Computing, 13(1), 53-70. doi:10.1007/s10723-014-9296-5AWS CloudTrailhttps://aws.amazon.com/cloudtrail/Amazon Simple Storage Service (Amazon S3)http://aws.amazon.com/s3/Naranjo, D. M., Prieto, J. R., Moltó, G., & Calatrava, A. (2019). A Visual Dashboard to Track Learning Analytics for Educational Cloud Computing. Sensors, 19(13), 2952. doi:10.3390/s19132952Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V., … Suter, P. (2017). Serverless Computing: Current Trends and Open Problems. Research Advances in Cloud Computing, 1-20. doi:10.1007/978-981-10-5026-8_1Zimmerman, D. W. (1987). Comparative Power of StudentTTest and Mann-WhitneyUTest for Unequal Sample Sizes and Variances. The Journal of Experimental Education, 55(3), 171-174. doi:10.1080/00220973.1987.10806451Kruskal, W. H., & Wallis, W. A. (1952). Use of Ranks in One-Criterion Variance Analysis. Journal of the American Statistical Association, 47(260), 583-621. doi:10.1080/01621459.1952.10483441Voyer, D., & Voyer, S. D. (2014). Gender differences in scholastic achievement: A meta-analysis. Psychological Bulletin, 140(4), 1174-1204. doi:10.1037/a0036620Ellemers, N., Heuvel, H., Gilder, D., Maass, A., & Bonvini, A. (2004). The underrepresentation of women in science: Differential commitment or the queen bee syndrome? British Journal of Social Psychology, 43(3), 315-338. doi:10.1348/0144666042037999Sheard, M. (2009). Hardiness commitment, gender, and age differentiate university academic performance. British Journal of Educational Psychology, 79(1), 189-204. doi:10.1348/000709908x30440
    corecore