7,526 research outputs found

    Distributed Abductive Reasoning: Theory, Implementation and Application

    Get PDF
    Abductive reasoning is a powerful logic inference mechanism that allows assumptions to be made during answer computation for a query, and thus is suitable for reasoning over incomplete knowledge. Multi-agent hypothetical reasoning is the application of abduction in a distributed setting, where each computational agent has its local knowledge representing partial world and the union of all agents' knowledge is still incomplete. It is different from simple distributed query processing because the assumptions made by the agents must also be consistent with global constraints. Multi-agent hypothetical reasoning has many potential applications, such as collaborative planning and scheduling, distributed diagnosis and cognitive perception. Many of these applications require the representation of arithmetic constraints in their problem specifications as well as constraint satisfaction support during the computation. In addition, some applications may have confidentiality concerns as restrictions on the information that can be exchanged between the agents during their collaboration. Although a limited number of distributed abductive systems have been developed, none of them is generic enough to support the above requirements. In this thesis we develop, in the spirit of Logic Programming, a generic and extensible distributed abductive system that has the potential to target a wide range of distributed problem solving applications. The underlying distributed inference algorithm incorporates constraint satisfaction and allows non-ground conditional answers to be computed. Its soundness and completeness have been proved. The algorithm is customisable in that different inference and coordination strategies (such as goal selection and agent selection strategies) can be adopted while maintaining correctness. A customisation that supports confidentiality during problem solving has been developed, and is used in application domains such as distributed security policy analysis. Finally, for evaluation purposes, a flexible experimental environment has been built for automatically generating different classes of distributed abductive constraint logic programs. This environment has been used to conduct empirical investigation of the performance of the customised system

    Multi-agent Confidential Abductive Reasoning

    Get PDF
    In the context of multi-agent hypothetical reasoning, agents typically have partial knowledge about their environments, and the union of such knowledge is still incomplete to represent the whole world. Thus, given a global query they collaborate with each other to make correct inferences and hypothesis, whilst maintaining global constraints. Most collaborative reasoning systems operate on the assumption that agents can share or communicate any information they have. However, in application domains like multi-agent systems for healthcare or distributed software agents for security policies in coalition networks, confidentiality of knowledge is an additional primary concern. These agents are required to collaborately compute consistent answers for a query whilst preserving their own private information. This paper addresses this issue showing how this dichotomy between "open communication" in collaborative reasoning and protection of confidentiality can be accommodated. We present a general-purpose distributed abductive logic programming system for multi-agent hypothetical reasoning with confidentiality. Specifically, the system computes consistent conditional answers for a query over a set of distributed normal logic programs with possibly unbound domains and arithmetic constraints, preserving the private information within the logic programs. A case study on security policy analysis in distributed coalition networks is described, as an example of many applications of this system

    Using Event Calculus to Formalise Policy Specification and Analysis

    Get PDF
    As the interest in using policy-based approaches for systems management grows, it is becoming increasingly important to develop methods for performing analysis and refinement of policy specifications. Although this is an area that researchers have devoted some attention to, none of the proposed solutions address the issues of analysing specifications that combine authorisation and management policies; analysing policy specifications that contain constraints on the applicability of the policies; and performing a priori analysis of the specification that will both detect the presence of inconsistencies and explain the situations in which the conflict will occur. We present a method for transforming both policy and system behaviour specifications into a formal notation that is based on event calculus. Additionally it describes how this formalism can be used in conjunction with abductive reasoning techniques to perform a priori analysis of policy specifications for the various conflict types identified in the literature. Finally, it presents some initial thoughts on how this notation and analysis technique could be used to perform policy refinement

    Coherent Integration of Databases by Abductive Logic Programming

    Full text link
    We introduce an abductive method for a coherent integration of independent data-sources. The idea is to compute a list of data-facts that should be inserted to the amalgamated database or retracted from it in order to restore its consistency. This method is implemented by an abductive solver, called Asystem, that applies SLDNFA-resolution on a meta-theory that relates different, possibly contradicting, input databases. We also give a pure model-theoretic analysis of the possible ways to `recover' consistent data from an inconsistent database in terms of those models of the database that exhibit as minimal inconsistent information as reasonably possible. This allows us to characterize the `recovered databases' in terms of the `preferred' (i.e., most consistent) models of the theory. The outcome is an abductive-based application that is sound and complete with respect to a corresponding model-based, preferential semantics, and -- to the best of our knowledge -- is more expressive (thus more general) than any other implementation of coherent integration of databases

    Problem solving in ID-logic with aggregates: some experiments

    Full text link
    The goal of the LP+ project at the K.U.Leuven is to design an expressive logic, suitable for declarative knowledge representation, and to develop intelligent systems based on Logic Programming technology for solving computational problems using the declarative specifications. The ID-logic is an integration of typed classical logic and a definition logic. Different abductive solvers for this language are being developed. This paper is a report of the integration of high order aggregates into ID-logic and the consequences on the solver SLDNFA.Comment: 9 pages conference: NMR2000, special track on abductive reasonin
    • …
    corecore