
Open Research Online
The Open University’s repository of research publications
and other research outputs

Using Event Calculus to Formalise Policy Specification
and Analysis
Conference or Workshop Item

How to cite:

Bandara, Arosha; Lupu, Emil C and Russo, Alessandra (2003). Using Event Calculus to Formalise Policy
Specification and Analysis. In: IEEE 4th International Workshop on Policies for Distributed Systems and Networks,
4-6 Jun 2003, Lake Como, Italy.

For guidance on citations see FAQs.

c© [not recorded]

Version: [not recorded]

Link(s) to article on publisher’s website:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1206955

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Online

https://core.ac.uk/display/810?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1206955
http://oro.open.ac.uk/policies.html

1

Using Event Calculus to Formalise Policy Specification and Analysis

Arosha K Bandara Emil C Lupu Alessandra Russo

Department of Computing, Imperial College London

180 Queen’s Gate, London SW7 2AZ, UK

{bandara, e.c.lupu, ar3}@doc.ic.ac.uk

Abstract

As the interest in using policy-based approaches for

systems management grows, it is becoming increasingly

important to develop methods for performing analysis

and refinement of policy specifications. Although this is

an area that researchers have devoted some attention to,

none of the proposed solutions address the issues of

analysing specifications that combine authorisation and

management policies; analysing policy specifications that

contain constraints on the applicability of the policies;

and performing a priori analysis of the specification that

will both detect the presence of inconsistencies and

explain the situations in which the conflict will occur.

This paper presents a method for transforming both

policy and system behaviour specifications into a formal

notation that is based on Event Calculus. Additionally it

describes how this formalism can be used in conjunction

with abductive reasoning techniques to perform a priori

analysis of policy specifications for the various conflict

types identified in the literature. Finally, it presents some

initial thoughts on how this notation and analysis

technique could be used to perform policy refinement.

1. Introduction

Policy based approaches to systems management are

of particular importance because they allow the

separation of the rules that govern the behaviour of a

system from the functionality provided by that system [1].

This means that it is possible to adapt the behaviour of a

system without the need to recode functionality, and

changes can be applied without stopping the system.

Research into policy based systems management has

focussed on languages for specifying policies and

architectures for managing and deploying policies in

distributed environments. However, policy analysis and

refinement remains a much-neglected research problem.

Whilst some previous work has investigated the nature of

modality and application specific conflicts in policy

specifications [2, 3], there still remain significant areas

for improvement. In particular it is important to be able

to analyse policies in the presence of constraints that

control their applicability. When doing this, in addition

to detecting the presence of conflicts, it is necessary to

identify the exact causes for those conflicts to arise.

Addressing these needs requires a formalism that will

model both system behaviour and policy such that formal

reasoning techniques can be used to analyse policy

specifications.

The initial focus of our work has been to develop a

formal representation for policies and the managed

systems that will support formal reasoning techniques for

detecting conflicts between policies. Existing policy

specification formalisms [3-5] only handle security or

management policies even though most real world

systems use a combination of the two. Also, these

approaches use deductive reasoning techniques for policy

analysis, which require complete specification of the

system state in order to produce useful results. Finally, it

is important to be able to analyse a policy specification

before it is deployed. However, none of the existing

studies seem to model the system behaviour to support a

priori analysis of policy specifications that are

constrained on the runtime state of the system.

In this paper, we propose a formalism that is based on

the standard Event Calculus [6] to model both

authorisation and management policy specifications

together with system behaviour. Event Calculus was

chosen as an appropriate basis for formalising policy

specifications as both the policies and the management

behaviour we are modelling are event driven.

Additionally, since an Event Calculus specification of a

system can be generated from a state transition model,

users can specify the management behaviour using a

familiar high-level notation. In a similar fashion, it is

possible to translate policies specified in a high-level

policy specification language, like Ponder [7], into an

Event Calculus representation that describes the

semantics of the policy language. This eliminates the need

for the user to become conversant with the details of logic

programming and the Event Calculus notation. Having

developed the Event Calculus representation, we show

how our formalism supports the specification of rules for

detecting both modality conflicts and application specific

conflicts, such as conflicts of duty. Using abductive

reasoning techniques, we are able to analyse the policy

specifications to identify existing conflicts and provide

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

2

explanations on how they might arise. Because the

abduction process is applied to a specification that models

both the systems behaviour and the policy specification it

is possible to detect conflicts when the applicability of the

policies is constrained on the runtime state of the system.

Furthermore, by using abduction, the analysis can be

performed even with partial specifications of the system

state. We also expect that this formalism will allow the

use of other reasoning techniques likely to be useful in

developing an approach for policy refinement.

Although the initial focus of our work has been on

policy analysis, the end objective of this research is to

develop tools and analysis techniques that will support

policy refinement. Policy hierarchies and the application

of policy refinement to derive lower-level, more specific

policies from high-level ones are introduced in [8] and are

motivated by the following needs:

To determine the resources that are needed to satisfy

the requirements of the policy.

To translate high-level policies into operational

policies that can be enforced by the system.

To verify that the set of lower level policies actually

meets the requirements of the high-level policy.

In requirements engineering, Darimont et al. present

an approach that uses goal regression and refinement

patterns that allow high-level requirements to be stated in

terms of a combination of lower level ones [9]. In this

paper, we follow a similar approach of developing policy

refinement patterns, and outline a technique that uses

abductive reasoning to ensure consistency and

completeness when instantiating policies based on these

patterns.

The next section presents a brief outline of the main

policy types being considered, together with a description

of the Event Calculus and the reasoning techniques used

in this work. Section 3 presents the specification

language. Section 4 explains how the formalism can be

used to detect various types of conflicts. Section 5

outlines the initial approach for policy refinement.

Sections 6 and 7 discuss the formalism presented and

related work in this area of research. Finally, section 8

presents our conclusions together with plans for future

work.

2. Background

2.1 Policy Specification
Existing research on policy based systems has

identified several types of policy that are useful in

managing distributed systems [7]. Broadly, policies can

by classified into authorisation policies and management

policies where the former category captures the access

control requirements of a system and the latter category

holds requirements related to the system behaviour. The

Ponder language [7], developed at Imperial College, is a

declarative language that supports both of these policy

types.

Authorisation policies specify whether a subject is

permitted perform a particular action on a target. In a

closed system, with a default policy of prohibiting all

subjects from performing operations on all targets,

positive authorisation policies would be used to explicitly

specify which particular operations a subject is permitted

to perform on a target. Alternatively, in an open system,

where by default all operations are permitted, negative

authorisations would be used to specify that a subject is

not permitted to perform an operation on a target.

Examples of positive and negative authorisations as

specified in the Ponder language are shown in Figure 1.

A policy-based access control system is the

combination of the policies that specify the permitted/

prohibited operations, an access control model that

defines how the permissions are organised across the

system, and a reference monitor that uses the access

control model to enforce the policies.

Obligation policies specify management operations

that must be performed when a particular event occurs

given some supplementary conditions being true. They

are specified in terms of a subject that should perform a

particular action on a target when a specified condition is

true. Obligation policies are event based and therefore

the occurrence of the specified event is a necessary

condition for the mandated operation to be performed.

Another difference is that obligation policies cause the

agent enforcing the policy to actually perform the

specified action rather than just specify that the operation

is permitted. An example of an obligation policy is shown

in Figure 2.

// only a root process can cancel a print job

auth+ cancelJobRoot {

subject process/;

target printManager;

action cancelDoc(Job);

when process.owner == root;

}

// non root processes cannot cancel print jobs if

// the job being cancelled is not owned by the

// requesting process

auth- cancelJobOther {

subject process/;

target printManager;

 action cancelDoc(Job);

when process.owner != root &&

 Job.owner != process.owner;

}

Figure 1: Examples of authorisation policies.

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

3

Refrain policies allow the administrator to specify

conditions under which certain operations should not be

performed. They are similar to negative authorisation

policies as they are both used to prevent an action from

being performed on a target. However, unlike

authorisations, which are interpreted by the target object’s

access controller, refrain policies are interpreted by the

subject and can be used in situations where the target

does not wish to be protected from the subject such as

information disclosure policies.

Prior work on policy specification has illustrated the

power of using a domain model as a tool for organising

objects in a system. Domains provide a means of

grouping objects to which policies apply and can be used

to partition the objects in large systems according to

geographical boundaries, object type, responsibility and

authority. Membership of a domain is explicit and not

defined in terms of a predicate on object attributes. An

advantage of specifying policy scope in terms of domains

is that objects can be added and removed from the

domains to which policies apply without having to

change the policies [10].

The Ponder language provides support for specifying

authorisation, obligation and refrain policies. Its object

oriented features and grouping constructs facilitate ease

of use and scalability to large systems and large numbers

of policies. However, Ponder is not a logic based

language and does not provide direct support for formal

reasoning methods or for expressing general models of

system behaviour. Therefore, Ponder cannot account for

the effect of policies on system state and cannot be used

directly for policy analysis. However, as will be shown

here, it is possible to transform Ponder policies into a

formal representation that supports both a description of

the system behaviour and formal reasoning techniques for

policy analysis.

2.2 Event Calculus and Abductive Reasoning
Event Calculus (EC) is a formal language for

representing and reasoning about dynamic systems.

Because the language supports a representation of time

that is independent of any events that might occur in the

system, it is a particularly useful way to specify a variety

of event-driven systems. Since its initial presentation [6],

a number of variations of the Event Calculus have been

presented in the literature [11]. In this work we use the

form presented in [12], consisting of (i) a set of time

points (that can be mapped to the non-negative integers);

(ii) a set of properties that can vary over the lifetime of

the system, called fluents; and (iii) a set of event types. In

addition the language includes a number of base

predicates, initiates, terminates, holdsAt, happens,

which are used to define some auxiliary predicates; and

domain independent axioms. These are summarised

below:

Base predicates:

initiates(A,B,T) event A initiates fluent B for all time > T.

terminates(A,B,T) event A terminates fluent B for all time > T.

happens(A,T) event A happens at time point T

holdsAt(B,T) fluent B holds at time point T. This predicate

 is useful for defining static rules (state

 constraints).

initiallyTrue(B) fluent B is initially true.

initiallyFalse(B) fluent B is initially false.

Auxillary predicates:

clipped(T1,B,T2) fluent B is terminated sometime between

 timepoint T1 and T2.

declipped(T1,B,T2) fluent B is initiated sometime between

 timepoint T1 and T2.

Domain independent axioms:

holdsAt(B, T1) holdsAt(B, T) ¬ clipped(T, B, T1)

 T<T1.

holdsAt(B, T1) initiates(A, B, T) happens(A, T)

 ¬ clipped(T, B, T1) T<T1.

¬holdsAt(B, T1) ¬holdsAt(B, T) ¬ declipped(T, B, T1)

 T<T1.

¬holdsAt(B, T1) terminates(A, B, T) happens(A, T)

 ¬ declipped(T, B, T1) T<T1.

This is the classical form of the Event Calculus where

theories are written using Horn clauses. The frame

problem is solved by circumscription, which allows the

completion of the predicates initiates, terminates and

happens, leaving open the predicates holdsAt,

initiallyTrue and initiallyFalse. This approach

allows the representation of partial domain knowledge

(e.g. the initial state of the system). Formulae derived by

the Event Calculus are in effect classically derived from

the circumscription of the EC representation. To provide

an implementation of such a Calculus in Prolog, we use

pos and neg functors. The semantics of the Prolog

implementation assumes the Close Word Assumption

(CWA) and models are essentially Herbrand models

where predicates are appropriately completed. The use of

pos and neg functions on the fluents allows us to keep

// Upon system shutdown, any jobs owned by running

// processes should be cancelled

oblig shutdownCancellation {

on systemShutdown;

subject process/;

target printManager;

action cancelDoc(Job);

when Job.owner == process.owner;

}

Figure 2: Example of an obligation policy.

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

4

open the interpretation of fluents being true/false, in the

same way as circumscription does in the classical

representation. In this way we can guarantee that the

implementation of our EC is sound and complete with

respect to the classical EC formalisation. The

correspondence between the classical EC with

circumscription and the logic program implementation

can be found in [11].

The Event Calculus supports deductive, inductive and

abductive reasoning. Deduction uses the description of

the system behaviour together with the history of events

occurring in the system to derive the fluents that will hold

at a particular point in time. Induction aims to derive the

descriptions of the system behaviour from a given event

history and information about the fluents that hold at

different points of time. However, the reasoning

technique that is of particular interest to our work is

abduction. Given the descriptions of the behaviour of the

system, abduction can be used to determine the sequence

of events that need to occur such that a given set of

fluents will hold at a specified point in time.

The work described in [12] outlines how abduction

can be used in conjunction with Event Calculus to analyse

requirements specifications and presents a specialised set

of Event Calculus axioms that reduce the computational

complexity of the abductive proof procedure.

3. A Formal Language for Policies and

Managed Systems

Because the enforcement of an obligation policy will

change the state of the system, in addition to modelling

the policy specification, it is necessary to model the

system itself when developing a formal technique for

analysing policies. To achieve a complete specification

that supports formal reasoning, the following domain-

specific information must be represented in the model.

Objects and their organisation into domains.

Available management operations and the effect they

have on the managed objects.

Policy rules.

Additionally, it is also necessary to define domain

independent rules for modelling policy enforcement. In

order to support the transformation of this information

from high-level representations into a logical notation, we

use the following constants, variables, functions and

predicates:

1. Constant Symbols: Every member of Obj, where Obj

represents the set of objects in the system.

2. Variable Symbols: These are defined using the set,

VO, representing the attributes of objects and VP,
representing the set of parameters for the operations

supported by the objects.

Table 1: Function symbols.

Symbol Description

state(Obj, VO, Value) Represents the value of a variable of an object in the system. It can be
used in an initiallyTrue predicate to specify the initial state of the
system and also as part of rules that define the effect of actions.

operation(Obj, Action(VP)) Used to denote the operations specified in a policy function or event
(see below)

systemEvent(Event) Represents any event that is generated by the system at runtime and is
used to trigger enforcement of obligation or refrain policies. The Event
argument specified in this term can be any application specific
predicate or function symbol.

doAction(ObjSubj, operation(ObjTarg, Action(VP))) Represents the event of the action specified in the operation term
being performed by the subject, ObjSubj, on the target object, ObjTarg.

requestAction(ObjSubj, operation(ObjTarg, Action(VP))) Represents the event that occurs whenever a subject attempts to
perform an operation on a target object. Therefore, this is the event
that will trigger a permission (or denial) decision to be taken by the
target object’s access controller.

rejectAction(ObjSubj, operation(ObjTarg,Action(VP))) Event that occurs after the enforcement decision to reject the request
by a particular subject to perform an action is taken.

permit(ObjSubj, operation(ObjTarg, Action (VP))) Represents the permission granted to a subject, ObjSubj, to perform the
action defined in the operation on the target, ObjTarg.

deny(ObjSubj, operation(ObjTarg, Action (VP))) Used to denote that the subject, ObjSubj, is denied permission to
perform that action on the target, ObjTarg.

oblig(ObjSubj, operation(ObjTarg, Action (VP))) Denotes that the subject, ObjSubj, should perform the action specified
in the operation term on the target, ObjTarg.

refrain(ObjSubj, operation(ObjTarg, Action (VP))) Denotes that the subject, ObjSubj, should not perform the action
specified in the operation term on the target, ObjTarg.

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

5

3. Function Symbols: The language supports a number

of functions that can be used as parameters in the

basic predicate symbols of Event Calculus (Table 1)

4. Predicate Symbols: In addition to the previously

described Event Calculus predicates, initiates,

terminates, happens, holdsAt and initiallyTrue,

the language includes the predicate symbols defined

in Table 2.

Having specified the language, it is now possible to

explain how the various symbols defined above can be

incorporated into rules that represent the different types

of information required for modelling a managed system.

The sequel presents the form of these rules and illustrates

their use through a simple example.

3.1 Objects and Organisational Model
Consider an organisation that has a number of

different printers distributed through its offices. The

printers are organised according to properties like the

type (colour/ b&w), capacity (high volume/ low volume)

and physical location (4th floor/ 5th floor/ lab). The

printers themselves are uniquely named (skyblue, violet,

cobalt, grey, crimson, damson). A pictorial representation

of the printer organisation is presented in Figure 3.

Considering each of the properties to be represented by a

different domain, the formalism presented here can be

used to represent the printer crimson as an object in this

domain structure.

object(printer-crimson).

attr(printer-crimson, status).

method(printer-crimson, printDoc).

method(printer-crimson, switchPaper).

isDomain(office).

isDomain(bw-printers).

isDomain(highvol-printers).

isDomain(lab).

isMember(lab, office).

isMember(highvol-printers, lab).

office

4th floor

5th floor

lab

skyblue

low volume

black

 &

white
high volume

colour

grey

violet

cobalt

crimson

damson

Figure 3: Domain structure for organisation of printers

Table 2: Predicate symbols.

Symbol Description

object(Obj) Used to specify that Obj is an object in the system.

attr(Obj, VO) Specifies that Vo is an attribute of the object, Obj.

method(Obj, Action(VP)) Represents an action supported by an object in the system. It will be
used to define a separate ground term for every operation specified in
the system.

isDomain(Obj) Defines that Obj represents a domain. In order to indicate that a
domain is a specialisation of an object, we also define the following
rule:

object(Obj) isDomain(Obj).

isMember(Obj, Dom) Holds if the object, Obj, is a member of the Domain, Dom.

isSubDomain(Dom1, Dom2)
 isDomain(Dom1), isDomain(Dom2),
 isMember(Dom1, Dom2), Dom1 != Dom2,
 ¬ isSubDomain(Dom2, Dom1).

Holds if the domain represented by Dom1 is a sub-domain of Dom2.
The body of the rule is used to ensure that there are no cyclic
relationships in the domain structure.

isDerivedMember(Obj, Dom)
 object(Obj), ¬ isDomain(Obj),
 isMember(Obj, Dom).

isDerivedMember(Obj, Dom)
 object(Obj), ¬ isDomain(Obj),
 subDomain(Dom, SubDom),
 isDerivedMember(Obj, SubDom).

Used to determine membership of a domain across the entire domain
structure. This first rule identifies all those objects that are direct
members of the domain, Dom. The second rule recursively identifies
those objects that are members of sub-domains of the domain, Dom.

isValidSpec(ObjSubj, operation(ObjTarg, Action(VP))
 object(ObjSubj),
 object(ObjTarg),
 method(ObjTarg, Action(VP)).

Many of the function definitions above contain the tuple (ObjSubj,
operation(ObjTarg, Action(VP)). The isValidSpec predicate is
defined to hold if the members of this tuple are consistent with the
specification of the managed system. As such it is used in the body of
any rule where functions with the tuple (ObjSubj, operation(ObjTarg,
Action(VP)) are specified in the head.

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

6

isMember(bw-printers, lab).

isMember(printer-crimson, lab).

isMember(printer-crimson, highvol-printers).

isMember(printer-crimson, bw-printers).

If the entire example is encoded in this manner, it is a

simple matter to identify the set of printers that belong to

any particular domain. For example, assuming that

duplicate answers are removed, the following query will

return all the printers in the office:

?- isDerivedMember(Printer, office).

 Printer = printer-skyblue; Printer = printer-violet ;

 Printer = printer-cobalt; Printer = printer-grey ;

 Printer = printer-crimson; Printer = printer-damson;

3.2 System Behaviour Model
Having modelled the domain structure for organising

the objects in the managed system, we now extend the

language above, using Event Calculus, to model the

operations supported by the system and their behaviour.

The method symbol defined in Table 2 is used to represent

the operations that are supported by the objects in the

system. In order to model the behaviour of these

operations, it is necessary to specify the pre- and post-

conditions for each operation. Performing an operation

on the system will modify the state of the system in such

a way that, once the operation is complete, there will be

some new fluents that hold, and some other fluents that

cease to hold. This is represented using the initiates

and terminates predicates, which are defined in the Event

Calculus, according to the following schema:

initiates(doAction(ObjSubj, operation(ObjTarg,

 Action(Parms))), PostTrue, Tm)

 validSpec(ObjSubj, operation(ObjTarg, Action(Parms)))

 PreCondition.

terminates(doAction(ObjSubj, operation(ObjTarg,

 Action(Parms))), PostFalse, Tm)

 validSpec(ObjSubj, operation(ObjTarg, Action(Parms)))

 PreCondition.

The first rule above states that when the doAction

event occurs at time, Tm, if the PreConditions are true,

then the fluent defined by PostTrue will hold after that

time. Under the same conditions, the second rule states

that the fluent defined by PostFalse will cease to hold

after time, Tm. In both of these rules, the PreCondition

will be represented by a conjunction of holdsAt terms,

which are defined as part of the Event Calculus. The

PostTrue and PostFalse fluents are defined using state

terms that are defined in the formal language above. The

validSpec predicate is used to ensure that the objects and

operations specified in the rule are consistent with the

specification of the objects and their organisation e.g., the

action specified is an operation defined in the interface of

the managed object.

Building on the example used previously, it is possible

to illustrate the use of these rules for modelling system

behaviour. Consider that a print manager controls every

printer in the system. The print manager provides

functions for viewing the printer queue, adding and

deleting a print job. Additionally it is possible for the

printers to provide diagnostic information (such as a

paper jam) to the print manager. The print manager can

use the diagnostic information to correct errors, or report

the printer status to a central management console that is

monitored by an administrator. An UML state chart

representation of this functionality is shown in Figure 4.

It is possible to transform this state chart into the Event

Calculus notation presented previously where the input

shown on each transition arrow is the action being

performed; for transition between different states, the

current state values become the PostFalse fluents; any

actions associated with the transition and next state values

become the PostTrue fluents; and the current state values

become the PreConditions. Self-transitions should not

specify the current state as PostFalse fluents. So

following this scheme, transition (4) in Figure 4 would be

represented in the Event Calculus as follows:

initiates(doAction(printer, operation(printer,

 switchPaper)), state(printer, status, busy), T)

 holdsAt(pos(state(printer, status, busy)), T)

 holdsAt(pos(state(printMgr, status, jobSpooled)), T).

initiates(doAction(printer, operation(printer,

 switchPaper)),state(printMgr,status,jobSpooled), T)

 holdsAt(pos(state(printer, status, busy)), T)

 holdsAt(pos(state(printMgr, status, jobSpooled)), T).

3.3 Policy Enforcement Model
Analysis of policies requires the ability to determine

the effect of a specified policy on the behaviour of the

system. Therefore, in addition to modelling the policy

specification, it is necessary to define rules that model the

enforcement of the policies. Such rules have the effect of

linking the policy specification to the system behaviour

specification.

The complete policy enforcement model is illustrated

in Figure 5. As shown, a system event is received by the

subject’s policy agent, which refers to the policy

printer.status = idle

printMgr.status = jobReady

printer.status = busy

printMgr.status = jobSpooled

(3) doAction(printMgr, printer, printDoc)

printer.status=idle

printMgr.status = waiting

(1) doAction(Process, printMgr, cancelDoc(Job))

(2) doAction(Process, printerMgr(queueDoc(Job)) /

sysEvent(printReq)

 (4) doAction(printer,printer, switchPaperTray)

Figure 4: State chart for Printer system functionality.

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

7

repository to determine if any of the obligation policies

for this subject specify this event as a trigger. If there is

an obligation, this will cause a request to perform the

specified action to be sent to the target. If a refrain policy

that prohibits this exists at the subject, then the action will

be rejected. Once the subject makes a request to perform

an action on the target, the target object’s access

controller processes it. To do this, the access controller

evaluates the request by referring to the policy repository

and the access control model of the system. If the action

is permitted, the access control system will proceed to do

the requested action. Otherwise, if the action should be

denied, the access control system will reject the action.

The formal representation of this policy enforcement

model presented is presented in Figure 6. The first rule

models the behaviour of subject’s policy agent, causing

the event of requesting an action whenever an obligation

that specifies that action holds. The next rule models a

subject’s policy enforcement code rejecting the specified

action to enforce a refrain. The third rule models the

behaviour of the target’s access controller, generating a

doAction event when an action is permitted. This event

would trigger the relevant system behaviour rules thus

causing the system state to change according to the

specification. The last rule models a target object’s

access controller rejecting the action to prevent a denied

operation from being performed.

3.4 Policy Specification
The final step in developing this logical notation is to

represent the policies themselves. As discussed in the

previous sections, we are focussing on four types of

policy – positive authorisation, negative authorisation,

obligation and refrain.

In order to correctly interact with the enforcement

model described above, each policy specification rule

should initiate the appropriate policy function symbol

(permit, deny, oblig or refrain) for each of the events. So

for example, a positive authorisation policy rule should

specify that permit(Subj, Operation) holds when the

requestAction(Subj, Operation) event occurs and the

constraints that control the applicability of the policy

hold. Additionally, the fluent permit(Subj, Operation)

should cease to hold once the action has been performed

thus making it possible to re-evaluate the policy rule on

subsequent requests to perform the action. The Event

Calculus representation of this functionality is shown in

the (posAuth) specification in Figure 7. This figure also

shows how each of the other policy types would be

represented by rules in the formal notation.

For each rule, the terms, ObjSubj, ObjTarg, Action and

Constraint, can be directly mapped to the subject, target,

action, constraint and event clauses used when specifying

policies in a language like Ponder. Although Ponder

constraints are specified using the Object Constraint

Language (OCL), typical constraints only use a subset of

features from this language. As such, the Constraint

predicates in the Event Calculus rules above, can be

represented by a combination of holdsAt terms. Beckert

et al. [13] describe approaches for mapping general OCL

specifications into first order logic. This could be used to

handle more complex OCL constraint expressions. The

validSpec predicate, which is the second predicate in the

body of these policy rules, is used to check that the

objects and operations specified in the rules are consistent

with the system description.

The (negAuth) rule in Figure 7 represents a negative

authorisation policy by stating that, if the Constraint

holds and the event requesting the action happens, the

action is denied. The second part of the (negAuth) rule

shows how the deny fluent will be terminated once the

decision to reject that action has been taken, thus

allowing the rule to be re-evaluated on subsequent

requests. Note that the termination rules for these policies

do not have any constraints and can be generically

specified for the whole system.

The (oblig) rule states that if the Constraint holds at

the time that the system event, systemEvent(E), occurs,

then the obligation for the subject to perform the action

% Obligation / Refrain Enforcement Rule (Subject)

happens(requestAction(Subj, operation(Targ,

 Action(ParmList))), Tn)

 holdsAt(oblig(Subj, operation(Targ, Action(ParmList))),Tm)

 (Tm < Tn).

happens(rejectAction(Subj, operation(Targ,

 Action(ParmList))), Tn)

 holdsAt(refrain(Subj, operation(Targ,Action(ParmList))),Tm)

 (Tm < Tn).

% Access Control Rule (Target)

happens(doAction(Subj, operation(Targ,

 Action(ParmList))), Tn)

 holdsAt(permit(Subj, operation(Targ, Action(ParmList))), Tm)

 (Tm < Tn).

happens(rejectAction(Subj, operation(Targ,

 Action(ParmList))), Tn)

 holdsAt(deny(Subj, operation(Targ, Action(ParmList))), Tm)

 (Tm < Tn).

Figure 6: Policy enforcement rules.

DENY

rejectAction

REFRAIN

rejectAction

Access

Control

Model

Policy

Repository

Target Access Control System

A
c
c
e
s
s
 C

o
n
tr

o
lle

r

systemEvent(E)

Policy

Repository

Subject Execution Environment

S
u

b
je

c
t
P

o
lic

y
 A

g
e
n
t

requestAction(S, operation(T,A))
OBLIG

oblig / refrain permit / deny

T

doAction(S, operation(T,A))
PERMIT

Figure 5: Policy enforcement model

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

8

on the target holds. Like with the (posAuth) rule, we

define that the obligation is terminated once the call to

perform the specified operation is made. This assumes

that the execution of the operation is an atomic process,

i.e. the execution of the operation is considered complete

once a call to the operation has been made. The (refrain)

rule states that if the Constraint holds and any system

event occurs, the subject should not perform the action on

the target because the refrain holds. Just like with the

(negAuth) rule, the second part of the (refrain) rule

defines that the refrain fluent is terminated once the

policy enforcement decision to not perform the specified

action is taken.

A complete policy specification would involve

instantiating the initiates rules defined above with

specific subjects, targets and operations defined for the

managed system. The rules simply define the conditions

under which a policy holds in the system.

The use of the policy specification rules defined

previously can be illustrated by extending the printer

management example to include a range of policy rules.

Policies could be used to specify the types of process that

are allowed to access the print queue. For example, only

root processes are allowed to indiscriminately delete jobs

from a queue. A user process is only allowed to delete a

print job if it has the same process identifier as the

process that originated the job. The print manager should

handle an outOfPaper event by switching to an alternative

input tray also reporting the event to the central console.

We can use the notation described in this section to

represent the Ponder policies shown in Figures 1 & 2 as

follows:

% Authorisation

initiates(requestAction(Process, operation(printMgr,

 cancelDoc(Job))), permit(Process, operation(printMgr,

 cancelDoc(Job))), T)

 validSpec(Process, operation(printMgr, cancelDoc(Job)))

 holdsAt(pos(state(Process, owner, root)), T).

initiates(requestAction(Process, operation(printMgr,

 cancelDoc(Job))), deny(Process, operation(printMgr,

 cancelDoc(Job))), T)

 validSpec(Process, operation(printMgr, cancelDoc(Job)))

 holdsAt(neg(state(Process, owner, root)), T)

 holdsAt(neg(state(Job, owner, Process)), T).

% Obligation

initiates(systemEvent(systemShutdown), oblig(Process,

 operation(printMgr, cancelDoc(Job))), T)

 validSpec(Process, operation(printMgr, cancelDoc(Job)))

 holdsAt(pos(state(Job, owner, Process)), T).

The interaction between these policy rules and the

enforcement, and behaviour model is illustrated in Figure

8. Here, the initial system state consists of a process,

proc1, owned by ‘root’ and a print job, job1 that is owned

by that process. When the systemShutdown event occurs at

t=1, this triggers the obligation rule shown above. The

assertion of the obligation fulfils the condition of the

obligation enforcement rule and causes a request to

perform the cancelDoc(Job) action to be generated. This

(posAuth) - initiates(rrequestAction(ObjSubj,operation(ObjTarg, Action(ParmList))),ppermit(ObjSubj, operation(ObjTarg, Action(ParmList))), Tm)

 validSpec(ObjSubj, operation(ObjTarg, Action(ParmList))) Constraint.

 terminates(ddoAction(ObjSubj, operation(ObjTarg, Action(ParmList))), ppermit(ObjSubj, operation(ObjTarg, Action(ParmList))), Tm)

 validSpec(ObjSubj, operation(ObjTarg, Action(ParmList))).

(negAuth) - initiates(rrequestAction(ObjSubj,operation(ObjTarg, Action(ParmList))),ddeny(ObjSubj, operation(ObjTarg, Action(ParmList))), Tm)

 validSpec(ObjSubj, operation(ObjTarg, Action(ParmList))) Constraint.

 terminates(rrejectAction(ObjSubj, operation(ObjTarg, Action(ParmList))), ddeny(ObjSubj, operation(ObjTarg, Action(ParmList))), Tm)

 validSpec(ObjSubj, operation(ObjTarg, Action(ParmList))).

(oblig) - initiates(ssystemEvent(E), ooblig(ObjSubj, operation(ObjTarg, Action(ParmList))), Tm)

 validSpec(ObjSubj, operation(ObjTarg, Action(ParmList))) Constraint.

 terminates(ddoAction(ObjSubj, operation(ObjTarg, Action(ParmList))), ooblig(ObjSubj, operation(ObjTarg, Action(ParmList))), Tm)

 validSpec(ObjSubj, operation(ObjTarg, Action(ParmList))).

(refrain) - initiates(ssystemEvent(_),rrefrain(ObjSubj, operation(ObjTarg, Action(ParmList))), Tm)

 validSpec(ObjSubj, operation(ObjTarg, Action(ParmList))) Constraint.

 terminates(rrejectAction(ObjSubj, operation(ObjTarg, Action(ParmList))), ooblig(ObjSubj, operation(ObjTarg, Action(ParmList))), Tm)

 validSpec(ObjSubj, operation(ObjTarg, Action(ParmList))).

Figure 7: Event Calculus representation of policies.

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

9

event triggers the evaluation of the first authorisation

policy rule above, causing the operation to be permitted,

which then satisfies the condition of the access control

enforcement rule. After the doAction(…) event occurs at

t=5, the termination rules specified in the enforcement

model cause the permit and oblig fluents to be terminated

at t=6.

4. Policy Analysis

Since the policy specification notation described above

supports policy types that are semantically opposite to

each other (e.g. obligations and refrains), conflicting

policy specifications could arise. It is therefore important

to provide a means of detecting conflicts in the policy

specification as part of the logical framework.

The different types of conflicts that can occur in a

policy specification are identified in [2]. Modality

conflicts arise when two policies are specified using the

same subjects, targets and actions but are of opposite

modality (e.g. positive and negative authorisations). This

type of conflict is domain-independent since conflicts

could occur irrespective of the application domain for

which the policies are being specified. Other types of

conflict identified in the literature fall into the category of

application specific conflicts. As described in [14], these

include conflicts of duty, conflicts of interest, multiple

manager conflicts, conflicts of priorities for resources and

self-management conflicts.

Considering the types of conflict described above, it is

possible to define rules that can be used to recognise

conflicting situations in the policy specification.

4.1 Modality Conflicts
Modality conflicts involving authorisation policies

occur when there are two policies, one an authorisation

and the other a prohibition, defined for the same subject,

target and action. The authConflict predicate defined

below holds if an authorisation conflict is detected.

holdsAt(authConflict(Subj, Op), Tm)

 holdsAt(permit(Subj, Op), Tm) holdsAt(deny(Subj, Op), Tm).

In a similar fashion, rules for detecting conflicts

between obligations and refrains; and unauthorised

obligation conflicts can be defined as follows:

holdsAt(obligConflict(Subj, Op), Tm)

 holdsAt(oblig(Subj, Op), Tm) holdsAt(refrain(Subj, Op), Tm).

holdsAt(unauthObligConflict(Subj, Op), Tm)

 holdsAt(oblig(Subj, Op), Tm) holdsAt(deny(Subj, Op), Tm).

In each of these rules, the Op variable will be

instantiated with an operation term as defined in Section

3.

4.2 Application Specific Conflicts
One of the most common types of application specific

conflict cited in the literature is conflict of duties

(alternatively stated as the requirement to ensure

separation of duties) [3, 14-16]. A conflict of duties will

arise if the same subject is permitted to perform

operations that, in the context of the application, are

defined to be conflicting. For example, in a company

financial system, the operation of entering a request for

payment and the operation of approving that request are

potentially conflicting if the same user can perform both

operations.

Rules for application specific conflicts must be defined

using constraints that include application specific data in

addition to policy information. However, before defining

rules for detecting such conflicts, it is important to have a

means of specifying this application specific information.

The description of the various types of application

specific conflicts in [14], suggests that:

A conflict of duty arises when the same subject

performs both operations on the same target (e.g. an

employee makes a payment request and approves it).

A conflict of interest arises when the same subject

performs each of the operations on different targets.

(e.g. a bank provides investment advice to a client

whilst performing a merger for a competing client).

Different subjects perform each of the operations on

a single target and the outcome of each operation is

incongruent with the other. (e.g. spooling a job to a

printer and shutting the same printer down).

holdsAt(state(proc1, owner, root), 0), holdsAt(state(job1, owner, proc1), 0)

happens(systemEvent(systemShutdown), 1)

holdsAt(oblig(proc1, operation(printMgr, cancelDoc(job1))), 2)

happens(requestAction(proc1, operation(printMgr, cancelDoc(job1))), 3)

holdsAt(permit(proc1, operation(printMgr, cancelDoc(job1))), 4)

happens(doAction(proc1, operation(printMgr, cancelDoc(job1))), 5)

¬ holdsAt(permit(proc1, operation(printMgr, cancelDoc(job1))), 6),

¬ holdsAt(oblig(proc1, operation(printMgr, cancelDoc(job1))), 6)

0 1 2 3 4 5 6

Time, t

Figure 8:Timeline of interactions between policy rules and enforcement model

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

10

In order to capture this application specific

information, we extend the system specification language

described in Section 3 with a new symbol –

conflictingOps(ConflictType, [Ops]). Here the

ConflictType represents a constant value from the set

{conflictDuty, conflictInterest, conflictGoal,

conflictSelfMgmt}, indicating the type of application

specific conflict that may arise if the operations are used

in a policy specification. The members of the Ops list are

instantiated using the operation term defined previously.

The symbol can be used to define ground literals in the

system specification, specifying the action/target object

combinations that will potentially conflict. In the case of

the conflict of duties example mentioned above, the

potential conflict between the operations of requesting a

payment and approving a payment would be represented

as follows:

conflictingOps(conflictDuty, [operation(payment,

request(PaymentID,Amount)),operation(payment,approve(PaymentID))])

As described in the literature, the principle of

separation of duty can take a number of different forms.

In the first case, static separation of duty is ensured by not

permitting a subject to perform an operation, Op1, if that

subject has ever been granted permission for a different

operation, Op2, and Op1 and Op2 are defined as members of

a set of conflicting operations. A policy specification that

violates this principle will give rise to a conflict of duty.

The second variation, dynamic separation of duty,

requires that the runtime behaviour of the system should

not allow conflicting operations to be performed. Finally,

the Chinese Wall policy [15] is a specialised form of

dynamic separation of duty that prevents a subject

performing any conflicting actions on one target, if the

subject has already been given permission to perform a

conflicting action on a different target. A comprehensive

formal treatment of separation of duty policies is

presented in [16].

In the formalism presented here, we model the

dynamic behaviour of the system because this is

necessary for dealing with the effects of having

constraints in the policy specification. This allows us to

treat the detection of static and dynamic conflicts of duty

in a similar manner by defining rules of the following

form, depending on the number of operations that could

cause conflicts:

holdsAt(sepOfDutyConflict(Subj, Ops), Tm)

 holdsAt(permit(Subj, Op1), T1)

 holdsAt(permit(Subj, Op2), T2) ...

 holdsAt(permit(Subj, OpN), TN)

 conflictingOps(conflictDuty, Ops)

 memberOf(Op1, Ops)

 memberOf(Op2, Ops) ... memberOf(OpN, Ops)

 T1=<T2=<...=<TN=<Tm.

The rule for detecting a conflict in a Chinese Wall

policy is different because the conflict condition also

depends on the targets involved. We represent this as

follows:

holdsAt(cwConflict(Subj,Target1,Action1,Target2,Action2), Tm)

 holdsAt(permit(Subj, operation(Target1, Action1)), T1)

 holdsAt(permit(Subj, operation(Target2, Action2)), T2)

 conflictingOps(conflictDuty, Ops) Target1 != Target2

 memberOf(operation(Target1, Action1), Ops)

 memberOf(operation(Target2, Action2), Ops)

 T1 =< T2 =< Tm.

Another type of conflict, identified in the literature as a

multiple management conflict, arises when different

subjects attempt to perform actions on the same target,

where the goals of those actions are incongruent. For

example, spooling a job to a printer and shutting the same

printer down are operations with incompatible goals. We

represent these operations using the constant,

conflictGoal, in the conflictingOps term. The

following is a representation of the printer example above

using this symbol:

conflictOfGoalsOps(conflictGoal, [operation(printer,

 printDoc), operation(printer, shutDown)]).

Once the incompatible operations have been defined,

the following rules can be used to identify multiple

manager conflicts in a policy specification:

holdsAt(conflictOfMultiManagers(Subj1, Subj2, ..., SubjN

 Ops), Tm)

 holdsAt(permit(Subj1, Op1), T1)

 holdsAt(permit(Subj2, Op2), T2) ...

 holdsAt(permit(SubjN, OpN), TN)

 conflictingOps(conflictGoal, Ops)

 memberOf(Op1, Ops)

 memberOf(Op2, Ops) ...

 memberOf(OpN, Ops) T1 =< T2 =< ... =< TN =< Tm.

Similar rules are specified for other types of

application specific conflicts, such as conflicts of interest

and self-management conflicts.

4.3 Detecting Conflicts
By using one of the conflict fluents (e.g.

unauthObligConflict) as a goal state, it is possible to

query the system specification for event sequences that

would result in a conflict occurring. If no such sequence

can be derived, it can be considered that the policy

specification is free of this particular conflict type.

The current implementation of the analysis system

makes use of the abductive proof procedure presented in

[12]. By treating the conflict fluents as safety properties

of the system, this technique reduces the complexity of

the abductive proof procedure to two time points – the

time before the conflict arises (t) and the time after it

arises (t1). Additionally, provided the conflict term is

specified using ground literals, it can be shown that the

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

11

query will always generate a complete explanation for

any conflicts and it will always terminate [12].

Figure 9 shows an illustration of performing such a

query on the example system presented previously. Here

some of the solutions, such as the last, present the trivial

case in which a conflict might occur. However, the first

solution suggests that there is a sequence of events that

will cause a conflict. Therefore, it can be concluded that

the policy specification contains a conflict.

5. Policy Refinement

The ability to specify policies and managed system

behaviour in a notation that supports formal analysis that

allows detection of inconsistencies is a worthy goal in its

own right. However, the longer term motivation for the

work presented here, and a key problem area that we

seeking to address is the development of new techniques

for policy refinement. In this section we present our

initial ideas for a technique that makes use of the

formalism presented above.

The objective of policy refinement is to transform

high-level policy specifications into more specific

policies that are defined in terms of lower-level entities

and operations of the system. More formally policy

refinement could be defined as follows:

Definition: (Policy Refinement) If there exists a set of policies

Prs:p1, p2, .. pn, such that the enforcement of a combination of

these policies results in a system behaving in an identical manner

to a system that is enforcing some base policy Pb, it can be said

that Prs is a refinement of Pb. The set of policies Prs:p1, p2, .. pn

is referred to as the refined policy set.

Much of the work done in the requirements engineering

domain for refining goals into implementation

specifications could be applicable to policy refinement.

Using this definition and drawing on work done to

identify the properties of goal refinements [9] the

following properties are proposed:

1. Correctness: a refinement is said to be correct if the

conjunction of all the members of that subset is a

refinement of the base policy.

2. Consistency: a refinement is said to be consistent if

there are no conflicts between any of the policies in

the refined policy set.

3. Minimality: a refinement is said to be minimal if it is

correct and if removing any policy from the refined

policy set causes the refinement to be incorrect.

In addition, a policy refinement can be said to be

complete iff all the properties defined above hold. The

goal refinement approach also specifies a fourth property,

non-triviality, which requires there to be more than one

element in the refined set. However, in the policy

refinement domain it may be acceptable to have a single

policy that is a refinement of some base policy, provided

that the refinement uses subjects, targets and actions that

map to different physical entities. Therefore we do not

consider this property to be a requirement of

completeness in a policy refinement.

So, an essential requirement when refining a policy is

to ensure that the goal achieved by that policy would still

be achieved by the set of sub-policies that it is refined

into. Having a formalism that allows abductive reasoning

offers some useful capabilities in this regard since such

formalisms support goal regression. Goal regression is a

logical analysis technique that derives plans of action for

achieving a specified end goal [17]. The desired end goal

will be determined by the post-conditions of the operation

specified in the base policy to be refined and abductive

goal regression can be applied to derive the set of

subject/operation tuples (of the form [(Subj1,

operation(Targ1, Action1)), … (SubjN, operation(TargN,

ActionN))]) that will be used by the refined policy set.

Because this procedure is based on a formal proof

procedure, the derived set of subjects and operations will

be correct and minimal.

Having derived the set of subjects/operation

combinations that will achieve the end goal of the base

policy, it is now necessary to compose them into a refined

policy set. The manner in which this composition

procedure is performed is dependant on the type of the

base policy and any application specific constraints that

need to be applied. For example, if the goal of the

operation specified in an authorisation policy can be

refined to the set of subject/operation tuples, [(Subj1,

operation(Targ1, Action1)), … (SubjN, operation(TargN,

ActionN))], one possibility for refinement of the original

policy is to create a new authorisation policy for each of

these subject/operation tuples and use the analysis

techniques described here to validate that these new

policies do not lead to any inconsistencies. Alternatively,

it may be necessary to limit the number of new

authorisations created to ensure that some application-

?- demo([holdsAt(obligConflict(printMgr,

 operation(printer, printDoc)), t1)], [], Plan).

Plan = [initiallyTrue(state(printMgr,state,

 shuttingDown)), happens(systemEvent(printReq),t)]

Plan = [initiallyTrue(refrain(printMgr,

 operation(printer,printDoc))),

happens(systemEvent(printReq),t)]

Plan = [happens(systemEvent(printReq),t),

 initiallyTrue(state(printMgr,state,shuttingDown)),

 initiallyTrue(oblig(printMgr,operation(printer, printDoc)))]

Plan = [initiallyTrue(refrain(printMgr,

 operation(printer,printDoc))),

 initiallyTrue(oblig(printMgr, operation(printer,printDoc)))]

Figure 9: Example of a conflict detection query

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

12

specific constraint, such as a principle of least privilege,

is observed. This would require an alternative scheme for

composing the subject/operation tuples into refined

policies. Each of these composition schemes can be

considered to be a refinement pattern that is

parameterised by factors such as the base policy type, the

types on conflicts that should be checked for, any

additional application specific constraints etc. Certain

patterns will apply to certain types of base policies,

whereas others might be generically applicable to any

base policy. By developing a library of such patterns, it

should be possible for the administrator to select any

policy in the system and perform a refinement by

applying a valid refinement pattern. However, significant

work remains to be done towards this goal.

6. Discussion

When developing a formal language of the type

presented here, it is important that it is expressive enough

to represent the systems being modelled and that the

language is based on solid theoretical foundations. Event

calculus is a good starting point for a formal language for

specifying policy-based systems because it has direct

support for representing the events used in these systems.

Additionally, it is a well-researched area of logic

programming that supports all modes of logical reasoning

and provides a number of theoretical results and tools that

have been leveraged in this work. For example, the use

of event calculus allows users to specify the system

behaviour using more familiar notations, such as state

charts, which can then be automatically translated into the

logic program representation. Through the example

presented here, it has been shown that the language is

sufficiently expressive to model system objects, their

organisation and behaviour together with policy rules that

specify authorisations, obligations and refrains. Also, the

language supports analysis of the specification for

detecting both modality conflicts and application specific

conflicts. A particular strength of the abductive analysis

technique presented here is its ability to perform a priori

analysis of partial specifications and not only detect the

existence of potential conflicts but also to generate

explanations for the conditions under which conflicts may

arise.

Another important consideration in any formal

technique is the decidability and computational

complexity of the algorithm used. We have briefly

mentioned that using ground literals in any query term

ensures termination of the conflict search process.

Additionally, the formalism presented limits its use of

first-order logic to stratified logic [18]. This permits a

constrained use of recursion and negation while

disallowing those combinations that lead to undecidable

programs. Indeed, there are numerous studies that identify

stratified logic as a class of first order logic that supports

logic programs that are decidable [19, 20]. Moreover,

such programs are decidable in polynomial time [3]. A

more detailed analysis of the computational complexity

and expressive power of stratified logic can be found in

[20].

Although the formalism presented models different

policy types and supports analysis for detecting a range of

inconsistencies, there exist certain limitations to its

capabilities. For example, there is no support for

grouping policies into structures such as roles and other

management grouping described in [7]. Additionally, the

formalism does not model meta-policies and the

interaction of these policies with the underlying

enforcement architecture. It would be necessary to

extend the language to support these constructs. Finally,

the current abductive proof procedure only provides basic

diagnostic information about the event history that leads

to inconsistencies. This is because we reduce the problem

to reasoning over just two time points. This limitation

can be addressed by using a more powerful tool, such as

the A-system [21], which has the capability to perform

abductive reasoning over an arbitrary time line.

7. Related Work

Amongst the many alternative approaches to policy

specification, there are a number of proposals for formal,

logic-based notations. In particular Logic-based

languages have proved attractive for the specification of

security policy, as they have a well-understood

formalism, which is amenable to analysis. However they

can be difficult to use and are not always directly

translatable into efficient implementation. A number of

formalisms for security policy assume a role based access

control (RBAC) model, including RSL99[22], Role

Definition Language [23] and Temporal RBAC (TRBAC)

[24]. Additionally there are languages that take

advantage of the computational efficiencies offered by

using subsets of first order logic, such as stratified logic.

Barker presents in [25] a language that supports

specification of access control policies using stratified

clause-form logic, with emphasis on RBAC policies.

However, this work does not discuss techniques for

detecting conflicts in policy specifications. The

Authorisation Specification Language (ASL) proposed by

Jajodia et al. [3] is another example of a language based

on stratified clause-form logic that also offers techniques

for detecting modality conflicts and some application

specific conflicts in authorisation policy specifications.

However, this technique does not support static analysis

of policy specifications that use constraints, assuming

instead that conflict detection will take place at runtime.

The Policy Description Language (PDL) [4] is an

example of first-order logic being applied to the

specification of obligation policies. The language can be

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

13

described as a real-time specialised production rule

system to define policies. The syntax of PDL is simple

and policies are described by a collection of two types of

expressions: policy rules and policy defined event

propositions. Later work by Chomicki [5], extends PDL

to include the concept of action constrains, which are

policies that prevent a specified action from being

performed in a given situation. These action constraints

are analogous to the refrain policies described in this

paper. This work introduces the idea of using a policy

monitor to detect conflict situations and resolve them by

either suppressing the events that could lead to a conflict

or overriding the conflicting action. Additionally, work

by Son and Lobo, presents an approach for reasoning

about policies with the objective of mapping a desired

action history back to a possible event history [26]. This

work is interesting because it illustrates how formal

techniques together with logic programming can be used

to derive information about the policy program – in this

case the event history that causes a particular set of

actions. However, PDL does not model authorisation

policies and therefore the analysis cannot detect conflicts

involving authorisations.

Recent work on using policies for adaptation of mobile

devices [27] proposes Event Calculus as a suitable

formalism for policy specification. However, this

technique only models obligation policies and support for

conflict detection using the notation is still under

development. Finally there is ongoing work at Imperial

College to develop a formal language for contract

representation that is using Event Calculus as a baseline

notation. It is expected that the notation presented here

would be of particular relevance to this effort.

There are few examples of practical approaches for

policy refinement. One such example is described in

work done at Hewlett-Packard Laboratories, which

outlines a policy-authoring environment that provides a

policy wizard tool, called POWER, for refining policies

[28]. Here, a domain expert first develops a set of policy

templates, expressed as Prolog programs, and the policy

authoring tools have an integrated inference engine that

interprets these programs to guide the user through the

refinement process. A major limitation of this approach

is the absence of any analysis capabilities to evaluate the

consistency of the refined policies. Also, the POWER

approach depends on the domain expert having a detailed

understanding of the entire system to develop a usable

policy template. The refinement approach outlined in this

paper avoids these problems by not only incorporating a

complete analysis technique but also supporting abductive

reasoning for deriving the action sequences required to

achieve a goal.

Work done at University College London proposes

using model checking for verifying the consistency of

rules specified for a DiffServ router [29]. This technique

depends on generating packet flows that can be used by

the model-checking tool. However it is not possible to

generate a complete set of packets that would ensure an

exhaustive verification of the specification. Additionally,

many of the packets generated will be benign – causing

no inconsistencies in the system. By modelling the

DiffServ modules using the formalism presented in this

paper, it would be possible to use abduction to derive just

those packets that could cause an inconsistency to arise.

We are currently in the process of coding an example

DiffServ router configuration and associated rules to

validate this approach.

8. Conclusions and Future Work

In this paper we have described the use of Event

Calculus and abductive reasoning for developing a

language that supports specification and analysis of

policy based systems. The language is sufficiently

expressive to model systems using a combination of

authorisation, obligation and refrain policies.

Additionally we have shown how an abductive analysis

procedure can be used to detect modality conflicts and a

range of application specific conflicts.

We outline an initial approach for using the formalism

presented for refining policies. Developing a library of

refinement patterns that can be used in conjunction with

the abductive analysis technique presented here will be

the focus of our future work. Also, as part of this work

we will look at developing tools to support the

specification, analysis and refinement of policies using

this formal notation. Additionally we are hoping to apply

this formalism to a network management example that

uses policy-based management for QoS provision in

DiffServ networks.

Acknowledgements

We acknowledge financial support for this work from

the EPSRC (Grant No: GR/R31409/01) and CISCO

Systems Inc. Additionally, we would like to thank Morris

Sloman and Naranker Dulay for their valuable feedback

during the preparation of this paper.

References

[1] M. S. Sloman, "Policy Driven Management for Distributed

Systems," Journal of network and Systems Management, vol. 2,

pp. 333-360, 1994.

[2] E. C. Lupu and M. S. Sloman, "Conflicts in Policy-Based

Distributed Systems Management," In IEEE Transactions on

Software Engineering - Special Issue on Inconsistency

Management, vol. 25, pp. 852-869, 1999.

[3] S. Jajodia, P. Samarati, and V. S. Subrahmanian, "A Logical

Language for Expressing Authorisations," presented at IEEE

Symposium on Security and Privacy, Oakland, USA, 1997a.

[4] J. Lobo, R. Bhatia, and S. Naqvi, "A Policy Description

Language," presented at 16th National Conf. on Artificial

Intelligence, Orlando, Florida, USA, 1999.

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

14

[5] J. Chomicki, J. Lobo, and S. Naqvi, "A Logic Programming

Approach to Conflict Resolution in Policy Management,"

presented at 7th Int. Conf. on Principles of Knowledge

Representation and Reasoning (KR2000), Breckenridge,

Colorado, USA, 2000.

[6] R. A. Kowalski and M. J. Sergot, "A logic-based calculus of

events," New Generation Computing, vol. 4, pp. 67-95, 1986.

[7] N. Damianou, N. Dulay, E. C. Lupu, and M. S. Sloman,

"The Ponder Policy Specification Language," presented at

Policy 2001: Workshop on Policies for Distributed Systems and

Networks, Bristol, UK, 2001.

[8] J. Moffet and M. S. Sloman, "Policy Hierarchies for

Distributed Systems Management," IEEE JSAC, vol. 11, pp.

1404-14, 1993.

[9] R. Darimont and A. van Lamsweerde, "Formal Refinement

Patterns for Goal-Driven Requirements Elaboration," 4th ACM

Symposium on the Foundations of Software Engineering

(FSE4), pp. 179-190, 1996.

[10] N. Damianou, T. Tonouchi, N. Dulay, E. Lupu, and M.

Sloman, "Tools for Domain-based Policy Management of

Distributed Systems," presented at Network Operations and

Management Symposium (NOMS 2002), Frorence, Italy, 2002a.

[11] R. Miller and M. Shanahan, Some alternative formulations

of the Event Calculus, in A. C. Kakas and F. Sadri (eds.):

Computational Logic: Logic Programming and Beyond, Essays

in Honour of Robert A. Kowalski, Part II. Lecture Notes in

Computer Science 2408, Springer 2002, ISBN 3-540-43960-9,

pages: 452-490..

[12] A. Russo, R. Miller, B. Nuseibeh, and J. Kramer, "An

Abductive Approach for Analysing Event-Based Requirements

Specifications," presented at 18th Int. Conf. on Logic

Programming (ICLP), Copenhagen, Denmark, 2002.

[13] B. Beckert, U. Keller, and P. H. Schmitt, "Translating the

Object Constraint Language into First-order Predicate Logic,"

presented at VERIFY, Workshop at Federated Logic

Conferences (FLoC), Copenhagen, Denmark, 2002.

[14] J. D. Moffett and M. S. Sloman, "Policy Conflict Analysis

in Distributed System Management," Journal of Organisational

Computing, vol. 4, pp. 1-22, 1994.

[15] D. F. C. Brewer and M. J. Nash, "The Chinese Wall

Security Policy," presented at IEEE Symposium on Research in

Security and Privacy, Oakland, California, USA, 1989.

[16] V. D. Gligor, S. I. Gavrila, and D. Ferraiolo, "On the

Formal Definition fo Searation-of-Duty Policies and their

Composition," presented at IEEE Symposium on Security and

Privacy, Oakland, CA, 1998.

[17] J. L. Pollock, "The Logical Foundations of Goal-

Regression Planning in Autonomous Agents," Journal of

Artificial Intelligence, vol. 106, 1998.

[18] K. R. Apt, H. A. Blair, and A. Walker, "Towards a Theory

of Declarative Knowledge," in Foundations of Deductive

Databases, J. Minker, Ed. San Mateo, CA: Morgan Kaufmann,

1988, pp. 89-148.

[19] G. Jager and R. F. Stark, "The Defining Power of Stratified

and Hierarchical Logic Programs," Journal of Logic

Programming, vol. 15, pp. 55-77, 1993.

[20] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov,

"Complexity and Expressive Power of Logic Programming,"

presented at 12th Annual IEEE Conf. on Computational

Complexity (CCC'97), Ulm, Germany, 1997.

[21] B. van Nuffelen and A. Kakas, "A-System : Programming

with abduction," presented at Logic Programming and

Nonmonotonic Reasoning (LPNMR 2001), 2001.

[22] G.-J. Ahn and R. Sandhu, "The RSL99 Language for Role-

based Separation of Duty Constraints," presented at Fourth

ACM Workshop on Role-Based Access Control, Fairfax,

Virginia, USA, 1999.

[23] R. J. Hayton, J. M. Bacon, and K. Moody, "Access Control

in an Open Distributed Environment," presented at IEEE

Symposium on Security and Privacy, Oakland, California,

U.S.A., 1998.

[24] E. Bertino, P. Bonatti, and E. Ferrari, "TRBAC: A

Temporal Role-Based Access Control Model," presented at 5th

ACM Workshop of Role-Based Access Control, Berlin,

Germany, 2000.

[25] S. Barker, "Access Control Policies as Logic Programs,"

Imperial College of Science, Technology and Medicine,

London, MPhil/PhD Transfer Report December 2001.

[26] T. C. Son and J. Lobo, "Reasoning about Policies Using

Logic Programs," presented at AAAI Spring Symposium on

Answer Set Programming: Towards Efficient and Scalable

Knowledge Representation and Reasoning, Stanford University,

CA, 2001.

[27] C. Efstratiou, A. Friday, N. Davies, and K. Cheverst,

"Utilising the Event Calculus for Policy Driven Adaptation on

Mobile Systems," presented at Third Int. Workshop on Policies

for Distributed Systems and Networks (POLICY-2002),

Monterey, CA, USA, 2002.

[28] M. Casassa Mont, A. Baldwin, and C. Goh, "POWER

Prototype: Towards Integrated Policy-Based Management," HP

Laboratories Bristol, Bristol, UK October 1999.

[29] L. Zanolin, C. Mascolo, and W. Emmerich, "Model

Checking Programmable Router Configurations," University

College London, London UK, Research Note Nov 2002.

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

