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Abstract

As the interest in using policy-based approaches for 

systems management grows, it is becoming increasingly 

important to develop methods for performing analysis 

and refinement of policy specifications.  Although this is 

an area that researchers have devoted some attention to, 

none of the proposed solutions address the issues of 

analysing specifications that combine authorisation and 

management policies; analysing policy specifications that 

contain constraints on the applicability of the policies; 

and performing a priori analysis of the specification that 

will both detect the presence of inconsistencies and 

explain the situations in which the conflict will occur.   

This paper presents a method for transforming both 

policy and system behaviour specifications into a formal 

notation that is based on Event Calculus.  Additionally it 

describes how this formalism can be used in conjunction 

with abductive reasoning techniques to perform a priori 

analysis of policy specifications for the various conflict 

types identified in the literature.  Finally, it presents some 

initial thoughts on how this notation and analysis 

technique could be used to perform policy refinement. 

1. Introduction 

Policy based approaches to systems management are 

of particular importance because they allow the 

separation of the rules that govern the behaviour of a 

system from the functionality provided by that system [1].  

This means that it is possible to adapt the behaviour of a 

system without the need to recode functionality, and 

changes can be applied without stopping the system.  

Research into policy based systems management has 

focussed on languages for specifying policies and 

architectures for managing and deploying policies in 

distributed environments.  However, policy analysis and 

refinement remains a much-neglected research problem. 

Whilst some previous work has investigated the nature of 

modality and application specific conflicts in policy 

specifications [2, 3], there still remain significant areas 

for improvement.  In particular it is important to be able 

to analyse policies in the presence of constraints that 

control their applicability.  When doing this, in addition 

to detecting the presence of conflicts, it is necessary to 

identify the exact causes for those conflicts to arise. 

Addressing these needs requires a formalism that will 

model both system behaviour and policy such that formal 

reasoning techniques can be used to analyse policy 

specifications.

The initial focus of our work has been to develop a 

formal representation for policies and the managed 

systems that will support formal reasoning techniques for 

detecting conflicts between policies. Existing policy 

specification formalisms [3-5] only handle security or 

management policies even though most real world 

systems use a combination of the two. Also, these 

approaches use deductive reasoning techniques for policy 

analysis, which require complete specification of the 

system state in order to produce useful results.  Finally, it 

is important to be able to analyse a policy specification 

before it is deployed. However, none of the existing 

studies seem to model the system behaviour to support a 

priori analysis of policy specifications that are 

constrained on the runtime state of the system.   

In this paper, we propose a formalism that is based on 

the standard Event Calculus [6] to model both 

authorisation and management policy specifications 

together with system behaviour. Event Calculus was 

chosen as an appropriate basis for formalising policy 

specifications as both the policies and the management 

behaviour we are modelling are event driven.  

Additionally, since an Event Calculus specification of a 

system can be generated from a state transition model, 

users can specify the management behaviour using a 

familiar high-level notation. In a similar fashion, it is 

possible to translate policies specified in a high-level 

policy specification language, like Ponder [7], into an 

Event Calculus representation that describes the 

semantics of the policy language. This eliminates the need 

for the user to become conversant with the details of logic 

programming and the Event Calculus notation.  Having 

developed the Event Calculus representation, we show 

how our formalism supports the specification of rules for 

detecting both modality conflicts and application specific 

conflicts, such as conflicts of duty. Using abductive 

reasoning techniques, we are able to analyse the policy 

specifications to identify existing conflicts and provide 
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explanations on how they might arise. Because the 

abduction process is applied to a specification that models 

both the systems behaviour and the policy specification it 

is possible to detect conflicts when the applicability of the 

policies is constrained on the runtime state of the system. 

Furthermore, by using abduction, the analysis can be 

performed even with partial specifications of the system 

state. We also expect that this formalism will allow the 

use of other reasoning techniques likely to be useful in 

developing an approach for policy refinement. 

Although the initial focus of our work has been on 

policy analysis, the end objective of this research is to 

develop tools and analysis techniques that will support 

policy refinement. Policy hierarchies and the application 

of policy refinement to derive lower-level, more specific 

policies from high-level ones are introduced in [8] and are 

motivated by the following needs: 

To determine the resources that are needed to satisfy 

the requirements of the policy. 

To translate high-level policies into operational 

policies that can be enforced by the system. 

To verify that the set of lower level policies actually 

meets the requirements of the high-level policy. 

In requirements engineering, Darimont et al. present 

an approach that uses goal regression and refinement 

patterns that allow high-level requirements to be stated in 

terms of a combination of lower level ones [9]. In this 

paper, we follow a similar approach of developing policy 

refinement patterns, and outline a technique that uses 

abductive reasoning to ensure consistency and 

completeness when instantiating policies based on these 

patterns. 

The next section presents a brief outline of the main  

policy types being considered, together with a description 

of the Event Calculus and the reasoning techniques used 

in this work. Section 3 presents the specification 

language.  Section 4 explains how the formalism can be 

used to detect various types of conflicts.  Section 5 

outlines the initial approach for policy refinement.  

Sections 6 and 7 discuss the formalism presented and 

related work in this area of research.  Finally, section 8 

presents our conclusions together with plans for future 

work.

2. Background 

2.1 Policy Specification 
Existing research on policy based systems has 

identified several types of policy that are useful in 

managing distributed systems [7].  Broadly, policies can 

by classified into authorisation policies and management 

policies where the former category captures the access 

control requirements of a system and the latter category 

holds requirements related to the system behaviour.  The 

Ponder language [7], developed at Imperial College, is a 

declarative language that supports both of these policy 

types. 

Authorisation policies specify whether a subject is 

permitted perform a particular action on a target.  In a 

closed system, with a default policy of prohibiting all 

subjects from performing operations on all targets, 

positive authorisation policies would be used to explicitly 

specify which particular operations a subject is permitted 

to perform on a target.  Alternatively, in an open system, 

where by default all operations are permitted, negative 

authorisations would be used to specify that a subject is 

not permitted to perform an operation on a target.  

Examples of positive and negative authorisations as 

specified in the Ponder language are shown in Figure 1. 

A policy-based access control system is the 

combination of the policies that specify the permitted/ 

prohibited operations, an access control model that 

defines how the permissions are organised across the 

system, and a reference monitor that uses the access 

control model to enforce the policies.   

Obligation policies specify management operations 

that must be performed when a particular event occurs 

given some supplementary conditions being true.  They 

are specified in terms of a subject that should perform a 

particular action on a target when a specified condition is 

true.  Obligation policies are event based and therefore 

the occurrence of the specified event is a necessary 

condition for the mandated operation to be performed.  

Another difference is that obligation policies cause the 

agent enforcing the policy to actually perform the 

specified action rather than just specify that the operation 

is permitted. An example of an obligation policy is shown 

in Figure 2. 

// only a root process can cancel a print job

auth+ cancelJobRoot {

subject    process/; 

target     printManager; 

action     cancelDoc(Job); 

when       process.owner == root;

}

// non root processes cannot cancel print jobs if

// the job being cancelled is not owned by the 

// requesting process

auth- cancelJobOther  {

subject process/;

target printManager;

 action    cancelDoc(Job);

when process.owner != root &&

                   Job.owner != process.owner; 

}

Figure 1: Examples of authorisation policies. 
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Refrain policies allow the administrator to specify 

conditions under which certain operations should not be 

performed. They are similar to negative authorisation 

policies as they are both used to prevent an action from 

being performed on a target. However, unlike 

authorisations, which are interpreted by the target object’s 

access controller, refrain policies are interpreted by the 

subject and can be used in situations where the target 

does not wish to be protected from the subject such as 

information disclosure policies. 

Prior work on policy specification has illustrated the 

power of using a domain model as a tool for organising 

objects in a system. Domains provide a means of 

grouping objects to which policies apply and can be used 

to partition the objects in large systems according to 

geographical boundaries, object type, responsibility and 

authority. Membership of a domain is explicit and not 

defined in terms of a predicate on object attributes.  An 

advantage of specifying policy scope in terms of domains 

is that objects can be added and removed from the 

domains to which policies apply without having to 

change the policies [10].  

The Ponder language provides support for specifying 

authorisation, obligation and refrain policies. Its object 

oriented features and grouping constructs facilitate ease 

of use and scalability to large systems and large numbers 

of policies. However, Ponder is not a logic based 

language and does not provide direct support for formal 

reasoning methods or for expressing general models of 

system behaviour. Therefore, Ponder cannot account for 

the effect of policies on system state and cannot be used 

directly for policy analysis.  However, as will be shown 

here, it is possible to transform Ponder policies into a 

formal representation that supports both a description of 

the system behaviour and formal reasoning techniques for 

policy analysis. 

2.2 Event Calculus and Abductive Reasoning 
Event Calculus (EC) is a formal language for 

representing and reasoning about dynamic systems.  

Because the language supports a representation of time 

that is independent of any events that might occur in the 

system, it is a particularly useful way to specify a variety 

of event-driven systems.  Since its initial presentation [6], 

a number of variations of the Event Calculus have been 

presented in the literature [11].  In this work we use the 

form presented in [12], consisting of (i) a set of time 

points (that can be mapped to the non-negative integers); 

(ii) a set of properties that can vary over the lifetime of 

the system, called fluents; and (iii) a set of event types.  In 

addition the language includes a number of base 

predicates, initiates, terminates, holdsAt, happens,

which are used to define some auxiliary predicates; and 

domain independent axioms.  These are summarised 

below: 

Base predicates:

initiates(A,B,T)  event A initiates fluent B for all time > T. 

terminates(A,B,T)  event A terminates fluent B for all time > T. 

happens(A,T)  event A happens at time point T 

holdsAt(B,T)  fluent B holds at time point T.  This predicate

  is useful for defining static rules (state  

  constraints). 

initiallyTrue(B) fluent B is initially true. 

initiallyFalse(B) fluent B is initially false. 

Auxillary predicates:

clipped(T1,B,T2)  fluent B is terminated sometime between  

  timepoint T1 and T2. 

declipped(T1,B,T2)  fluent B is initiated sometime between  

  timepoint T1 and T2. 

Domain independent axioms:

holdsAt(B, T1)   holdsAt(B, T)  ¬ clipped(T, B, T1) 

 T<T1. 

holdsAt(B, T1)   initiates(A, B, T)  happens(A, T)

 ¬ clipped(T, B, T1)  T<T1. 

¬holdsAt(B, T1)   ¬holdsAt(B, T)   ¬ declipped(T, B, T1) 

  T<T1. 

¬holdsAt(B, T1)  terminates(A, B, T)  happens(A, T)

 ¬ declipped(T, B, T1)  T<T1. 

This is the classical form of the Event Calculus where 

theories are written using Horn clauses. The frame 

problem is solved by circumscription, which allows the 

completion of the predicates initiates, terminates and 

happens, leaving open the predicates holdsAt,

initiallyTrue and initiallyFalse. This approach 

allows the representation of partial domain knowledge 

(e.g. the initial state of the system). Formulae derived by 

the Event Calculus are in effect classically derived from 

the circumscription of the EC representation. To provide 

an implementation of such a Calculus in Prolog, we use 

pos and neg functors. The semantics of the Prolog 

implementation assumes the Close Word Assumption 

(CWA) and models are essentially Herbrand models 

where predicates are appropriately completed. The use of 

pos and neg functions on the fluents allows us to keep 

// Upon system shutdown, any jobs owned by running 

// processes should be cancelled

oblig   shutdownCancellation { 

on        systemShutdown; 

subject   process/; 

target    printManager; 

action    cancelDoc(Job); 

when      Job.owner == process.owner; 

}

Figure 2: Example of an obligation policy. 
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open the interpretation of fluents being true/false, in the 

same way as circumscription does in the classical 

representation. In this way we can guarantee that the 

implementation of our EC is sound and complete with 

respect to the classical EC formalisation. The 

correspondence between the classical EC with 

circumscription and the logic program implementation 

can be found in [11].   

The Event Calculus supports deductive, inductive and 

abductive reasoning.  Deduction uses the description of 

the system behaviour together with the history of events 

occurring in the system to derive the fluents that will hold 

at a particular point in time.  Induction aims to derive the 

descriptions of the system behaviour from a given event 

history and information about the fluents that hold at 

different points of time.  However, the reasoning 

technique that is of particular interest to our work is 

abduction. Given the descriptions of the behaviour of the 

system, abduction can be used to determine the sequence 

of events that need to occur such that a given set of 

fluents will hold at a specified point in time. 

The work described in [12] outlines how abduction 

can be used in conjunction with Event Calculus to analyse 

requirements specifications and presents a specialised set 

of Event Calculus axioms that reduce the computational 

complexity of the abductive proof procedure. 

3. A Formal Language for Policies and 

Managed Systems 

Because the enforcement of an obligation policy will 

change the state of the system, in addition to modelling 

the policy specification, it is necessary to model the 

system itself when developing a formal technique for 

analysing policies. To achieve a complete specification 

that supports formal reasoning, the following domain-

specific information must be represented in the model. 

Objects and their organisation into domains. 

Available management operations and the effect they 

have on the managed objects. 

Policy rules.

Additionally, it is also necessary to define domain 

independent rules for modelling policy enforcement. In 

order to support the transformation of this information 

from high-level representations into a logical notation, we 

use the following constants, variables, functions and 

predicates:

1. Constant Symbols: Every member of Obj, where Obj

represents the set of objects in the system. 

2. Variable Symbols: These are defined using the set, 

VO, representing the attributes of objects and VP,
representing the set of parameters for the operations 

supported by the objects. 

Table 1: Function symbols. 

Symbol Description 

state(Obj, VO, Value) Represents the value of a variable of an object in the system.  It can be 
used in an initiallyTrue predicate to specify the initial state of the 
system and also as part of rules that define the effect of actions. 

operation(Obj, Action(VP)) Used to denote the operations specified in a policy function or event 
(see below) 

systemEvent(Event) Represents any event that is generated by the system at runtime and is 
used to trigger enforcement of obligation or refrain policies.  The Event 
argument specified in this term can be any application specific 
predicate or function symbol. 

doAction(ObjSubj, operation(ObjTarg, Action(VP))) Represents the event of the action specified in the operation term 
being performed by the subject, ObjSubj, on the target object, ObjTarg.

requestAction(ObjSubj, operation(ObjTarg, Action(VP))) Represents the event that occurs whenever a subject attempts to 
perform an operation on a target object.  Therefore, this is the event 
that will trigger a permission (or denial) decision to be taken by the 
target object’s access controller. 

rejectAction(ObjSubj, operation(ObjTarg,Action(VP))) Event that occurs after the enforcement decision to reject the request 
by a particular subject to perform an action is taken. 

permit(ObjSubj, operation(ObjTarg, Action (VP))) Represents the permission granted to a subject, ObjSubj, to perform the 
action defined in the operation on the target, ObjTarg.

deny(ObjSubj, operation(ObjTarg, Action (VP))) Used to denote that the subject, ObjSubj, is denied permission to 
perform that action on the target, ObjTarg.

oblig(ObjSubj, operation(ObjTarg, Action (VP))) Denotes that the subject, ObjSubj, should perform the action specified 
in the operation term on the target, ObjTarg.

refrain(ObjSubj, operation(ObjTarg, Action (VP))) Denotes that the subject, ObjSubj, should not perform the action 
specified in the operation term on the target, ObjTarg.
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3. Function Symbols: The language supports a number 

of functions that can be used as parameters in the 

basic predicate symbols of Event Calculus (Table 1) 

4. Predicate Symbols: In addition to the previously 

described Event Calculus predicates, initiates,

terminates, happens, holdsAt and initiallyTrue,

the language includes the predicate symbols defined 

in Table 2. 

Having specified the language, it is now possible to 

explain how the various symbols defined above can be 

incorporated into rules that represent the different types 

of information required for modelling a managed system.  

The sequel presents the form of these rules and illustrates 

their use through a simple example. 

3.1 Objects and Organisational Model 
Consider an organisation that has a number of 

different printers distributed through its offices.  The 

printers are organised according to properties like the 

type (colour/ b&w), capacity (high volume/ low volume) 

and physical location (4th floor/ 5th floor/ lab).  The 

printers themselves are uniquely named (skyblue, violet, 

cobalt, grey, crimson, damson). A pictorial representation 

of the printer organisation is presented in Figure 3.  

Considering each of the properties to be represented by a 

different domain, the formalism presented here can be 

used to represent the printer crimson as an object in this 

domain structure. 

object(printer-crimson).     

attr(printer-crimson, status). 

method(printer-crimson, printDoc).

method(printer-crimson, switchPaper). 

isDomain(office).   

isDomain(bw-printers).

isDomain(highvol-printers).   

isDomain(lab).

isMember(lab, office).  

isMember(highvol-printers, lab). 

office

4th floor

5th floor

lab

skyblue

low volume

black

 &

white
high volume

colour

grey

violet

cobalt

crimson

damson

Figure 3: Domain structure for organisation of printers

Table 2: Predicate symbols. 

Symbol Description 

object(Obj) Used to specify that Obj is an object in the system. 

attr(Obj, VO) Specifies that Vo is an attribute of the object, Obj.

method(Obj, Action(VP)) Represents an action supported by an object in the system.  It will be 
used to define a separate ground term for every operation specified in 
the system. 

isDomain(Obj) Defines that Obj represents a domain.  In order to indicate that a 
domain is a specialisation of an object, we also define the following 
rule: 

object(Obj)  isDomain(Obj).

isMember(Obj, Dom) Holds if the object, Obj, is a member of the Domain, Dom.

isSubDomain(Dom1, Dom2) 
   isDomain(Dom1), isDomain(Dom2), 
   isMember(Dom1, Dom2), Dom1 != Dom2, 
   ¬ isSubDomain(Dom2, Dom1). 

Holds if the domain represented by Dom1 is a sub-domain of Dom2.
The body of the rule is used to ensure that there are no cyclic 
relationships in the domain structure. 

isDerivedMember(Obj, Dom) 
   object(Obj), ¬ isDomain(Obj), 
   isMember(Obj, Dom). 

isDerivedMember(Obj, Dom) 
   object(Obj), ¬ isDomain(Obj), 
   subDomain(Dom, SubDom), 
   isDerivedMember(Obj, SubDom). 

Used to determine membership of a domain across the entire domain 
structure.  This first rule identifies all those objects that are direct 
members of the domain, Dom.  The second rule recursively identifies 
those objects that are members of sub-domains of the domain, Dom.

isValidSpec(ObjSubj, operation(ObjTarg, Action(VP))
                object(ObjSubj),
                object(ObjTarg),
                method(ObjTarg, Action(VP)).

Many of the function definitions above contain the tuple (ObjSubj,
operation(ObjTarg, Action(VP)).  The isValidSpec predicate is 
defined to hold if the members of this tuple are consistent with the 
specification of the managed system.  As such it is used in the body of 
any rule where functions with the tuple (ObjSubj, operation(ObjTarg,
Action(VP)) are specified in the head. 
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isMember(bw-printers, lab).   

isMember(printer-crimson, lab). 

isMember(printer-crimson, highvol-printers). 

isMember(printer-crimson, bw-printers). 

If the entire example is encoded in this manner, it is a 

simple matter to identify the set of printers that belong to 

any particular domain.  For example, assuming that 

duplicate answers are removed, the following query will 

return all the printers in the office: 

?- isDerivedMember(Printer, office). 

   Printer = printer-skyblue; Printer = printer-violet ; 

   Printer = printer-cobalt;  Printer = printer-grey ; 

   Printer = printer-crimson; Printer = printer-damson; 

3.2 System Behaviour Model 
Having modelled the domain structure for organising 

the objects in the managed system, we now extend the 

language above, using Event Calculus, to model the 

operations supported by the system and their behaviour.  

The method symbol defined in Table 2 is used to represent 

the operations that are supported by the objects in the 

system.  In order to model the behaviour of these 

operations, it is necessary to specify the pre- and post-

conditions for each operation.  Performing an operation 

on the system will modify the state of the system in such 

a way that, once the operation is complete, there will be 

some new fluents that hold, and some other fluents that 

cease to hold.  This is represented using the initiates

and terminates predicates, which are defined in the Event 

Calculus, according to the following schema: 

initiates(doAction(ObjSubj, operation(ObjTarg,

  Action(Parms))), PostTrue, Tm) 

  validSpec(ObjSubj, operation(ObjTarg, Action(Parms)))

 PreCondition. 

terminates(doAction(ObjSubj, operation(ObjTarg,

  Action(Parms))), PostFalse, Tm) 

  validSpec(ObjSubj, operation(ObjTarg, Action(Parms)))

 PreCondition. 

The first rule above states that when the doAction

event occurs at time, Tm, if the PreConditions are true, 

then the fluent defined by PostTrue will hold after that 

time.  Under the same conditions, the second rule states 

that the fluent defined by PostFalse will cease to hold 

after time, Tm.  In both of these rules, the PreCondition

will be represented by a conjunction of holdsAt terms, 

which are defined as part of the Event Calculus.  The 

PostTrue and PostFalse fluents are defined using state

terms that are defined in the formal language above.  The 

validSpec predicate is used to ensure that the objects and 

operations specified in the rule are consistent with the 

specification of the objects and their organisation e.g., the 

action specified is an operation defined in the interface of 

the managed object.   

Building on the example used previously, it is possible 

to illustrate the use of these rules for modelling system 

behaviour.  Consider that a print manager controls every 

printer in the system. The print manager provides 

functions for viewing the printer queue, adding and 

deleting a print job.  Additionally it is possible for the 

printers to provide diagnostic information (such as a 

paper jam) to the print manager.  The print manager can 

use the diagnostic information to correct errors, or report 

the printer status to a central management console that is 

monitored by an administrator.  An UML state chart 

representation of this functionality is shown in Figure 4. 

It is possible to transform this state chart into the Event 

Calculus notation presented previously where the input 

shown on each transition arrow is the action being 

performed; for transition between different states, the 

current state values become the PostFalse fluents; any 

actions associated with the transition and next state values 

become the PostTrue fluents; and the current state values 

become the PreConditions.  Self-transitions should not 

specify the current state as PostFalse fluents. So 

following this scheme, transition (4) in Figure 4 would be 

represented in the Event Calculus as follows: 

initiates(doAction(printer, operation(printer,

  switchPaper)), state(printer, status, busy), T) 

  holdsAt(pos(state(printer, status, busy)), T) 

  holdsAt(pos(state(printMgr, status, jobSpooled)), T). 

initiates(doAction(printer, operation(printer,

  switchPaper)),state(printMgr,status,jobSpooled), T) 

  holdsAt(pos(state(printer, status, busy)), T) 

  holdsAt(pos(state(printMgr, status, jobSpooled)), T). 

3.3 Policy Enforcement Model 
Analysis of policies requires the ability to determine 

the effect of a specified policy on the behaviour of the 

system.  Therefore, in addition to modelling the policy 

specification, it is necessary to define rules that model the 

enforcement of the policies.  Such rules have the effect of 

linking the policy specification to the system behaviour 

specification.

The complete policy enforcement model is illustrated 

in Figure 5.  As shown, a system event is received by the 

subject’s policy agent, which refers to the policy 

printer.status = idle

printMgr.status = jobReady

printer.status = busy

printMgr.status = jobSpooled

(3) doAction(printMgr, printer, printDoc)

printer.status=idle

printMgr.status = waiting

(1) doAction(Process, printMgr, cancelDoc(Job))

(2) doAction(Process, printerMgr(queueDoc(Job)) /

sysEvent(printReq)

 (4) doAction(printer,printer, switchPaperTray)

Figure 4: State chart for Printer system functionality. 
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repository to determine if any of the obligation policies 

for this subject specify this event as a trigger.  If there is 

an obligation, this will cause a request to perform the 

specified action to be sent to the target.  If a refrain policy 

that prohibits this exists at the subject, then the action will 

be rejected.  Once the subject makes a request to perform 

an action on the target, the target object’s access 

controller processes it.  To do this, the access controller 

evaluates the request by referring to the policy repository 

and the access control model of the system.  If the action 

is permitted, the access control system will proceed to do 

the requested action.  Otherwise, if the action should be 

denied, the access control system will reject the action.   

The formal representation of this policy enforcement 

model presented is presented in Figure 6.  The first rule 

models the behaviour of subject’s policy agent, causing 

the event of requesting an action whenever an obligation 

that specifies that action holds.  The next rule models a 

subject’s policy enforcement code rejecting the specified 

action to enforce a refrain.  The third rule models the 

behaviour of the target’s access controller, generating a 

doAction event when an action is permitted.  This event 

would trigger the relevant system behaviour rules thus 

causing the system state to change according to the 

specification.  The last rule models a target object’s 

access controller rejecting the action to prevent a denied 

operation from being performed. 

3.4 Policy Specification 
The final step in developing this logical notation is to 

represent the policies themselves.  As discussed in the 

previous sections, we are focussing on four types of 

policy – positive authorisation, negative authorisation, 

obligation and refrain.   

In order to correctly interact with the enforcement 

model described above, each policy specification rule 

should initiate the appropriate policy function symbol 

(permit, deny, oblig or refrain) for each of the events.  So 

for example, a positive authorisation policy rule should 

specify that permit(Subj, Operation) holds when the 

requestAction(Subj, Operation) event occurs and the 

constraints that control the applicability of the policy 

hold.  Additionally, the fluent permit(Subj, Operation)

should cease to hold once the action has been performed 

thus making it possible to re-evaluate the policy rule on 

subsequent requests to perform the action.  The Event 

Calculus representation of this functionality is shown in 

the (posAuth) specification in Figure 7.   This figure also 

shows how each of the other policy types would be 

represented by rules in the formal notation. 

For each rule, the terms, ObjSubj, ObjTarg, Action and 

Constraint, can be directly mapped to the subject, target, 

action, constraint and event clauses used when specifying 

policies in a language like Ponder.  Although Ponder 

constraints are specified using the Object Constraint 

Language (OCL), typical constraints only use a subset of 

features from this language.  As such, the Constraint

predicates in the Event Calculus rules above, can be 

represented by a combination of holdsAt terms.  Beckert 

et al. [13] describe approaches for mapping general OCL 

specifications into first order logic. This could be used to 

handle more complex OCL constraint expressions. The 

validSpec predicate, which is the second predicate in the 

body of these policy rules, is used to check that the 

objects and operations specified in the rules are consistent 

with the system description.  

The (negAuth) rule in Figure 7 represents a negative 

authorisation policy by stating that, if the Constraint

holds and the event requesting the action happens, the 

action is denied.  The second part of the (negAuth) rule 

shows how the deny fluent will be terminated once the 

decision to reject that action has been taken, thus 

allowing the rule to be re-evaluated on subsequent 

requests.  Note that the termination rules for these policies 

do not have any constraints and can be generically 

specified for the whole system. 

The (oblig) rule states that if the Constraint holds at 

the time that the system event, systemEvent(E), occurs, 

then the obligation for the subject to perform the action 

% Obligation / Refrain Enforcement Rule (Subject)

happens(requestAction(Subj, operation(Targ,

 Action(ParmList))), Tn) 

 holdsAt(oblig(Subj, operation(Targ, Action(ParmList))),Tm)

 (Tm < Tn). 

happens(rejectAction(Subj, operation(Targ,

  Action(ParmList))), Tn) 

  holdsAt(refrain(Subj, operation(Targ,Action(ParmList))),Tm)

 (Tm < Tn). 

% Access Control Rule (Target)

happens(doAction(Subj, operation(Targ,

  Action(ParmList))), Tn) 

  holdsAt(permit(Subj, operation(Targ, Action(ParmList))), Tm)

 (Tm < Tn). 

happens(rejectAction(Subj, operation(Targ,

  Action(ParmList))), Tn) 

  holdsAt(deny(Subj, operation(Targ, Action(ParmList))), Tm)

 (Tm < Tn). 

Figure 6: Policy enforcement rules. 
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on the target holds. Like with the (posAuth) rule, we 

define that the obligation is terminated once the call to 

perform the specified operation is made.  This assumes 

that the execution of the operation is an atomic process, 

i.e. the execution of the operation is considered complete 

once a call to the operation has been made.  The (refrain) 

rule states that if the Constraint holds and any system 

event occurs, the subject should not perform the action on 

the target because the refrain holds.  Just like with the 

(negAuth) rule, the second part of the (refrain) rule 

defines that the refrain fluent is terminated once the 

policy enforcement decision to not perform the specified 

action is taken. 

A complete policy specification would involve 

instantiating the initiates rules defined above with 

specific subjects, targets and operations defined for the 

managed system.  The rules simply define the conditions 

under which a policy holds in the system.   

The use of the policy specification rules defined 

previously can be illustrated by extending the printer 

management example to include a range of policy rules.  

Policies could be used to specify the types of process that 

are allowed to access the print queue.  For example, only 

root processes are allowed to indiscriminately delete jobs 

from a queue.  A user process is only allowed to delete a 

print job if it has the same process identifier as the 

process that originated the job.  The print manager should 

handle an outOfPaper event by switching to an alternative 

input tray also reporting the event to the central console.   

We can use the notation described in this section to 

represent the Ponder policies shown in Figures 1 & 2 as 

follows: 

% Authorisation

initiates(requestAction(Process, operation(printMgr,

 cancelDoc(Job))), permit(Process, operation(printMgr,

 cancelDoc(Job))), T) 

 validSpec(Process, operation(printMgr, cancelDoc(Job)))

 holdsAt(pos(state(Process, owner, root)), T). 

initiates(requestAction(Process, operation(printMgr,

 cancelDoc(Job))), deny(Process, operation(printMgr,

 cancelDoc(Job))), T) 

 validSpec(Process, operation(printMgr, cancelDoc(Job)))

 holdsAt(neg(state(Process, owner, root)), T) 

 holdsAt(neg(state(Job, owner, Process)), T). 

% Obligation

initiates(systemEvent(systemShutdown), oblig(Process,

 operation(printMgr, cancelDoc(Job))), T) 

 validSpec(Process, operation(printMgr, cancelDoc(Job)))

 holdsAt(pos(state(Job, owner, Process)), T). 

The interaction between these policy rules and the 

enforcement, and behaviour model is illustrated in Figure 

8.  Here, the initial system state consists of a process, 

proc1, owned by ‘root’ and a print job, job1 that is owned 

by that process.  When the systemShutdown event occurs at 

t=1, this triggers the obligation rule shown above.  The 

assertion of the obligation fulfils the condition of the 

obligation enforcement rule and causes a request to 

perform the cancelDoc(Job) action to be generated.  This 

(posAuth) - initiates(rrequestAction(ObjSubj,operation(ObjTarg, Action(ParmList))),ppermit(ObjSubj, operation(ObjTarg, Action(ParmList))), Tm) 

                             validSpec(ObjSubj, operation(ObjTarg, Action(ParmList)))  Constraint. 

           terminates(ddoAction(ObjSubj, operation(ObjTarg, Action(ParmList))), ppermit(ObjSubj, operation(ObjTarg, Action(ParmList))), Tm) 

                             validSpec(ObjSubj, operation(ObjTarg, Action(ParmList))). 

(negAuth) - initiates(rrequestAction(ObjSubj,operation(ObjTarg, Action(ParmList))),ddeny(ObjSubj, operation(ObjTarg, Action(ParmList))), Tm)

                             validSpec(ObjSubj, operation(ObjTarg, Action(ParmList)))  Constraint. 

           terminates(rrejectAction(ObjSubj, operation(ObjTarg, Action(ParmList))), ddeny(ObjSubj, operation(ObjTarg, Action(ParmList))), Tm) 

                             validSpec(ObjSubj, operation(ObjTarg, Action(ParmList))). 

(oblig)   - initiates(ssystemEvent(E), ooblig(ObjSubj, operation(ObjTarg, Action(ParmList))), Tm) 

                             validSpec(ObjSubj, operation(ObjTarg, Action(ParmList)))  Constraint. 

           terminates(ddoAction(ObjSubj, operation(ObjTarg, Action(ParmList))), ooblig(ObjSubj, operation(ObjTarg, Action(ParmList))), Tm) 

                             validSpec(ObjSubj, operation(ObjTarg, Action(ParmList))). 

(refrain) - initiates(ssystemEvent(_),rrefrain(ObjSubj, operation(ObjTarg, Action(ParmList))), Tm)

                             validSpec(ObjSubj, operation(ObjTarg, Action(ParmList)))  Constraint. 

           terminates(rrejectAction(ObjSubj, operation(ObjTarg, Action(ParmList))), ooblig(ObjSubj, operation(ObjTarg, Action(ParmList))), Tm) 

                             validSpec(ObjSubj, operation(ObjTarg, Action(ParmList))). 

Figure 7: Event Calculus representation of policies. 
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event triggers the evaluation of the first authorisation 

policy rule above, causing the operation to be permitted, 

which then satisfies the condition of the access control 

enforcement rule.  After the doAction(…) event occurs at 

t=5, the termination rules specified in the enforcement 

model cause the permit and oblig fluents to be terminated 

at t=6. 

4. Policy Analysis 

Since the policy specification notation described above 

supports policy types that are semantically opposite to 

each other (e.g. obligations and refrains), conflicting 

policy specifications could arise. It is therefore important 

to provide a means of detecting conflicts in the policy 

specification as part of the logical framework.   

The different types of conflicts that can occur in a 

policy specification are identified in [2]. Modality 

conflicts arise when two policies are specified using the 

same subjects, targets and actions but are of opposite 

modality (e.g. positive and negative authorisations).  This 

type of conflict is domain-independent since conflicts 

could occur irrespective of the application domain for 

which the policies are being specified.  Other types of 

conflict identified in the literature fall into the category of 

application specific conflicts.  As described in [14], these 

include conflicts of duty, conflicts of interest, multiple 

manager conflicts, conflicts of priorities for resources and 

self-management conflicts. 

Considering the types of conflict described above, it is 

possible to define rules that can be used to recognise 

conflicting situations in the policy specification.  

4.1 Modality Conflicts 
Modality conflicts involving authorisation policies 

occur when there are two policies, one an authorisation 

and the other a prohibition, defined for the same subject, 

target and action.  The authConflict predicate defined 

below holds if an authorisation conflict is detected. 

holdsAt(authConflict(Subj, Op), Tm) 

 holdsAt(permit(Subj, Op), Tm)   holdsAt(deny(Subj, Op), Tm). 

In a similar fashion, rules for detecting conflicts 

between obligations and refrains; and unauthorised 

obligation conflicts can be defined as follows: 

holdsAt(obligConflict(Subj, Op), Tm) 

  holdsAt(oblig(Subj, Op), Tm)  holdsAt(refrain(Subj, Op), Tm).

holdsAt(unauthObligConflict(Subj, Op), Tm) 

  holdsAt(oblig(Subj, Op), Tm)  holdsAt(deny(Subj, Op), Tm). 

In each of these rules, the Op variable will be 

instantiated with an operation term as defined in Section 

3.

4.2 Application Specific Conflicts 
One of the most common types of application specific 

conflict cited in the literature is conflict of duties 

(alternatively stated as the requirement to ensure 

separation of duties) [3, 14-16].  A conflict of duties will 

arise if the same subject is permitted to perform 

operations that, in the context of the application, are 

defined to be conflicting.  For example, in a company 

financial system, the operation of entering a request for 

payment and the operation of approving that request are 

potentially conflicting if the same user can perform both 

operations.  

Rules for application specific conflicts must be defined 

using constraints that include application specific data in 

addition to policy information.  However, before defining 

rules for detecting such conflicts, it is important to have a 

means of specifying this application specific information.  

The description of the various types of application 

specific conflicts in [14], suggests that: 

A conflict of duty arises when the same subject 

performs both operations on the same target (e.g. an 

employee makes a payment request and approves it). 

A conflict of interest arises when the same subject 

performs each of the operations on different targets. 

(e.g. a bank provides investment advice to a client 

whilst performing a merger for a competing client). 

Different subjects perform each of the operations on 

a single target and the outcome of each operation is 

incongruent with the other. (e.g. spooling a job to a 

printer and shutting the same printer down). 

holdsAt(state(proc1, owner, root), 0), holdsAt(state(job1, owner, proc1), 0)

happens(systemEvent(systemShutdown), 1)

holdsAt(oblig(proc1, operation(printMgr, cancelDoc(job1))), 2)

happens(requestAction(proc1, operation(printMgr, cancelDoc(job1))), 3)

holdsAt(permit(proc1, operation(printMgr, cancelDoc(job1))), 4)

happens(doAction(proc1, operation(printMgr, cancelDoc(job1))), 5)

¬ holdsAt(permit(proc1, operation(printMgr, cancelDoc(job1))), 6),

¬ holdsAt(oblig(proc1, operation(printMgr, cancelDoc(job1))), 6)

0 1 2 3 4 5 6

Time, t

Figure 8:Timeline of interactions between policy rules and enforcement model
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In order to capture this application specific 

information, we extend the system specification language 

described in Section 3 with a new symbol – 

conflictingOps(ConflictType, [Ops]). Here the 

ConflictType represents a constant value from the set 

{conflictDuty, conflictInterest, conflictGoal, 

conflictSelfMgmt}, indicating the type of application 

specific conflict that may arise if the operations are used 

in a policy specification.  The members of the Ops list are 

instantiated using the operation term defined previously.  

The symbol can be used to define ground literals in the 

system specification, specifying the action/target object 

combinations that will potentially conflict.  In the case of 

the conflict of duties example mentioned above, the 

potential conflict between the operations of requesting a 

payment and approving a payment would be represented 

as follows: 

conflictingOps(conflictDuty, [operation(payment, 

request(PaymentID,Amount)),operation(payment,approve(PaymentID))])

As described in the literature, the principle of 

separation of duty can take a number of different forms.  

In the first case, static separation of duty is ensured by not 

permitting a subject to perform an operation, Op1, if that 

subject has ever been granted permission for a different 

operation, Op2, and Op1 and Op2 are defined as members of 

a set of conflicting operations.  A policy specification that 

violates this principle will give rise to a conflict of duty. 

The second variation, dynamic separation of duty, 

requires that the runtime behaviour of the system should 

not allow conflicting operations to be performed.  Finally, 

the Chinese Wall policy [15] is a specialised form of 

dynamic separation of duty that prevents a subject 

performing any conflicting actions on one target, if the 

subject has already been given permission to perform a 

conflicting action on a different target.  A comprehensive 

formal treatment of separation of duty policies is 

presented in [16]. 

In the formalism presented here, we model the 

dynamic behaviour of the system because this is 

necessary for dealing with the effects of having 

constraints in the policy specification.  This allows us to 

treat the detection of static and dynamic conflicts of duty 

in a similar manner by defining rules of the following 

form, depending on the number of operations that could 

cause conflicts: 

holdsAt(sepOfDutyConflict(Subj, Ops), Tm) 

 holdsAt(permit(Subj, Op1), T1) 

 holdsAt(permit(Subj, Op2), T2)  ... 

 holdsAt(permit(Subj, OpN), TN) 

 conflictingOps(conflictDuty, Ops) 

 memberOf(Op1, Ops) 

 memberOf(Op2, Ops)  ...  memberOf(OpN, Ops) 

 T1=<T2=<...=<TN=<Tm. 

The rule for detecting a conflict in a Chinese Wall 

policy is different because the conflict condition also 

depends on the targets involved. We represent this as 

follows: 

holdsAt(cwConflict(Subj,Target1,Action1,Target2,Action2), Tm) 

 holdsAt(permit(Subj, operation(Target1, Action1)), T1) 

 holdsAt(permit(Subj, operation(Target2, Action2)), T2) 

 conflictingOps(conflictDuty, Ops)  Target1 != Target2 

 memberOf(operation(Target1, Action1), Ops) 

 memberOf(operation(Target2, Action2), Ops) 

 T1 =< T2 =< Tm. 

Another type of conflict, identified in the literature as a 

multiple management conflict, arises when different 

subjects attempt to perform actions on the same target, 

where the goals of those actions are incongruent.  For 

example, spooling a job to a printer and shutting the same 

printer down are operations with incompatible goals. We 

represent these operations using the constant, 

conflictGoal, in the conflictingOps term.   The 

following is a representation of the printer example above 

using this symbol:  

conflictOfGoalsOps(conflictGoal, [operation(printer,

  printDoc), operation(printer, shutDown)]). 

Once the incompatible operations have been defined, 

the following rules can be used to identify multiple 

manager conflicts in a policy specification: 

holdsAt(conflictOfMultiManagers(Subj1, Subj2, ..., SubjN

                                Ops), Tm) 

 holdsAt(permit(Subj1, Op1), T1) 

 holdsAt(permit(Subj2, Op2), T2)   ...

 holdsAt(permit(SubjN, OpN), TN) 

 conflictingOps(conflictGoal, Ops) 

 memberOf(Op1, Ops) 

 memberOf(Op2, Ops)   ...

 memberOf(OpN, Ops)  T1 =< T2 =< ... =< TN =< Tm. 

Similar rules are specified for other types of 

application specific conflicts, such as conflicts of interest 

and self-management conflicts. 

4.3 Detecting Conflicts 
By using one of the conflict fluents (e.g. 

unauthObligConflict) as a goal state, it is possible to 

query the system specification for event sequences that 

would result in a conflict occurring.  If no such sequence 

can be derived, it can be considered that the policy 

specification is free of this particular conflict type.   

The current implementation of the analysis system 

makes use of the abductive proof procedure presented in 

[12].  By treating the conflict fluents as safety properties 

of the system, this technique reduces the complexity of 

the abductive proof procedure to two time points – the 

time before the conflict arises (t) and the time after it 

arises (t1). Additionally, provided the conflict term is 

specified using ground literals, it can be shown that the 
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query will always generate a complete explanation for 

any conflicts and it will always terminate [12].   

Figure 9 shows an illustration of performing such a 

query on the example system presented previously.  Here 

some of the solutions, such as the last, present the trivial 

case in which a conflict might occur.  However, the first 

solution suggests that there is a sequence of events that 

will cause a conflict.  Therefore, it can be concluded that 

the policy specification contains a conflict. 

5. Policy Refinement 

The ability to specify policies and managed system 

behaviour in a notation that supports formal analysis that 

allows detection of inconsistencies is a worthy goal in its 

own right.  However, the longer term motivation for the 

work presented here, and a key problem area that we 

seeking to address is the development of new techniques 

for policy refinement.  In this section we present our 

initial ideas for a technique that makes use of the 

formalism presented above.   

The objective of policy refinement is to transform 

high-level policy specifications into more specific 

policies that are defined in terms of lower-level entities 

and operations of the system. More formally policy 

refinement could be defined as follows:  

Definition: (Policy Refinement) If there exists a set of policies 

Prs:p1, p2, .. pn, such that the enforcement of a combination of 

these policies results in a system behaving in an identical manner 

to a system that is enforcing some base policy Pb, it can be said 

that Prs is a refinement of Pb.  The set of policies Prs:p1, p2, .. pn 

is referred to as the refined policy set. 

Much of the work done in the requirements engineering 

domain for refining goals into implementation 

specifications could be applicable to policy refinement. 

Using this definition and drawing on work done to 

identify the properties of goal refinements [9] the 

following properties are proposed: 

1. Correctness: a refinement is said to be correct if the 

conjunction of all the members of that subset is a 

refinement of the base policy. 

2. Consistency:  a refinement is said to be consistent if 

there are no conflicts between any of the policies in 

the refined policy set. 

3. Minimality: a refinement is said to be minimal if it is 

correct and if removing any policy from the refined 

policy set causes the refinement to be incorrect. 

In addition, a policy refinement can be said to be 

complete iff all the properties defined above hold.  The 

goal refinement approach also specifies a fourth property, 

non-triviality, which requires there to be more than one 

element in the refined set.  However, in the policy 

refinement domain it may be acceptable to have a single 

policy that is a refinement of some base policy, provided 

that the refinement uses subjects, targets and actions that 

map to different physical entities.  Therefore we do not 

consider this property to be a requirement of 

completeness in a policy refinement. 

So, an essential requirement when refining a policy is 

to ensure that the goal achieved by that policy would still 

be achieved by the set of sub-policies that it is refined 

into.  Having a formalism that allows abductive reasoning 

offers some useful capabilities in this regard since such 

formalisms support goal regression.  Goal regression is a 

logical analysis technique that derives plans of action for 

achieving a specified end goal [17].  The desired end goal 

will be determined by the post-conditions of the operation 

specified in the base policy to be refined and abductive 

goal regression can be applied to derive the set of 

subject/operation tuples (of the form [(Subj1,

operation(Targ1, Action1)), … (SubjN, operation(TargN, 

ActionN))]) that will be used by the refined policy set.  

Because this procedure is based on a formal proof 

procedure, the derived set of subjects and operations will 

be correct and minimal. 

Having derived the set of subjects/operation 

combinations that will achieve the end goal of the base 

policy, it is now necessary to compose them into a refined 

policy set.  The manner in which this composition 

procedure is performed is dependant on the type of the 

base policy and any application specific constraints that 

need to be applied.  For example, if the goal of the 

operation specified in an authorisation policy can be 

refined to the set of subject/operation tuples, [(Subj1,

operation(Targ1, Action1)), … (SubjN, operation(TargN, 

ActionN))], one possibility for refinement of the original 

policy is to create a new authorisation policy for each of 

these subject/operation tuples and use the analysis 

techniques described here to validate that these new 

policies do not lead to any inconsistencies.  Alternatively, 

it may be necessary to limit the number of new 

authorisations created to ensure that some application-

?- demo([holdsAt(obligConflict(printMgr,

   operation(printer, printDoc)), t1)], [], Plan).

Plan = [initiallyTrue(state(printMgr,state,

  shuttingDown)), happens(systemEvent(printReq),t)]

Plan =  [initiallyTrue(refrain(printMgr, 

  operation(printer,printDoc))), 

happens(systemEvent(printReq),t)]

Plan = [happens(systemEvent(printReq),t), 

  initiallyTrue(state(printMgr,state,shuttingDown)), 

  initiallyTrue(oblig(printMgr,operation(printer, printDoc)))]

Plan = [initiallyTrue(refrain(printMgr,

   operation(printer,printDoc))), 

   initiallyTrue(oblig(printMgr, operation(printer,printDoc)))] 

Figure 9: Example of a conflict detection query
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specific constraint, such as a principle of least privilege, 

is observed.  This would require an alternative scheme for 

composing the subject/operation tuples into refined 

policies.  Each of these composition schemes can be 

considered to be a refinement pattern that is 

parameterised by factors such as the base policy type, the 

types on conflicts that should be checked for, any 

additional application specific constraints etc.  Certain 

patterns will apply to certain types of base policies, 

whereas others might be generically applicable to any 

base policy.  By developing a library of such patterns, it 

should be possible for the administrator to select any 

policy in the system and perform a refinement by 

applying a valid refinement pattern. However, significant 

work remains to be done towards this goal. 

6. Discussion 

When developing a formal language of the type 

presented here, it is important that it is expressive enough 

to represent the systems being modelled and that the 

language is based on solid theoretical foundations.  Event 

calculus is a good starting point for a formal language for 

specifying policy-based systems because it has direct 

support for representing the events used in these systems.  

Additionally, it is a well-researched area of logic 

programming that supports all modes of logical reasoning 

and provides a number of theoretical results and tools that 

have been leveraged in this work.  For example, the use 

of event calculus allows users to specify the system 

behaviour using more familiar notations, such as state 

charts, which can then be automatically translated into the 

logic program representation. Through the example 

presented here, it has been shown that the language is 

sufficiently expressive to model system objects, their 

organisation and behaviour together with policy rules that 

specify authorisations, obligations and refrains.  Also, the 

language supports analysis of the specification for 

detecting both modality conflicts and application specific 

conflicts.  A particular strength of the abductive analysis 

technique presented here is its ability to perform a priori 

analysis of partial specifications and not only detect the 

existence of potential conflicts but also to generate 

explanations for the conditions under which conflicts may 

arise.

Another important consideration in any formal 

technique is the decidability and computational 

complexity of the algorithm used.  We have briefly 

mentioned that using ground literals in any query term 

ensures termination of the conflict search process.  

Additionally, the formalism presented limits its use of 

first-order logic to stratified logic [18]. This permits a 

constrained use of recursion and negation while 

disallowing those combinations that lead to undecidable 

programs. Indeed, there are numerous studies that identify 

stratified logic as a class of first order logic that supports 

logic programs that are decidable [19, 20].  Moreover, 

such programs are decidable in polynomial time [3].  A 

more detailed analysis of the computational complexity 

and expressive power of stratified logic can be found in 

[20]. 

Although the formalism presented models different 

policy types and supports analysis for detecting a range of 

inconsistencies, there exist certain limitations to its 

capabilities.  For example, there is no support for 

grouping policies into structures such as roles and other 

management grouping described in [7].  Additionally, the 

formalism does not model meta-policies and the 

interaction of these policies with the underlying 

enforcement architecture.  It would be necessary to 

extend the language to support these constructs.  Finally, 

the current abductive proof procedure only provides basic 

diagnostic information about the event history that leads 

to inconsistencies.  This is because we reduce the problem 

to reasoning over just two time points.   This limitation 

can be addressed by using a more powerful tool, such as 

the A-system [21], which has the capability to perform 

abductive reasoning over an arbitrary time line. 

7. Related Work 

Amongst the many alternative approaches to policy 

specification, there are a number of proposals for formal, 

logic-based notations. In particular Logic-based 

languages have proved attractive for the specification of 

security policy, as they have a well-understood 

formalism, which is amenable to analysis.  However they 

can be difficult to use and are not always directly 

translatable into efficient implementation.  A number of 

formalisms for security policy assume a role based access 

control (RBAC) model, including RSL99[22], Role 

Definition Language [23] and Temporal RBAC (TRBAC) 

[24].  Additionally there are languages that take 

advantage of the computational efficiencies offered by 

using subsets of first order logic, such as stratified logic. 

Barker presents in [25] a language that supports 

specification of access control policies using stratified 

clause-form logic, with emphasis on RBAC policies.  

However, this work does not discuss techniques for 

detecting conflicts in policy specifications.  The 

Authorisation Specification Language (ASL) proposed by 

Jajodia et al. [3] is another example of a language based 

on stratified clause-form logic that also offers techniques 

for detecting modality conflicts and some application 

specific conflicts in authorisation policy specifications.  

However, this technique does not support static analysis 

of policy specifications that use constraints, assuming 

instead that conflict detection will take place at runtime. 

The Policy Description Language (PDL) [4] is an 

example of first-order logic being applied to the 

specification of obligation policies. The language can be 
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described as a real-time specialised production rule 

system to define policies. The syntax of PDL is simple 

and policies are described by a collection of two types of 

expressions: policy rules and policy defined event 

propositions.  Later work by Chomicki [5], extends PDL 

to include the concept of action constrains, which are 

policies that prevent a specified action from being 

performed in a given situation.  These action constraints 

are analogous to the refrain policies described in this 

paper.  This work introduces the idea of using a policy 

monitor to detect conflict situations and resolve them by 

either suppressing the events that could lead to a conflict 

or overriding the conflicting action.  Additionally, work 

by Son and Lobo, presents an approach for reasoning 

about policies with the objective of mapping a desired 

action history back to a possible event history [26].  This 

work is interesting because it illustrates how formal 

techniques together with logic programming can be used 

to derive information about the policy program – in this 

case the event history that causes a particular set of 

actions.  However, PDL does not model authorisation 

policies and therefore the analysis cannot detect conflicts 

involving authorisations. 

Recent work on using policies for adaptation of mobile 

devices [27] proposes Event Calculus as a suitable 

formalism for policy specification.  However, this 

technique only models obligation policies and support for 

conflict detection using the notation is still under 

development.  Finally there is ongoing work at Imperial 

College to develop a formal language for contract 

representation that is using Event Calculus as a baseline 

notation.  It is expected that the notation presented here 

would be of particular relevance to this effort. 

There are few examples of practical approaches for 

policy refinement.  One such example is described in 

work done at Hewlett-Packard Laboratories, which 

outlines a policy-authoring environment that provides a 

policy wizard tool, called POWER, for refining policies 

[28].  Here, a domain expert first develops a set of policy 

templates, expressed as Prolog programs, and the policy 

authoring tools have an integrated inference engine that 

interprets these programs to guide the user through the 

refinement process.  A major limitation of this approach 

is the absence of any analysis capabilities to evaluate the 

consistency of the refined policies.  Also, the POWER 

approach depends on the domain expert having a detailed 

understanding of the entire system to develop a usable 

policy template.  The refinement approach outlined in this 

paper avoids these problems by not only incorporating a 

complete analysis technique but also supporting abductive 

reasoning for deriving the action sequences required to 

achieve a goal. 

Work done at University College London proposes 

using model checking for verifying the consistency of 

rules specified for a DiffServ router [29].  This technique 

depends on generating packet flows that can be used by 

the model-checking tool.  However it is not possible to 

generate a complete set of packets that would ensure an 

exhaustive verification of the specification. Additionally, 

many of the packets generated will be benign – causing 

no inconsistencies in the system.  By modelling the 

DiffServ modules using the formalism presented in this 

paper, it would be possible to use abduction to derive just 

those packets that could cause an inconsistency to arise.  

We are currently in the process of coding an example 

DiffServ router configuration and associated rules to 

validate this approach. 

8. Conclusions and Future Work 

In this paper we have described the use of Event 

Calculus and abductive reasoning for developing a 

language that supports specification and analysis of 

policy based systems.  The language is sufficiently 

expressive to model systems using a combination of 

authorisation, obligation and refrain policies.  

Additionally we have shown how an abductive analysis 

procedure can be used to detect modality conflicts and a 

range of application specific conflicts. 

We outline an initial approach for using the formalism 

presented for refining policies.  Developing a library of 

refinement patterns that can be used in conjunction with 

the abductive analysis technique presented here will be 

the focus of our future work.  Also, as part of this work 

we will look at developing tools to support the 

specification, analysis and refinement of policies using 

this formal notation. Additionally we are hoping to apply 

this formalism to a network management example that 

uses policy-based management for QoS provision in 

DiffServ networks.
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