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Abstract
Successful analytics solutions that provide valuable insights often hinge on the connection of various data sources. While it 
is often feasible to generate larger data pools within organizations, the application of analytics within (inter-organizational) 
business networks is still severely constrained. As data is distributed across several legal units, potentially even across coun-
tries, the fear of disclosing sensitive information as well as the sheer volume of the data that would need to be exchanged are 
key inhibitors for the creation of effective system-wide solutions—all while still reaching superior prediction performance. 
In this work, we propose a meta machine learning method that deals with these obstacles to enable comprehensive analyses 
within a business network. We follow a design science research approach and evaluate our method with respect to feasibility 
and performance in an industrial use case. First, we show that it is feasible to perform network-wide analyses that preserve 
data confidentiality as well as limit data transfer volume. Second, we demonstrate that our method outperforms a conventional 
isolated analysis and even gets close to a (hypothetical) scenario where all data could be shared within the network. Thus, 
we provide a fundamental contribution for making business networks more effective, as we remove a key obstacle to tap the 
huge potential of learning from data that is scattered throughout the network.

Keywords  Meta machine learning · Data confidentiality · Business network · Distributed analytics

1  Introduction

Businesses are becoming increasingly connected to enhance 
collaboration and co-create value. The notion of “business 
networks” describes two or more linked businesses that act 
as “collective actors” [33]. Since the emergence and growth 
of the internet and the digitization of many aspects of a 
company, digital interaction has become more important 
in those networks [43]. Throughout every interaction and 

collaboration, masses of data are produced-data that can 
be analyzed to generate valuable insights, for example, to 
optimize processes [60] or build innovative services on top 
of existing offerings [41, 75, 87]. Davenport [24] describes 
data analytics as one of the most important activities to have 
gained competitive advantage. Combined with the need to 
better understand relations and interactions in business 
networks [6], the need for inter-organizational analysis of 
distributed data sources is evident. Previous work presents 
concepts for centralized data analytics for distributed data 
sources [30, 67].

Therefore, the topic of machine learning1 across different 
entities2 within a value chain or business network is of high 
relevance [36]. However, as recent work points out, “a sub-
stantial potential for utilizing AI across company borders has 
remained largely untapped” [34, p. 1]. For the manufacturing 

 *	 Niklas Kühl 
	 kuehl@uni-bayreuth.de

	 Robin Hirt 
	 robin.hirt@prenode.de

	 Dominik Martin 
	 dominik.martin@kit.edu

	 Gerhard Satzger 
	 gerhard.satzger@kit.edu

1	 prenode GmbH, Karlsruhe, Germany
2	 University of Bayreuth, Bayreuth, Germany
3	 Karlsruhe Institute of Technology, Karlsruhe, Germany
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industry, the World Economic Forum estimates the potential 
value of sharing analytical knowledge and associated data at 
over $100 billion [14]. Other sources confirm the economic 
and/or public benefits of inter-organizational machine learn-
ing for other domains like health care [65, 80, 90], mobility 
[71], or smart cities [48].

To address this research gap, Bach et al. [9] state that 
for the novel challenge of machine learning in business 
networks, “several approaches need to be extended or re-
thought” [9, p. 1]. Consequently, the centralized analysis 
of data across businesses faces several challenges—and 
real-world examples unlocking the potential of cross-entity 
learning, i.e., acquiring analytical knowledge across different 
(legal) organizations, remain scarce [14]. Hirt et al. [46] ana-
lyze typical barriers for machine learning in systems—and 
carve out three main requirements for successful inter-organ-
izational learning as depicted in Table 1. In the course of this 
work, we will design a machine learning artifact for business 
networks focusing on these requirements: ensuring data con-
fidentiality (DR1) and reducing data volume (DR2)—while 
still ensuring superior prediction performance (DR3).

Companies are afraid of exposing sensitive information 
throughout the process of data analysis (DR1). The need to 
protect sensitive data is subject to research in the area of 
business networking [50, 88] or customer privacy protection 
and advertising [37, 42, 66]. In complex business networks, 
collaboration happens between multiple organizations of 
different legal units, hence data confidentiality is required.

As more and more data is produced, the respective trans-
fer of large volumes of data (e.g., to a central analysis unit) 
can be challenging and should be addressed (DR2). Tech-
niques like complex event processing or fog computing offer 
solutions to cope with growing data streams [16, 67], but 
still lack convincing concepts for data confidentiality pres-
ervation [91]. Additionally, as sensor sensitivity increases, 
not all data produced can be centralized [2]. In practice, 
this leads to selective centralization and/or collection of data 
and, thus, to a major loss of potentially relevant information.

An artifact addressing these previous requirements 
also needs to ensure that the resulting performance of a 
method leveraging the network is superior to cases where 
a single company would only analyze its own data (DR3). 

Especially the trade-off between ensuring confidentiality 
while allowing superior performance is worth exploring 
and of raised interest—and will be analyzed in detail in 
the course of this article.

In our work, we propose inter-organizational meta 
machine learning, a method that addresses all three 
requirements for machine learning in business networks. 
The kernel theory of meta machine learning [18] informs 
the design of our artifact. Meta machine learning combines 
the prediction of several base classifiers (multiple entities 
in a business network, e.g., suppliers) to create one aggre-
gated prediction (single entity in a business network, e.g., 
original equipment manufacturer (OEM)). To demonstrate 
the feasibility of meta machine learning as a viable solu-
tion within business networks, we instantiate our proposed 
method within a working prototype and evaluate it regard-
ing the three criteria of data confidentiality, transferred 
volume, and achieved predictive performance based on 
an industrial use case. We highlight that analytics within 
organizations is often a trade-off between full data con-
fidentiality, centralization of data, and overall predictive 
performance. In summary, we contribute to the body of 
knowledge by showing that our meta machine learning 
method is suited to inter-organizational machine learning 
in terms of general technical feasibility, addressing the 
requirements of data confidentiality (DR1), data volume 
reduction (DR2), and performance (DR3). Additionally, 
we demonstrate its usefulness within the application con-
text at our industry partner.

The remainder of this work is structured as follows: We 
first set the fundamentals for our work by elaborating on 
business networks and meta machine learning (Sect. 2), as 
well as on our methodology and research questions (RQs) 
(Sect. 3). We then review state-of-the-art literature as part 
of the theoretical background (Sect. 4). With these pre-
requisites, we present our concept of inter-organizational 
meta machine learning and explain its architecture, the data 
streams as well as the necessary processes in detail (Sect. 5). 
This concept is then applied to a real-world case and evalu-
ated in a technical experiment for its usefulness (Sect. 6). 
We conclude with a summary, limitations, and an outlook 
for future research (Sect. 7).

Table 1   Design requirements of this work

3 We define the machine learning and execution process as the lifecycle of a machine learning model from initiation to training and performance 
estimation up to final deployment [54]

Design requirement Description

DR1 Preserve data confidentiality of the individual entities in the machine learning and execution process3

DR2 Minimize the amount of transferred data volume during learning and execution of the machine learn-
ing process between entities

DR3 Improve the prediction over a meaningful benchmark
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2 � Fundamentals

In this section, we first introduce business networks and 
distributed data sources. Then we describe meta machine 
learning as a foundation for comprehensive analyses across 
these networks.

2.1 � Business networks

We base our conceptualization of a business network on 
Anderson et al. [6] for a common understanding. Every busi-
ness network consists of two or more units-representing for 
example companies or other organizations-that have a dyadic 
relationship. Kambil and Short [49] describe the relationship 
as a linkage that can have different forms, such as an alli-
ance or hierarchy. As businesses increasingly move towards 
digitalization to make processes more intelligent, data is pro-
duced at each company, leaving the network with various 
distributed heterogeneous data sources. Such networks can 
be described as smart business networks [43].

In a connected world, every unit in a network possesses 
a piece of the puzzle in the form of distributed data sources 
of a common context [10], the “big picture” as illustrated 
in Fig. 1. To identify this big picture, those distributed data 
sources must be analyzed comprehensively to derive holis-
tic insights. In an ideal setting, all units would exchange 
their data and freely communicate with each other. In real-
ity, practical barriers such as the sheer volume of data that 
is required to be transmitted and, foremost, the exposure of 
data outside company boundaries, prohibit such an analysis, 
leaving huge potential untapped [14, 34]. While machine-
learning-based solutions exist to enable secure data centrali-
zation and analysis in business networks (e.g., AWS Amazon 
Macie), this centralization is often not happening as data is 
kept confidential and is not exposed to other parties. Appro-
priate methods that still allow learning from a distributed, 
but not shared dataset are lacking. However, there is a lack of 

methods and providers enabling a machine-learning-based 
analysis on data which itself is confidential and therefore 
cannot be directly accessed by the analyzing party itself.

2.2 � Meta machine learning

Basic machine learning techniques are commonly used 
to solve various real-world problems. Machine learning 
describes computational methods that use a series of exam-
ples (“past experience”) to learn about a given task [61]. 
Although statistical methods are used in the learning pro-
cess, a manual adjustment or programming of rules or solu-
tion strategies to solve a problem is not required. In more 
detail, basic machine learning uses a model that is built by 
applying an algorithm on a set of known data to gain insight 
about an unknown set of data [18, 61].

The term “meta machine learning” describes methods 
that employ more than one layer of learning and is “con-
cerned with accumulating experience on the performance of 
multiple applications of a learning system” [18]. Džeroski 
and Ženko [32] argue that meta machine learning enables to 
“learn about learning” [18, 83]. Based on Lemke et al. [56], 
we define meta learning as a system that includes a learning 
sub-system that builds meta knowledge. Meta knowledge is 
extracted by a previous learning episode on one or more data 
sets [56]. We further differentiate between two categories of 
meta learning: ensemble learning and stacked generaliza-
tion. Ensemble learning methods such as bagging [19] or 
boosting [35] propose varying data selection and processing 
and building different sub-models. The output of these sub-
models is then combined by a meta-model (e.g., majority 
voting).

The same principle can be applied to perform compre-
hensive analyses on different data sources, using stacked 
generalization. A dedicated sub-model is built for every 
data source. Their prediction is then combined through a 
meta model (e.g., another trained machine learning model) 

Fig. 1   Simplified business net-
work between two or more units 
of a business network, based on 
Anderson et al. [6]

Supplier A OEM

Optional supplier B
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Dyadic relationship between units
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to get an aggregated prediction [89]. Through the combi-
nation of predictions, the uncorrelated error between all 
models can be minimized, which leads to a performance 
increase [79].

Meta machine learning is often used to combine hetero-
geneous types of data to perform a comprehensive analy-
sis. Hirt et al. [45] use a stacked generalization approach 
to combine different types of data (e.g., pictures and text) 
by employing different sub-models and combining them 
through a meta model, mimicking a cognitive paradigm to 
predict attributes of Twitter users. In the area of financial 
fraud detection, Abbasi et al. [1] propose a meta learning 
method to combine heterogeneous data sources to improve 
prediction performance. They use meta learning to reduce 
the declarative and procedural bias [83] of classifiers 
working on company-internal and publicly available data 
in one specific use case. It is often used to enhance predic-
tion performance and combine different data sources [1]. 
Similarly, in the course of this work, we consider stacked 
generalization and its potential to solve practical problems 
in business network analytics. In contrast to prior work 
in the area of meta machine learning, we do not solely 
focus on its performance-enhancing properties but utilize 
an underestimated characteristic: the information abstrac-
tion between the sub-layer and the meta layer.

In the context of business networks, this has two advan-
tages. Considering that sub-models are deployed at differ-
ent units of a business network and send their prediction 
to any desired unit that inherits a meta model, we sup-
pose only a fraction of data needs to be transmitted, com-
pared to a transfer of raw data. Additionally, confidential 
information is already (and possibly irreversibly) masked 
through the abstraction and pre-analysis of data, making a 
meta machine learning analysis confidentiality-preserving.

3 � Methodology

The general research is based on evaluation-centric design 
science according to Venable et al. [82]. To guide the 
design of our artifact, meta machine learning [18] and 
service-oriented computing [47] act as kernel theories 
throughout the design process for construction [39, 84].

Prior studies focus on solving the issue of disclos-
ing sensitive data during analysis by proposing to only 
exchange encrypted data or masking sensitive information 
in data sources before exchanging it. Architectures and 
principles to reduce or handle the amount of transferred 
data during analysis do not ensure data confidentiality. 
Existing methods are prone to disclose sensitive informa-
tion, limiting analytical methods or significantly decreas-
ing predictive performance. As outlined in the upcoming 
theoretical background in detail, we identify a need for 
inter-organizational machine learning approaches which 
preserve data confidentiality [91] while reducing volume 
[73] and still allowing for reasonable performance [31]. 
For instance, there are methods capable of not exposing 
any raw data, but they lack in performance [7] or are not 
suitable to machine learning endeavors [8]. Thus, we pose 
our general research question (GRQ):

General Research Question (GRQ):
How can we design a well-performing meta machine 

learning approach allowing the holistic analysis of dis-
tributed entities within business networks while preserving 
data confidentiality and reducing transferred data volume?

To better understand the effectiveness and efficiency 
of our proposed method, we consider three scenarios, 
as depicted in Fig. 2. In all three scenarios, data is dis-
tributed across different units of a business network. All 

Isolated analysis 
in separate units

Comprehensive 
network-wide 

analysis 
using all available 
data in a shared 

data pool

Potential: Holistic insight

Problems: Data confidentiality,
large volume of transferred data

Inter-organizational 
meta machine learning 

method

Show feasibility

Measure
improvement 

Measure
loss of 

abstraction

Scenario 1 Scenario 2 Scenario 3

Fig. 2   Possible scenarios of comprehensive analyses in business networks
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units collaborate in some way with each other and could 
potentially optimize their own output, or the output of the 
overall network. In scenario 1, we assume that there is no 
communication of data or insights of any kind between 
business units caused by the stated obstacles (“isolated 
analysis”). Every unit only performs an isolated analysis 
of its own data to gain insights. In contrast, in scenario 2 
we consider a situation where an analysis is performed 
through the proposed meta machine learning method 
that ensures data confidentiality and reduces the volume 
of transferred data (“inter-organizational meta machine 
learning method”, short IOMML). Lastly, in scenario 3, 
we depict an “ideal world” where obstacles such as data 
confidentiality and volume are non-existent, and all data is 
accessible by all units of a network (“shared data pool”).

The first main challenge that we address is the technical 
evaluation of whether the three design requirements (data 
confidentiality, reduction of data volume, performance 
evaluation) are met by the proposed method, thus stating 
RQ1 as follows:

Research Question 1 (RQ1):
Is the proposed method effective and efficient with 

regard to data confidentiality, volume reduction, and pre-
diction performance?

We expect an increase in the predictive performance 
of an analytics method from scenario 1 (isolated analysis) 
to scenario 2 (inter-organizational meta machine learn-
ing method (IOMML)), as scenario 2 has more informa-
tion available than scenario 1. By comparing scenario 
2 (IOMML) with scenario 3 (shared data pool), it is 
expected to yield a lower predictive performance of the 
meta machine learning method than in a scenario with 
complete data exchange and all raw data at disposal. 
Narayanan and Shmatikov [62] describe this trade-off 
between anonymizing/masking data and prediction accu-
racy: While most public datasets revealed by companies 
are anonymized to protect user privacy, researchers hint 
that perfect anonymization is not possible without damag-
ing the utility of the data. However, distributed analysis—
like the one suggested in this work—yields the advantage 
of separate, specialized models [32]. We are interested in 
the performance of the meta machine learning method in 
comparison to a case with complete data exchange and a 
case with an isolated analysis.

Apart from the technical effectiveness and efficiency, 
we aim to gain insights on the perceived usefulness of the 
method in the field, more precisely, in the organizational 
context where it could be established. We measure per-
ceived usefulness in our case company with the respective 
sub-construct from the well-established technology accept-
ance model (TAM) [25], similar to related work [20, 26, 44]. 
Thus, we state the second RQ as follows:

Research Question 2 (RQ2):

How is the proposed method perceived within its applica-
tion context in terms of usefulness?

To answer both questions, we instantiate the proposed 
artifact within a real-world production line case with our 
industry partner. To strengthen generalizability, we imple-
ment an additional robustness check within a distributed sen-
sor group system (see Appendix A.3 on page 27).

4 � Theoretical background

Within the body of knowledge, we can identify two research 
streams in the context of enabling an analysis of distributed 
data sources within a business network, which is closely 
related to two design requirements of this work: preserv-
ing data confidentiality (DR1) and reducing the amount of 
transferred data in the process (DR2). To outline the research 
gap, we describe work in the area of data confidentiality, 
often called privacy preservation—an established field of 
research—as well as the distributed analysis of large data 
streams.

4.1 � Preserving data confidentiality

Data privacy and confidentiality can have multiple facets 
and are driven by different motives and in different domains, 
such as social media [93], healthcare [36], industrial applica-
tions [69] or others. Belanger and Xu [12] describe privacy 
in online social networks and propose a multi-dimensional 
privacy concept fit to online social interactions. Wohlgemuth 
et al. [88] describe the role of security and privacy in busi-
ness networking. Kieseberg et al. [50] propose an algorithm 
for collusion-resistant anonymization and fingerprinting of 
sensitive microdata. Especially the involvement of end users 
requires data privacy. Riquelme and Román [66] assess the 
influence of privacy and security on online trust for consum-
ers. Goldfarb and Tucker [37] elaborate on privacy regula-
tion and online advertising, while Hann et al. [42] develop 
a theoretical approach to overcoming online information 
privacy concerns.

Methods to preserve data confidentiality and privacy can 
be distinguished based on their main principle: masking, 
noising, or encryption of data (see Table 2). Additionally, 
there are approaches combining the previously described 
principles. The field of privacy-preserving data mining aims 
to build accurate models without disclosing an individual 
data record. In the following, we provide an overview of 
related work in the area of preserving data confidentiality 
in general and then describe approaches to realize confi-
dentiality-preserving analyses and their suitability for our 
task at hand.

Data masking and noising are approaches that originate 
from the statistical sciences that strive to perform analysis 
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without compromising security and privacy [29]. These 
approaches reduce the problem to that of extracting usable 
information from noisy data [22, 28]. While data noising 
is fairly robust to standard security attacks like the man-in-
the-middle attack or an structured query language (SQL) 
injection, the accuracy of the analysis result often suffers 
from the amount of noise introduced in the initial data [4].

Besides masking and noising, encryption is another key 
method for preserving private information. As a compre-
hensive analysis of distributed data requires the transport of 
all data sources to a central analytics unit, encryption could 
be used to secure the transmission. For analysis, this data 
needs to be decrypted, which might already disclose data 
to the central analytics unit. The efficacy of this approach, 
therefore, depends on the safety of data in “safe” zones.

In our work, similar to masking or noising techniques, 
we strive to transform data to preserve data confidentiality. 
However, in contrast to the mentioned techniques, we aggre-
gate the data as a part of the desired analysis to minimize the 
loss of information during the process (“aggregation”). By 
shortly elaborating on the drawbacks of existing approaches, 
we discuss the suitability of an aggregation technique like 
meta machine learning.

Compared to methods relying on encryption, our tech-
nique is able to leverage any machine learning during 
analysis. Although there are novel approaches that per-
form mathematical and rudimentary learning techniques on 
encrypted data [38], those do not allow for flexible use of 
various machine learning methods. Furthermore, perform-
ing operations on encrypted data is known for causing a 
high computational effort [15]. The higher computational 
effort and the incapability to perform machine learning on 
encrypted data make encryption not a suitable technique for 
the task at hand. Recent reports suggest that these techniques 
might also be vulnerable to external attacks [86]. Bhattacha-
rya et al. [15] describe a method for privacy preserving ana-
lytics using homomorphic encryption of data among peers, 
enabling them to perform analyses. Their key proposition is 
to perform analysis on encrypted data, deducing the desired 

insight and, therefore, never exposing data to a third cen-
tral party. Although they extend the tool set of analytical 
capabilities, their approach is limited to only performing 
basic mathematical operations (i.e., calculating the sum of 
products). Additionally, the computational costs are increas-
ingly high due to the necessity of homomorphic encryption.

In the case of masking techniques, critical fields of data 
entry are masked to ensure confidentiality. Especially in 
cases where only single elements of a data entry are criti-
cal (e.g., the name of a data entry about a person), masking 
might be a viable option to consider. However, in the case 
at hand the critical data itself is the one which needs to be 
analyzed, making masking techniques a non-viable option.

Noising techniques strive to preserve confidentiality by 
adding noise to the critical data element. This enables expos-
ing the noised data and, then, performing every machine 
learning technique on it. However, with increasing noising 
of data and, therefore, increasing data confidentiality, the 
predictive performance also drops significantly. Therefore, 
noising could be applied but has major drawbacks in terms 
of performance for the task at hand.

The proposed method in this work can be characterized 
as an aggregation technique to group and summarize critical 
data in a form, where the result is not exposing any private 
information. However, this technique aims towards realizing 
the aggregation by a subordinate layer of machine learning, 
leaving only relevant information for further analysis in the 
aggregated result.

As we are striving towards realizing inter-organizational 
machine learning, in the remainder of this paper we focus on 
comparing our method with the noising technique.

While masking, noising, and encryption manipulate the 
source data but try to keep the information content and data 
structure as similar as possible, we propose to only trans-
mit information that has a direct impact on the target of the 
analysis.

4.2 � Reducing and processing large data streams

To realize analytics in distributed systems, large volumes of 
data that originate from heterogeneous sources are required 
to be processed: sensors, transactional or social networks, 
or company-internal information systems. The reasons for 
performing analytics in those systems can be the detection of 
undesired behavior or other specific patterns (e.g., miscon-
duct, unusual events, runtime errors) and to derive higher-
level information from them [27, 57]. However, the increas-
ing number of devices with access to the internet and the 
increasing interconnectedness of data-producing units pose 
challenges for data analysis infrastructure and techniques.

In general, there are two opposing literature strands 
of data processing and computing and, i.e., analytics in 

Table 2   Overview of learning methods and strategies for data-confi-
dential learning in business networks. Legend:    = fully applies,    
= partially applies

Strategy/method No machine learning Machine learning

Masking  Armstrong et al. [7]  Asenjo [8]
Noising  Kocabaş and Soyata 

[52]
 Dwork and Feld-
man [31]

Encryption  Asenjo [8]  Graepel et al. [38]
Aggregation  Anagnostopoulos et al. 

[5]
 This work
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networked systems in the literature [73]: centralized and 
decentralized paradigms. Centralized approaches aim 
towards processing real-time, possibly fluctuating, data 
streams generated by heterogeneous, distributed units gath-
ering low-level information in the cloud [57, 78]. In contrast, 
there are approaches to directly process decentralized data, 
like edge or fog computing [68].

Centralizing analytics requires the data to be in one place. 
Driven by the need to transfer and process large data streams 
in real time at once in order to detect undesired behavioral 
patterns, complex event processing (CEP) has emerged. CEP 
represents a set of techniques to analyze event-driven infor-
mation systems. According to Luckham [58], an event is a 
record of an activity within a system that may depend on 
other events. A set of events, including their dependencies, 
results in a complex event containing valuable, higher-level 
information. In order to be able to continuously process the 
events gathered on distributed units, a technology must be 
able to apply complex analyses in parallel on several data 
streams [67]. For instance, CEP is used in finance to detect 
fraud [74] and make automatic trading decisions [3]. In addi-
tion, CEP is also used to analyze time series collected by 
sensors to perform real-time analyses of complex interac-
tions measured by independent sensors [30, 85].

In contrast, decentralized analytics is driven by the uti-
lized unused processing capabilities [72] or a need to reduce 
the transferred data volume [81]. Sarlis et al. [72] propose 
a decentralized analytics system for network traffic data, 
dynamically distributing parts of the decentralized data for 
processing and orchestrating an analysis. Uhlmann et al. 
[81] describe a decentralized data analytics framework for 
maintenance for connected manufacturers. The described 
system pre-analyzes sensors on site and sends the status of 
a machine to a central platform. Then the information is 
distributed and made accessible via a dashboard. Pournaras 
and Nikolic [64] describe on-demand self-adaptive data 
analytics in large-scale decentralized networks. They focus 
on the automated allocation of computational capacity in a 
network of multiple processing nodes. To strike a compro-
mise between cloud-based and edge computing, cloudlets 
have evolved. A cloudlet represents the middle layer between 
a cloud and a mobile device, addressing latency issues of 
cloud architecture as well as centralization endeavors [73].

Centralized analytics imposes the necessity to transfer 
data to a central unit, which prohibits the analysis of sen-
sitive data and, in fact, prohibits any analysis. Hitherto, 
mechanisms for decentralized analytics might impose first 
characteristics similar to this work. In most mechanisms, 
there is no additional meta-analysis of the pre-analyzed 
content to gain further insights. Furthermore, in the area of 
processing large streams of data, confidentiality is often not 
considered a problem.

As decentralized approaches attempt to significantly 
reduce the network load by pre-processing low-level infor-
mation on the edge device, our approach processes data 
where it is produced, compresses it but derives high-value 
information. At a central level, i.e., in a meta entity, the 
information from distributed units is aggregated. The infor-
mation is then combined on this (central) level and analyses 
across multiple organizations can be performed. Thus, our 
proposed concept combines the advantages of central infor-
mation processing with low latency due to low data volume.

5 � Inter‑organizational meta machine 
learning

To address the challenges of realizing a data confidentiality 
preserving method that minimizes the amount of transferred 
data volume in decentralized business networks, we propose 
an IOMML. This method uses data aggregation techniques 
in order not to disclose data and reduce their volume.

In the following, we suggest and describe our artifact in a 
general way before we instantiate it in a use case in Sect. 6. 
We perform this description along three perspectives: the 
intended architecture, the data and model output exchange 
during analysis, and the life cycle of an instantiation.

5.1 � Architecture

As elaborated, every business network consists of different 
units that interact with each other. Every unit might pos-
sess its own data sources, might be owned by different legal 
organizations, or might be geographically distributed. The 
architecture should therefore enable to preserve data con-
fidentiality and reduce the required volume of data that is 
transferred during analysis.

We distinguish between two unit types: sub-units and 
meta units. A sub-unit possesses one or many data sources 
(e.g., a customer data base and corresponding transaction 
history data) that-in combination with data of other units-
might reveal a network-wide pattern after analysis. The meta 
unit represents a virtual unit that analyzes the overall situa-
tion based on the sub-units. All involved units-regardless of 
whether they are sub or meta-have a common understand-
ing of the goal of the analysis. Every sub-unit possesses 
a certain data source that requires processing. By nature, 
data sources might store heterogeneous types of data that 
require an individual analysis. Although these separate data 
sources might reveal information and insights on their own, 
the core assumption is a pattern that is distributed through-
out more than one unit. We aim to analyze and learn about 
these patterns-the “bigger picture”. For further considera-
tion, we assume that every sub-unit’s data source reveals 
such a piece of the puzzle.
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In Fig. 3, we depict a simplified structure of a meta anal-
ysis between multiple sub-units. Hereby, every sub-unit 
analyzes its own data, using a customized sub-model. As a 
result, each sub-unit prepares a collection of an item iden-
tifier, a (categorical) result, and a corresponding certainty 
value for the analysis. This output of the sub-model is sent 
to a virtual meta unit that uses a meta model to perform a 
comprehensive analysis. The final output of the meta analy-
sis could then be sent back to every sub-unit as a basis for 
further activities or could be used by other units to build 
upon the insight. Note that the meta unit is just a virtual 
construct and could be represented by any (sub-) unit.

The data source of a sub-unit gets processed by a sub-
model that is highly customized to the corresponding data 
structure and predicts a certain attribute that might be an 
indicator of the big picture we are trying to reveal. As 
depicted in Fig. 4, after processing the sub-unit data point, 
the prediction output gets sent to a meta unit that aims to 
aggregate all incoming, subordinate predictions. Note that 
at no point throughout this process does raw data get trans-
ferred or exposed outside the processing unit. The meta unit 
does not need any information about the input data of the 
sub-models or how the sub-models perform their analysis. 
No bare information or raw data that was not intended to be 

shared is distributed, thereby preserving intellectual prop-
erty and confidentiality of data. To aggregate all incoming 
predictions and to retrieve insights from them, the meta 
unit employs a meta layer of machine learning that learns 
which sub-model’s prediction is of importance in which 
situation. The output of such a meta model prediction is an 
accumulated prediction towards a distributed database. To 
make this prediction, the meta model draws on the stacked 
generalization paradigm from meta machine learning as a 
kernel theory [40].

The meta unit collects information of different, distrib-
uted, and independent sources to make a holistic prediction 
as an insight that is latently present in these data sources. It 
uses machine learning to gain information about the signifi-
cance, relevance, and validity of each sub- model predic-
tion and their interdependencies. Without communicating 
the meaning of a sub-model output, or even sub-unit data, to 
the meta unit, the stacked generalization meta model can still 
identify the desired big picture. The meta model prediction 
output can then be included in analytics applications or other 
smart services to create value.

Fig. 3   Simplified structure of 
a meta model based on two or 
more sub-units with a superor-
dinate meta unit

Sub-unit 1 Sub-unit 2

Unit of a business network

Common context described by distributed data

Data

Sub-unit n

S Sub-model

M Meta model

SnS2S1

M

Meta unit

Fig. 4   Flow chart of a predic-
tion based on sub-unit data 
input
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5.2 � Data and model output exchange 
during analysis

During the process of a meta prediction, data is analyzed by 
different sub-models, and sent to the meta unit for aggrega-
tion by the meta model. The final result is then sent back to 
every sub-unit, e.g., to optimize local business processes. In 
Fig. 5, we depict the data and model output exchange during 
a meta analysis in a business network. Hereby, a sub-unit 
possesses confidential unit data. That data is analyzed on 
the sub-unit’s site by a sub-model, generating an abstract 
sub-model output. The sub-model output is then transferred 
to a meta unit. That step repeats for every sub-unit that is 
part of the analysis in a business network.

The architecture aims to maintain data confidentiality 
while minimizing the volume of data transmitted dur-
ing analysis. In this context, it is important to consider 
the type of data being processed and transferred, as the 
reduction of volume can have a different impact on pre-
serving confidentiality for structured and unstructured 
data. For structured data, such as tables, reducing the 
volume depends on the number of columns a row or 
observation possesses. Given the prediction output of 
a sub-classifier stays the same, the more columns a row 
has, the larger the reduction in volume and the higher the 
abstraction and security can be. This can help maintain 
data confidentiality by minimizing the amount of sen-
sitive information that is transferred. For unstructured 
data, such as images or videos, naturally, more informa-
tion is reduced by just sending a classifier output instead 
of the complete visual information. In this case, the data 
confidentiality can be high in comparison to consider-
ing the raw data. In conclusion, it is crucial to take into 
account the type of data being processed and the methods 
available for reducing its volume while maintaining its 
integrity.

At the meta unit’s site, all incoming abstract sub-model 
predictions are combined by a feature aggregation, form-
ing the input for a meta model. The meta model then pro-
cesses its input and generates an output. As that output is 
based upon all underlying sub-model predictions, based 
on sub-unit data, comprehensive insights can be derived. 
Afterward, the meta model output can be consumed by the 
meta unit, every participating sub-unit, or a possible third 
party unit as a basis for any action or decision.

6 � Evaluation in production line quality 
prediction

In order to evaluate the proposed IOMML artifact, we follow 
the FEDS framework and its application to a real-world use 
case according to Venable et al. [82] as depicted in Fig. 6. 
The FEDS framework is a framework for evaluating deci-
sion-making systems. The evaluation episodes (EEs) within 
the framework consist of a series of tests or scenarios that 
are designed to assess the performance and behavior of the 
system under different conditions. These episodes are used 
to evaluate the system’s ability to handle various types of 
uncertainty, its robustness to different types of failures, and 

Fig. 5   Exemplary communication in an inter-organizational meta learning landscape: data and prediction flow across involved units

Formative Summative

Naturalistic

Artificial

Notation: = Design / Construct = Evaluation Episode

EE2

EE1

Fig. 6   Evaluation episodes according to the FEDS framework [82]
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its overall effectiveness in making decisions—by moving 
from artificial to more naturalistic evaluations with each 
episode as well as forming more summative than formative 
knowledge. The goal of these evaluations is to identify any 
weaknesses or limitations in the system so that they can 
be addressed and improved upon. We conduct two EEs in 
alignment with our two RQs: Evaluation episode 1 (EE1) 
covers the technical feasibility aspects of the artifact and 
its characteristics to meet our design requirements (RQ1). 
These requirements include privacy preservation (DR1), 
data volume reduction (DR2) as well as prediction perfor-
mance (DR3). In the subsequent evaluation episode 2 (EE2), 
we cover the potential users of the artifact and the assess-
ment of its usefulness, thus, addressing our second research 
question (RQ2).

In the remainder of this section, we start by thor-
oughly describing the industrial use case that serves as 
the basis for our evaluation. We showcase the techni-
cal instantiation and describe its technological founda-
tion and a possible user interface for demonstration. To 
understand the technical effectiveness and efficiency 
of the presented meta machine learning method as our 
design science research (DSR) artifact, we conduct three 
evaluations based on an industrial use case. First, we 
elaborate on the data confidentiality preserving capa-
bility of our approach. Then we show the reduction of 
data volume that needs to be transmitted during analysis. 
Third, we measure the performance of the approach and 
compare it to two reference scenarios, as described in 
Sect. 3. Fourth and finally, we evaluate the artifact with 
experts from the related application field to assess its 
potential usefulness.

6.1 � Use case description and suitability

The use case originates from industrial manufacturing and 
serves as a basis for simulating a business network with 

different units. We deliberately chose a network within one 
legal entity which enables us to compile a benchmark case 
where all data is available in one place (see Fig. 2 on page 5).

A global industrial manufacturing company has provided 
us with a dataset that inherits data about 1,183,747 parts 
as well as information on whether each part has passed the 
quality control (“no scrap”) or not (“scrap”). During the pro-
duction process, each part goes through a varying sequence 
of several lines and their stations. The present dataset com-
prises 52 stations across four lines. The dataset includes 968 
numeric features, 1156 date features, and 2140 categorical 
features. In addition to the large number of existing features, 
the sparse nature of the data poses an additional challenge. 
Most of the data instances contain empty values for more 
than half of the features because a part only passes through 
a fraction of a number of the stations. Figure 7 illustrates 
the paths of the parts through the different lines during 
the production process. Each horizontal bar represents an 
independent entity-in our case a production line. Each lane 
represents a subset of parts that undergo a production step 
in the respective line. As depicted in the graph, most of the 
parts pass lines 0 and 3 (77.4%), while only a small share 
includes all four lines ( < 0.1% ). The second and third most 
frequently passed paths comprise lines 1, 2, and 3 (20.7%), 
and lines 0, 2, and 3 (9.6%), respectively. The data itself 
is very imbalanced. The complete set contains only 6,879 
parts labeled as faulty, which corresponds to a failure rate of 
0.58%. For the overall production, it is desired to reduce the 
number of faulty parts by predicting future failures in time 
and to intervene. Often, as data is not accessible, there is a 
lack of quality prediction mechanisms that help to increase 
overall production quality by intervening and improving the 
production during the process. Hereby, an intervention could 
be done either during an ongoing production or afterwards. 
In the first case, potentially faulty parts could be inspected 
separately as they flow through the production line. This 
could help to detect causes for the quality issue, such as 

Fig. 7   Paths through lines L 
taken by different subsets of 
parts throughout the production 
process
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degraded production gear, or to prevent a faulty part overall. 
In the second case, quality issues could be detected after pro-
duction but before shipment. In some cases, quality checks 
are also a cost driver and are only performed on a sample of 
the overall produced parts. Therefore, having a predictive 
model which can pre-determine the sample for that quality 
check could decrease the cost of quality management but 
still increase the overall quality of production.

To perform a comparative evaluation between an isolated 
scenario and one where data can be freely shared, we choose 
a use case where data sharing is possible in a test setting but 
not a productive system. This enables us to create a measur-
able benchmark for our proposed method. The production 
lines may be distributed geographically and even owned by 
different legal units.

The use case is well suited for our instantiation of inter-
organizational meta machine learning, as it allows us to 
develop an artifact addressing design requirements (DR1-
3). By encapsulating the lines, we can simulate completely 
independent entities (DR1). In interviews with experts work-
ing in the application context, they reveal that data transfer, 
especially in rural areas of production sites, can be quite 
challenging, as the amount of data produced exceeds 60 ter-
rabytes (TBs) per day (DR2). Our industry partner provided 
the data set as part of a “Kaggle competition”3 with the aim 
of benefiting from a community-driven increase of predic-
tion performance (DR3).

6.2 � Artifact instantiation

In Fig. 9, we depict the instantiation of the proposed meta 
machine learning method in our use case. For each line, a 
sub-model is generated that produces a sub-prediction. After 
receiving all sub-predictions, the meta unit-in our case a pro-
duction control-receives all sub-predictions, aggregates them 
into a single feature array, and then analyzes it throughout 
the meta model. The result is a holistic quality prediction 
that can be used to improve production.

To evaluate the technical performance of the prediction, 
we use the Matthews correlation coefficient (MCC) as a 
metric for evaluation, which is particularly robust to class 
imbalance [17].

The MCC is calculated directly from the results of the 
binary predictions and lies in the interval [ −1 , 1], with val-
ues of 1 denoting perfect classification, values of −1 denot-
ing complete disagreement and values of 0 denoting an 
uncorrelated relation between prediction and ground truth.

Due to its high sparsity ( > 99% ), previous work suggests 
omitting the categorical data [92]. Additionally, as we are 
interested in comparing methods across several scenarios, 
we do not include categorical data in our analysis and rather 
focus on numerical data. We cope with missing values 
(81%, cf. Fig. 8) in the numerical data by replacing them 
with a marker value [63]. The remaining dataset is adopted 
unchanged. In addition, the date information is compressed 
into four representative features. As shown in Fig. 9, we 
compare the inter-organizational meta learning approach 
(scenario 2) to a separate isolated analysis of data in each 
unit (scenario 1) and a comprehensive analysis with a shared 
data pool and all data in one model (scenario 3). We choose 
the random forest classification as it offers good results on 
this dataset with comparatively little training time [92]. For 
training, the parameter search through the parameter grid 
shown in Table 3 and the validation of the regular approach, 
we use threefold nested cross-validation to avoid overfitting 
[21]. Similarly, in the case of meta machine learning, we 
apply an adapted threefold nested cross-validation, which we 
have altered towards the conditions of the two-stage process 
to prevent data leakage. The nested cross-validation uses 
three outer and two inner folds. The test set of the inner fold 
is once again based on a three-fold cross-validation. The 
training set of the inner fold is used to train all sub-models, 
while the meta model is trained and evaluated on the pre-
dictions of the test set of the inner fold by another threefold 
cross-validation.

In addition to the meta machine learning classification 
model, we develop a microservice-based web service. This 
web service simulates the data generated in the individual 
lines, classifies these by the sub-model and transfers the 
results to the meta model service. This classifies the data 
originating from the sub-models and makes them available 
to the frontend. 

The microservice pattern is an architectural style for soft-
ware applications, whose basic idea is to split a heavyweight 
monolithic application into several independent, usually 
smaller, self-contained parts. This architecture is well-suited 
to the concept of meta machine learning, as the individual 
components are loosely connected and easily expandable. 
Each model, as well as an additional web frontend that visu-
alizes the meta results in a web browser, simulating the pro-
duction control, is encapsulated as a standalone microservice. 
Each service provides a uniform representational state transfer 
(REST) application programming interface (API) with exactly 
one endpoint. This endpoint accepts hypertext transfer protocol 
(HTTP) POST requests with attached JavaScript object nota-
tion (JSON) formatted text. The incoming data is processed 
within the service and passed to the subsequent service.

The result is a frontend (cf. Fig. 10) in which the classifica-
tion results of the individual lines and the result of the meta 
model are displayed. For each part, the sub-model outputs are 

3  Kaggle is an online community of data scientists allowing users 
to publish data sets, which are then part of so-called “competitions” 
with the aim to be “solved”, which typically means an increase of 
prediction performances.
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shown as they come in. After at least one sub-model output 
is available, the meta model predicts an output that is also 
shown in the production control dashboard. This prototype 
illustrates the two-layer architecture of the meta machine learn-
ing approach and the dependencies between sub-models and 
the meta model.

6.3 � Evaluation episode 1: technical evaluation

6.3.1 � Preserving data confidentiality (DR1)

On the basis of the artifact (IOMML) and its instantiation, 
we evaluate the confidentiality aspect of meta machine learn-
ing in business networks. We define that a system is confi-
dential when it ensures “that only authorized users access 
information” [23]. In our case, the users are the units. Each 
unit, regardless of being sub or meta, should only be able to 
access its own raw data.

To answer the first research question (RQ1), whether 
raw data can only be accessed by the unit it originates 
from, we compare the different scenarios of business 
network analyses as depicted in Table  4 based on our 
research framework (Fig. 2 on page 5). In the scenario of 
isolated analysis in separate units (scenario 1), no data is 
exchanged, therefore data confidentiality is preserved. In 
the other extreme of comprehensive network-wide analy-
sis using all available data based on a shared data pool 
(scenario 3), data is, by definition, distributed among all 
units in the business network. Data confidentiality is there-
fore violated. The scenario of the meta machine learning 
method is of interest for further evaluation, as all sub-
units only have access to their own data, but the meta unit 
receives the output of the sub-units’ machine learning 
models. The question remains whether data from the sub-
units can be reproduced from these abstract outputs-and, 

Fig. 8   Sparsity matrix depicting 
the large ratio of missing values 
in numeric data. Rows represent 
observations/parts and columns 
numeric features across four 
lines
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consequently, whether data confidentiality is preserved or 
violated.

To answer this question, we first need to regard the raw 
data in each sub-unit. The dataset contains an extremely 
large number of anonymized features. Features are named 
according to a convention that tells reports on the production 
line, the station on the line, and a feature number. For exam-
ple, L3_S36_F3939 is a feature measured on line 3, station 
36, and is feature number 3939. An example of an observa-
tion is depicted in Table 5. Every row represents one part 
that is described by different features at each station. Every 

feature represents measurements performed for the specific 
part at the respective station during the production process.

Now each sub-unit builds its own model, based on the 
goal of predicting the target value (scrap, no scrap), and 
communicates this prediction to the meta unit. The commu-
nicated output of prediction and its probability is depicted in 
Table 6. For each part, the sub-set of data is analyzed at each 
line towards the attribute “scrap” or “no scrap”. Each sub-
prediction also contains a probability score of the respective 
prediction.

There is no possibility of reconstructing the raw data 
from Table 5 with the abstract predictions of Table 6. The 
machine learning model of each sub-unit is highly complex 
and a reconstruction from a binary value and a probability 
is impossible, as the nature, amount and type of the raw 
features are unknown to the meta unit. We can therefore 
positively answer RQ1, as data confidentiality is preserved 
in the scenario of meta machine learning.

Line 2

Sub
model

Data from
stations

Sub
prediction

Line 3

Sub
model

Data from
stations

Sub
prediction

Line 4

Sub
model

Data from
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Sub
prediction
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Sub
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Data from
stations

Sub
prediction
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Quality
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Fig. 9   Instantiation of an inter-organizational meta learning method in an industrial use case with four production lines representing the sub-
units and a production control as a meta unit

Table 3   Parameter search space for random forest model

Parameter Values

Number of estimators 25, 50, 100, 200, 300
Max depth 25, 50, 100, 200, 300
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Fig. 10   Web front-end of the instantiated artifact

Table 4   Comparison of scenarios in regard to data confidentiality

Data availability Scenario 1: Isolated analysis in 
separate units

Scenario 2: Meta machine 
learning method

Scenario 3: Comprehensive network-wide analysis 
using all available data based on a shared data pool

Sub-units Access to own data Access to own data Access to all data
Meta unit n/a Access to output of sub-units 

machine learning models
n/a

Table 5   Excerpt of raw data for sub-units 0 and 3

(a) Line 0

Part ID Line 0 sub-unit Target

L0_S0_F0 L0_S0_F2 L0_S0_F4 L0_S0_F6 ...

# 001 −0.042 −0.049 −0.015 0.003 ... No scrap
# 002 −0.023 −0.049 −0.015 −0.016 ... No scrap

(b) Line 3

Part ID Line 3 sub-unit Target

L3_S35_F3889 L3_S35_F3894 L3_S35_F3896 ...

# 001 −0.079 0.030 −0.200 ... No scrap
# 002 0.049 −0.030 0.072 ... No scrap
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6.3.2 � Reduction of transferred data volume (DR2)

We also ask whether transferred data volume can be drasti-
cally reduced during comprehensive analyses. In this sec-
tion, we evaluate the reduction of transferred data volume 
in business networks between sub-units and a meta unit by 
comparing the different scenarios depicted in Fig. 2. In this 
case, units are represented by organizational business units, 
sites, or companies.

Assuming that all features require the same amount of 
space s and there are k sub-units with a varying number of 
features, the transferred volume for a comprehensive net-
work-wide analysis using all available data in a shared data 
pool (scenario 3) is composed of the sum of all sub-units’ 
features multiplied by the feature size. However, no data is 
transferred in the case of isolated analysis within individual 
units (scenario 1) without data exchange. In comparison, 
applying the proposed architecture of inter-organizational 
meta machine learning (scenario 2), every sub-unit individu-
ally analyses its own data (i.e., features produced by a cer-
tain organizational unit) and only transfers the output to the 
meta unit. These three scenarios with their transferred data 
volume between sub-units and the meta unit is depicted in 
Table 7. Thereby, the volume of data to be transferred in 
scenario 2 is reduced compared to scenario 3, assuming that 
the number of output features m of a sub-model is smaller 
than its number of input features n. This leads to savings of 
(
∑k

i=1
n
i
− k ∗ m) ∗ s when considering scenario 2 compared 

to scenario 3. Accordingly, the reduction ratio is described 
by k∗m

∑k

i=1
n
i

.

Regarding the industrial use case from our evaluation, 
we have four production lines as sub-units with differ-
ent numbers n of features or columns per data instance: 
n
i
∈ {173, 519, 48, 251} . Each sub-model predicts a certain 

output based on its input features. Due to the very small 
number of output features (m = 2) compared to the number 

of input features (scenario 2), the data volume to be trans-
ferred to the meta unit is reduced to 0.81% of the volume in 
the case of complete information in a shared data pool (sce-
nario 3) considering our presented industrial use case. We 
can therefore answer RQ2 and demonstrate that our method 
enables the drastic reduction of the required amount of trans-
ferred data volume.

6.3.3 � Performance of method (DR3)

Finally, we are interested in the performance of our method 
in comparison to meaningful benchmarks-and estimate 
the “loss of privacy” of a scenario with meta learning and 
distributed data sources in comparison to one shared data 
pool. In Sect. 3, we give an overview of our research design 
and consider three scenarios that require comparison: In 
the first scenario, units in a network perform an isolated 
analysis. In the second one, we consider our meta machine 
learning method to realize comprehensive analysis. In the 
third scenario, we draw on a complete analysis of all data 
available in one shared data pool. By comparing the per-
formances between scenarios 1 and 2, we expect to see a 
performance increase due to the comprehensive meta learn-
ing approach. Between scenarios 2 and 3, two effects could 
occur: increased performance (performance gain) due to the 
application of stacked generalization or performance loss 
due to the processing of prediction outputs rather than raw 
data (loss of abstraction).

Table 6   Excerpt of sub model output and probabilities for sub-units 0 to 3

(a) Lines 0 and 1

Part ID Line 0 sub-unit Line 1 sub-unit

Prediction Probability Prediction Probability

# 001 No scrap 97.24% No scrap 98.67%
# 002 No scrap 99.29% No scrap 99.71%

(b) Lines 2 and 3

 Part ID Line 2 sub-unit Line 3 sub-unit

Prediction Probability Prediction Probability

# 001 No scrap 100% No scrap 100%
# 002 No scrap 100% No scrap 98.28%

Table 7   Comparison of scenarios regarding data volume with k - 
amount of sub-units; n - number of input features; m - number of out-
put features of sub models; s - volume of a feature

Scenario 1 Scenario 2 Scenario 3

0 k ∗ m ∗ s
∑k

i=1
n
i
∗ s
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During the meta machine learning classification process, 
one sub- model per line is trained. However, in the chosen 
dataset, not all parts pass each of the four lines. Figure 11 
depicts the relative amount of parts passing a certain line. 
Accordingly, for parts that pass only a subset of lines, only 
predictions of sub-models of these lines are used as input 
features for the meta model.

We present an overview of our results in Table 8. The 
sub-model performances in the form of an MCC range from 
0.1935 to 0.2326 (for additional metrics see Appendix A.1 
on page 25). As depicted in Figs. 5 and 9, not every part 
passes every line, making a comparison of results of the 
sub-models difficult. However, we can see that the meta 
model yields a performance increase of 21.32% compared 
to the best performing sub-model by reaching an MCC of 
0.2822. We can conclude that the meta model aggregates 
the information of the sub-model outputs and is able to draw 
comprehensive conclusions that are superior to the ones of 
the sub-models (performance increase).

These results are consistent with the findings of Džeroski 
and Ženko [32]. We can therefore already partly answer 
RQ2, as we observe a significant increase in statistical 

performance when comparing an isolated scenario with the 
applied meta machine learning method.

As expected by Narayanan and Shmatikov [62], in sce-
nario 3 (shared data pool) we reach a slightly superior per-
formance of 0.2965 compared to all regarded baselines, 
surpassing the meta model’s performance by 5.07% (loss 
of abstraction). Despite the extremely low information con-
tent of the training data visible to the meta model compared 
to the complete classification, the performance deteriorates 
only slightly. We can therefore fully answer RQ2, as we 
regarded the baselines of all scenarios.

Table 8 depicts the optimal model parameters, number of 
estimators, and maximum tree depth of the respective mod-
els. Especially the maximum tree depth ranges between 25 
and 50 for all sub-models and the meta model. The complete 
model trained on all lines performs best with a maximum 
tree depth of 200. The estimators’ parameter representing 
the number of trees used for a model varies between 50 and 
200 for sub-models and meta models, and is 300 for the 
complete model.

Summarizing the results, we show the technical feasibil-
ity of our method regarding data confidentiality preservation 
(DR1) and data volume reduction during a comprehensive 
analysis (DR2). We identify a performance gain (DR3) that 
is enabled by our method in comparison to an isolated analy-
sis (scenario 1 vs. scenario 2), but also a performance loss 
(scenario 2 vs. scenario 3) due to the analysis of abstract 
prediction outputs (loss of abstraction). Although this per-
formance loss seems rather small, it depicts a consideration 
between performing a comprehensive analysis of all raw 
data sources at once or a confidentiality-preserving one. We 
denote the “price of privacy” as the difference between the 
effectiveness of a scenario with perfect data availability (but 
a violation of privacy) and a distributed meta-analysis with-
out the exposure of sensitive data. In our case, the price is 

Fig. 11   Share of parts passing a 
certain line

Table 8   Technical performance of method compared to other sce-
narios

Model MCC Model parameters

#estimators Max depth

Sub-model line 0 0.1935 100 25
Sub-model line 1 0.2151 50 50
Sub-model line 2 0.2326 200 50
Sub-model line 3 0.1950 100 50
Meta model 0.2822 50 25
Complete model 0.2965 300 200
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rather small (5% loss of MCC), but we gain the possibility to 
hide the raw data from other units in a business network-and 
still allow them to cooperate in terms of holistic analyses. 
Compared to our proposed approach, noising as an alterna-
tive shows a significantly higher price of privacy (12% loss 
of MCC, cf. Appendix A.2 on page 27). In general, the entire 
business network can profit from such analyses, as the com-
parison of performance to isolated analyses is remarkable 
and the scenario with a shared data pool is highly improb-
able for different legal units [51]. Furthermore, we show the 
increased performance of our method also in an additional 
industrial use case (see Appendix A.3 on page 27 for more 
details).

6.4 � Evaluation episode 2: usefulness

After the technical evaluation of the artifact, we now aim to 
evaluate its usefulness within its designated application field 
(RQ2). To this end, we discuss the developed artifact with 
practitioners from our industry partner as part of a work-
shop. The aim is to gain feedback on the artifact in general 
as well as its perceived usefulness. The workshop partici-
pants are from different divisions with different roles in the 
company. An overview of their characteristics is depicted 
in Table 9.

We elaborate on the artifact’s capabilities, demonstrate 
it and let them interact with it. We discuss advantages and 
disadvantages and provide the experts with a short ques-
tionnaire on the perceived usefulness using the measures 
developed by Davis [25]. As the artifact is in an early stage 
and usability aspects were not of interest, we omit measures 
of ease of use in this evaluation episode and focus on the 
more general aspect of artifact adoption, regardless of the 
detailed user interface choices [77]. The perceived useful-
ness measure prompted participants to indicate their level of 
agreement on six items about how the artifact would enable 
them to perform tasks quicker, increase their performance on 
the job, increase their productivity, increase their effective-
ness, increase their easiness in the job environment as well 
as an assessment on the general usefulness. Responses range 
from “very unlikely” (1) to “very likely” (5) on a 5-point 
Likert-type scale. Several studies have indicated satisfactory 
reliability for perceived usefulness in TAM for artifacts in an 

early development stage [70]. The results of the aggregated 
questionnaire are depicted in Table 10.

All participants (n = 3) demonstrate a positive attitude 
towards IOMML with a median of “4” in all six questions. 
In discussion with the experts, multiple aspects arise. First 
of all, � mentions that fast analyses are often important in 
their daily work: “With over 60 TB of transferred sensor 
data per day, any abstraction that still allows analyses is 
beneficial to us”. Participant � tributes that the incorporated 
process model also contains the training phase, which is 
often neglected when implementing IT artifacts. However, 
he is doubtful about the necessary incentive of the affected 
employees within an organization to implement a system 
that first has to be trained for a certain amount of time before 
it can be put into production. Both, � and � note that the 
aspect of the live analysis of distributed data sources with 
meta machine learning would be highly beneficial, because 
in the current state such analyses (if possible at all) could 
only be done after something went wrong, e.g., a part not 
being within quality. Then the department typically starts 
an intensive investigation, which becomes very complicated 
once it leaves company borders. When discussing a possi-
ble productive implementation, � notes that some suppliers 
would even be open to sharing data for analyses to increase 
their unique selling point towards an OEM. Within the same 
legal entity, access to both the raw data or abstracted predic-
tions would not be an issue ( � and �).

In regard to other application areas within their company, 
they note that only critical processes would be of interest. 

Table 9   Overview of workshop 
participants

Workshop 
participant

Position at industry partner Scope of duties Time with 
industry 
partner

� Project manager Project organization and line rollout 5 years
� Expert team leader Research and production management 5 years
� Head of Department Multi-project management, IT and architecture 

governance, Software development and opera-
tions

8 years

Table 10   Results of an expert workshop on the perceived usefulness 
of IOMML. Items are rated on a Likert scale of 1 (“unlikely”) to 5 
(“likely”). N=3

Item Median SD

Using IOMML in my company would enable us to 
accomplish tasks more quickly

4 0.58

Using IOMML would improve our job performance 4 0.58
Using IOMML would enhance our effectiveness on 

the job
4 0.58

Using IOMML would make it easier to do our job 4 0.58
I would find IOMML useful 4 1.00
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All three experts raise legal concerns and elaborate that this 
aspect needs more attention.

7 � Conclusion

This work aims to overcome the data confidentiality and 
transfer volume barriers caused by distributed data sources 
across different units in business networks. Specifically, 
we propose an inter-organizational meta machine learn-
ing method (IOMML) built on meta machine learning and 
service-oriented knowledge as kernel theories. In our setup, 
we differentiate between various scenarios in a business net-
work, instantiate our method based on an industrial use case 
and evaluate it according to the feasibility of preserving data 
confidentiality and reducing the volume of transferred data 
during analysis and the overall prediction performance. We 
show, first, implications for its suitability in a production 
control interface implemented via a service-oriented archi-
tecture. Furthermore, we discuss the potential usefulness 
of the artifact with practitioners. Our contribution to the 
body of knowledge is threefold: First, we propose a flex-
ible method that can be used in business networks to per-
form comprehensive analyses on a distributed data source 
and show its technical feasibility in terms of a prototypical 
instantiation, preserved data confidentiality, reduced data 
volume, and statistical performance. Second, we show that 
the artifact is perceived as useful within its application con-
text. Third, we show that the method of IOMML could be 
well feasible compared to the two scenarios of either sharing 
all data or no data within a business network.

In addition to these theoretical contributions, concrete man-
agerial implications are obvious: The proposed method allows 
units in business networks to share insights without exposing 
data-a possibility that has so far been limited in traditional set-
tings. Especially in co-opetition networks [13] such a method 
can lower the barrier for individual units to collaboratively 
work on insights that are a shared interest among all parties. 
However, even if all units would (in theory) agree to share all 
data, it would be technically challenging to transfer all data, 
especially in production scenarios with large data streams 
[76]. With the drastic data volume reduction of the proposed 
method, analyses of large, distributed data sources become 
possible. Lastly, the application of the method would facilitate 
comparability among different units and drive standardization 
towards a uniform structure and schema of gathered data. This 
would be especially true for all platforms thriving on shared 
data, for example in the area of predictive maintenance.

While there is potential for theory and practice, our work 
also poses several limitations that need to be addressed in 
future research. As of now, we only instantiate the developed 
method in an artificial industrial use cases to test its feasibil-
ity. However, additionally, we conduct a robustness check 

on a second industrial case (see Appendix A.3 on page 27). 
In our main evaluation, the test performed with the artifact 
involved units of the same organization. To generalize and 
deduce insights on its projectability to other problems and 
domains, further evaluation and studies are needed. Future 
work requires researchers to elaborate on how the proposed 
method can be applied in a real-world business network. For 
example, a consortium of different value co-creating busi-
nesses could apply this method in an experimental setup to 
observe and size individual benefits. Furthermore, we do not 
include concrete aspects of the instantiation of our approach 
using IT systems or services, as we only address the concep-
tual aspects of the information flow between business enti-
ties, but not infrastructure-specific properties. Additionally, 
we only evaluated the perceived usefulness of the artifact, 
not its actual usefulness and usability in use [11]. We evalu-
ate the technical efficiency of the proposed approach to pre-
serve the confidentiality of data originating from subordinate 
entities. However, we have to acknowledge the possibility of 
information leakage through the sub-predictions. By analyz-
ing the aggregated sub-predictions, one could for instance 
derive insights into the reliability of each entity. Thus, we 
can only account for preserving the raw information val-
ues of each entity and not overlying concepts or paradigms 
that might or might not materialize through abstract sub-
predictions. However, we also observe a continuum between 
the absence of inter-organizational analytics—and a full 
exchange and exposure of data. In this continuum, the level 
of shared information increases. Organizations have to make 
a trade-off: living with a fraction of analytical insights, or 
opening up—and potentially exposing information through 
the sub-predictions, but receiving system-wide insights.

Regarding the technical dimensions of the proposed 
method, we only reviewed stacking as a possibility of meta 
machine learning. It would be interesting to explore alter-
native types and algorithms, for example, distributed deep 
networks. As a basis for these algorithms, the features for 
meta learning could be altered and additional information 
could be communicated to the meta unit besides predic-
tion and probability, such as the number of features, train-
ing parameters, or additional meta data. Apart from the 
technical aspects of our work, a thorough assessment of 
the organizational aspects of the proposed method is still 
required. This includes but is not limited to, questions on 
how the proposed method would perform in a real-world 
scenario, how a system would need to be designed to 
incentivize all entities to participate, and how and where 
the meta unit is governed. This includes the legal dimen-
sions, questions of ownership, and liability. Finally, while 
the method is able to preserve the confidentiality of sub-
units’ attributes to other units during analysis, it is not 
able to mask the existence of the instance itself, which 
limits its privacy-preserving characteristic. Despite these 
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limitations, the proposed method could fundamentally 
change the way of communication between the units of a 
business network, foster system-wide analytics, and, there-
fore, improve overall network productivity.

Appendix

Production line quality prediction

Complete model

See Tables 11 and 12.

Meta model

See Tables 13, 14 and 15.  

Sub model 0

See Tables 16 and 17.

Sub model 1

See Tables 18 and 19.

Table 11   Confusion matrix

Predicted

No scrap Scrap

Actual No scrap 1180766 2981
Scrap 5177 1702

Table 12   Metrics
MCC 0.296544
Accuracy 0.993148
F1-Score (weighted) 0.992501
Precision (weighted) 0.991982
Recall (weighted) 0.993148
Cohen’s Kappa 0.291095

Table 13   Confusion matrix

Predicted

No scrap Scrap

Actual No scrap 1180558 3189
Scrap 5231 1648

Table 14   Metrics
MCC 0.282242
Accuracy 0.992928
F1-Score (weighted) 0.992315
Precision (weighted) 0.991805
Recall (weighted) 0.992928
Cohen’s Kappa 0.277880

Table 15   Sensitivity analysis

Bold indicates the highest MCC values

#estimators

25 50 100 200 300

Max depth 25 0.2731 0.2822 0.2806 0.2752 0.2760
50 0.2648 0.2660 0.2531 0.2621 0.2519
100 0.2469 0.2447 0.2490 0.2498 0.2492
200 0.2313 0.2328 0.2298 0.2262 0.2199
300 0.2374 0.2310 0.2294 0.2327 0.2134

Table 16   Confusion matrix

Predicted

No scrap Scrap

Actual No scrap 1175324 8423
Scrap 5221 1658

Table 17   Metrics
MCC 0.193483
Accuracy 0.988540
F1-Score (weighted) 0.989614
Precision (weighted) 0.990776
Recall (weighted) 0.988540
Cohen’s Kappa 0.189955

Table 18   Confusion matrix

Predicted

No scrap Scrap

Actual No scrap 1176646 7101
Scrap 5164 1715

Table 19   Metrics
MCC 0.215102
Accuracy 0.989699
F1-Score (weighted) 0.990330
Precision (weighted) 0.991002
Recall (weighted) 0.989699
Cohen’s Kappa 0.213436
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Sub model 2

See Tables 20 and 21.

Sub model 3

See Tables 22 and 23.

Noising

Noising techniques strive to preserve confidentiality by 
adding noise to the critical data element. The predictive 
performance also drops significantly with increasing nois-
ing of data and therefore increasing data confidentiality. 
Figure 12 shows this effect, where a noise term of 0 means 
that there is no confidentiality at all (no noising) and a 
term of 1 means that the original data is obscured by white 

noise of the order of the standard deviation of the data 
itself. We assume that a sufficiently strong preservation 
of confidentiality accompanies this. We applied ascending 
noise terms to the data in 0.1 increments to highlight the 
trade-off between these two extremes.

Robustness check: distributed sensor groups

We evaluate the robustness of the proposed instantiation 
of IOMML by means of an additional use case in the field 
of operation and maintenance.

Use case description

As a second data set we consider an example, where the 
status of a function-critical component (seal) in a hydraulic 
application as well as corresponding sensor measurements 
are available. It is technically not possible to observe the 
condition of the component of interest directly—as, for 
instance, sensors cannot be mounted at the component. 
Therefore, data from sensors in the nearby environment of 
the component could be leveraged to infer the state of the 
seal by means of machine learning [59].

The data set consists of 2.230.992 instances of time-inde-
pendent recording intervals. each with an associated state 
description (no failure. assembly failure and damage) which 
are almost balanced (no failure: 48.36%; assembly failure: 
26.1% and damage: 25.51%). Overall, the data set contains 
46 features which can each be assigned to one of six physi-
cally and logically separated groups of sensor measurement 
points. These groups are each assigned to different legal 
units due to structural separation and connection to separate 
gateways, as each sensor group originates from a different 
manufacturer with its own, proprietary IoT platform.

Table 20   Confusion matrix

Predicted

No scrap Scrap

Actual No scrap 1178458 5289
Scrap 5243 1636

Table 21   Metrics
MCC 0.232585
Accuracy 0.991154
F1-Score (weighted) 0.991169
Precision (weighted) 0.991184
Recall (weighted) 0.991154
Cohen’s Kappa 0.232584

Table 22   Confusion matrix

Predicted

No scrap Scrap

Actual No scrap 1177577 6170
Scrap 5432 1447

Table 23   Metrics
MCC 0.195008
Accuracy 0.990256
F1-Score (weighted) 0.990502
Precision (weighted) 0.990755
Recall (weighted) 0.990256
Cohen’s Kappa 0.194752

Fig. 12   Sensitivity of model performance with an increased ratio of 
additive noise term
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The use case is well suited for our instantiation of 
IOMML, as it complies with design requirements 1 to 3: 
The separate sensor groups each represent independent 
entities (DR1). Because the gateways transmit data through 
bandwidth-limited communication channels such as CAN 
bus, the smallest possible transmission size is absolutely 
necessary (DR2). Likewise, preliminary interviews with the 
industry partner, who provides the data, have shown that the 
best possible prediction performance is an essential require-
ment to be able to initiate maintenance measures at an early 
stage (DR3).

Artifact instantiation

Equivalent to the procedure described in Sect. 6, a sub-pre-
diction and a corresponding certainty value are generated for 
each sensor group, which is subsequently received by a meta 
unit and analyzed in aggregated form by a meta model. The 
result is a holistic state description of the functionally critical 
component. Also, here we compare the inter-organizational 
meta learning approach (scenario 2) to a separate isolated 
analysis of data in each unit (scenario 1) and a comprehensive 
analysis with a shared data pool and all data in one model 
(scenario 3). All classification models utilize the random for-
est algorithm and are validated in a nested cross-validation.

Evaluation episode 1: technical evaluation

Since training of sub-models condenses the complex features 
of the sensors into a prediction about the state of the function-
critical component, the original data cannot be reconstructed. 
Strictly speaking, the original features of the data set describe 
numerical values such as temperatures or pressures at certain 
locations within the system, while the results of the sub mod-
els only give a binary prediction result and its probability. 
Thus, data confidentiality is preserved in the scenario of meta 
machine learning (scenario 2) in contrast to scenario 3 (RQ1). 
Considering the calculation logic depicted in Sect. 7, scenario 
3 results in a data volume of 46 times the volume of a single 
feature, while in scenario 2 this volume can be reduced to 12 
(6 sub models times two output features) times the volume of 
a feature. Thus, the amount of data transferred in scenario 2 is 
reduced to 26% of the amount of data in scenario 3.

See Table 24.
In terms of predictve performance, we observe a similar 

effect as in the production line case. In Appendix 24, we 
present the results for scenario 1 to 3 in terms of the respec-
tive MCC. We observe a performance gain from scenario 1 
to scenario 2 for every sub-model. Hereby, the sub model 
from “sensor group 4” only reaches an MCC of 0.0744, and 
the model which is trained on data originating from sensor 
group 1 performs best with an MCC of 0.7250. In compari-
son, the aggregated meta model reaches an MCC of 0.7920, 

outperforming the worst sub-model by 970.27% and the best 
by 9.24%. Similarly, as in the previous case, we observe a 
performance loss from scenario 2 to scenario 3 of 17.00%. 
for this use case.

Complete model

See Table 25 and 26.

Meta model

See Table 27 and 28.

Table 24   Technical performance of method compared to other sce-
narios

Model MCC

Sub-model sensor group 0 0.6677
Sub-model sensor group 1 0.7250
Sub-model sensor group 2 0.5393
Sub-model sensor group 3 0.5249
Sub-model sensor group 4 0.0744
Sub-model sensor group 5 0.1812
Meta model 0.7920
Complete model 0.9543

Table 25   Confusion matrix

Predicted

No failure Assembly failure Damage

Actual No failure 1048299 16513 12980
Assembly failure 10170 562431 9687
Damage 5490 9841 553349

Table 26   Metrics
MCC 0.954285
Accuracy 0.970979
F1-Score (weighted) 0.971026
Precision (weighted) 0.971148
Recall (weighted) 0.970979
Cohen’s Kappa 0.954239

Table 27   Confusion matrix

Predicted

No failure Assembly failure Damage

Actual No failure 986600 38605 52587
Assembly failure 66409 461343 54536
Damage 32209 48990 487481
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Sub model 0

See Tables 29 and 30.

Sub model 1

See Tables 31 and 32.

Sub model 2

See Tables 33 and 34.

Sub model 3

See Tables 35 and 36.

Sub model 4

See Tables 37 and 38.

Table 28   Metrics
MCC 0.792021
Accuracy 0.868386
F1-Score (weighted) 0.868094
Precision (weighted) 0.868397
Recall (weighted) 0.868386
Cohen’s Kappa 0.791788

Table 29   Confusion matrix

Predicted

No failure Assembly failure Damage

Actual No failure 926791 65712 85289
Assembly failure 100310 415950 66028
Damage 64201 86228 418251

Table 30   Metrics
MCC 0.667663
Accuracy 0.790122
F1-Score (weighted) 0.789722
Precision (weighted) 0.789413
Recall (weighted) 0.790122
Cohen’s Kappa 0.667620

Table 31   Confusion matrix

Predicted

No failure Assembly failure Damage

Actual No failure 986704 42098 48990
Assembly failure 87540 439058 55690
Damage 65418 85331 417931

Table 32   Metrics
MCC 0.724988
Accuracy 0.827228
F1-Score (weighted) 0.825501
Precision (weighted) 0.825219
Recall (weighted) 0.827228
Cohen’s Kappa 0.724221

Table 33   Confusion matrix

Predicted

No failure Assembly failure Damage

Actual No failure 847699 108553 121540
Assembly failure 99505 393083 89700
Damage 98541 135690 334449

Table 34   Metrics
MCC 0.539291
Accuracy 0.706775
F1-Score (weighted) 0.707651
Precision (weighted) 0.709522
Recall (weighted) 0.706775
Cohen’s Kappa 0.538895

Table 35   Confusion matrix

Predicted

No failure Assembly failure Damage

Actual No failure 891411 100951 85430
Assembly failure 132810 353791 95687
Damage 97820 153418 317442

Table 36   Metrics
MCC 0.524877
Accuracy 0.701127
F1-Score (weighted) 0.698990
Precision (weighted) 0.698634
Recall (weighted) 0.701127
Cohen’s Kappa 0.524224
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Sub model 5

See Tables 39 and 40.
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