2,025 research outputs found

    Anomaly Detection using Microscopic Traffic Variables on Freeway Segments

    No full text
    This paper proposes and assesses the effectiveness of monitoring vehicular traffic anomalies using microscopic traffic variables, namely relative speed and inter-vehicle spacing. We present an algorithm that detects transient changes in traffic patterns using microscopic traffic variables. In particular, we show that when applied to real-world scenarios, our algorithm can use the variance of statistics of relative speed to detect traffic anomalies and precursors to non-recurring traffic congestion. The performance of the proposed algorithm is also assessed using a microscopic traffic simulation environment, where we show that with minimum prior knowledge, the proposed algorithm has comparable performance to an ideally placed loop detector monitoring the standard deviation of speed. The algorithm also performs very well even when the microscopic traffic variables are available only from a fraction of the complete population of vehicles.Accepted versio

    Deliverable No. 2 โ€“ Review of Literature and Experience on the Application of Conflict Studies to Rural Roads. Working report within the project Conflict Study โ€“ Application in HA (Highway Agency) Road Safety Management

    Get PDF
    This report reviews the literature and practical experience with assessing the safety performance of rural road locations using the traffic conflicts technique. It provides an overview of the development of conflict studies, which have overwhelmingly been applied at urban locations. It also discusses the current state of the art in the application of automated video analysis for the detection of conflicts. Recommendations are made on the data collection methods and conflict definitions that should be employed for applying conflict studies at rural locations. Project financed by HRC (Highways Research Group

    Robust Analysis of Sensor Coverage and Location for Real-Time Traffic Estimation and Prediction in Large-Scale Networks

    Get PDF
    The growing need of agencies to obtain real-time information on the traffic state of key facilities in the systems they manage is driving interest in cost-effective deployment of sensor technologies across the networks they manage. This has led to greater interest in the sensor location problem. Finding a set of optimal sensor locations is a network design problem. This dissertation addresses a series of critical and challenging issues in the robustness analysis of sensor coverage and location under different traffic conditions, in the context of real-time traffic estimation and prediction in a large scale traffic network. The research presented in this dissertation represents an important step towards optimization of sensor locations based on dynamic traffic assignment methodology. It proposes an effective methodology to find optimal sensor coverage and locations, for a specified number of sensors, through an iterative mathematical bi-level optimization framework, The proposed methods help transportation planners locate a minimal number of sensors to completely cover all or a subset of OD pairs in a network without budgetary constraints, or optimally locate a limited number of sensors by considering link information gains (weights of each link brought to correct a-priori origin-destination flows) and flow coverage with budgetary constraints. Network uncertainties associated with the sensor location problem are considered in the mathematical formulation. The model is formulated as a two stage stochastic model. The first stage decision denotes a strategic sensor location plan before observations of any randomness events, while the recourse function associated with the second stage denotes the expected cost of taking corrective actions to the first stage solution after the occurrence of the random events. Recognizing the location problem as a NP-hard problem, a hybrid Greedy Randomized Adaptive Search Procedure (GRASP) is employed to circumvent the difficulties of exhaustively exploring the feasible solutions and find a near-optimal solution for this problem. The proposed solution procedure is operated in two stages. In stage one, a restricted candidate list (RCL) is generated from choosing a set of top candidate locations sorted by the link flows. A predetermined number of links is randomly selected from the RCL according to link independent rule. In stage two, the selected candidate locations generated from stage one are evaluated in terms of the magnitude of flow variation reduction and coverage of the origin-destination flows using the archived historical and simulated traffic data. The proposed approaches are tested on several actual networks and the results are analyzed

    Tรผrk ลŸehirleri iรงin mekรขnsal suรง analizi ile suรง รถnleme stratejileri geliลŸtirme: Keรงiรถren รถrneฤŸi

    Get PDF
    The place-based crime prevention notion comes from the idea that the human behavior is influenced by the environment, so it is possible to prevent crime before it happens by controlling and managing the environment with a proper design. To create a more secure environment and better quality of life, it is necessary to analyze the physical and nonphysical factors that affect crime victimization in order to develop crime prevention strategies. In the thesis, a spatial model is developed to analyze the physical and nonphysical parameters of crime victimization in Turkish cities to develop place-based strategies for crime prevention. Five neighborhoods of Keรงiรถren Municipality in Ankara is selected as the study area, concerning its typical urban structure of Turkish cities and the crime victimization problem. The analysis is performed for non-physical parameters at the macroscale, which defines 98 small statistical areas within 5 neighborhoods. Non-physical parameters are defined as socioeconomic variables, precautions taken against crime, and the perception of security. The micro analysis evaluates the relationship of physical parameters in a smaller representation unit as buildings, road segments and three different zones for buildings on the main roads, buildings behind the main roads, and buildings in the hinterland. The physical parameters are defined as the building density on road segments, target accessibility, the degree of road network, and building properties like the number of floors, the use of building, the availability of gardens, parcel walls, a defined entrance, the side of entrance, facing the public realm, and the availability of elevation differences in the building. The data used for the macro analysis are derived from a victim survey with 1744 samples applied to the households about their socio-economic status, the precaution methods they use, their attitude towards crime and the perception of security, and victimization for different crime types. The survey was prepared by Dรผzgรผn (2006) and funded by the State Planning Organization in 2007, under the name of the project โ€œDeveloping Crime Prevention Strategies Based on vi Spatial Analysis in Urban Areaโ€. In the macro analysis, the Socio-Economic Status index (SES), precaution, security, and victimization indexes are created by a multivariate statistical model, the Principle Component Analysis. The correlation between crime victimization and three different indexes are analyzed and the relationship between population density and land use and different crime victimization types is evaluated. In the micro analysis burglary victimization and physical parameters are evaluated for smaller representation units. Finally, the physical and non-physical variables are statistically tested with the regression analysis and with the results, place-based strategies are suggested to prevent crime in the study area and in Turkish cities.Ph.D. - Doctoral Progra

    Stops and Stares: Street Stops, Surveillance, and Race in the New Policing

    Get PDF
    The use of proactive tactics to disrupt criminal activities, such as Terry street stops and concentrated misdemeanor arrests, are essential to the โ€œnew policing.โ€ This model applies complex metrics, strong management, and aggressive enforcement and surveillance to focus policing on high crime risk persons and places. The tactics endemic to the โ€œnew policingโ€ gave rise in the 1990s to popular, legal, political and social science concerns about disparate treatment of minority groups in their everyday encounters with law enforcement. Empirical evidence showed that minorities were indeed stopped and arrested more frequently than similarly situated whites, even when controlling for local social and crime conditions. In this article, we examine racial disparities under a unique configuration of the street stop prong of the โ€œnew policingโ€ โ€“ the inclusion of non-contact observations (or surveillances) in the field interrogation (or investigative stop) activity of Boston Police Department officers. We show that Boston Police officers focus significant portions of their field investigation activity in two areas: suspected and actual gang members, and the cityโ€™s high crime areas. Minority neighborhoods experience higher levels of field interrogation and surveillance activity net of crime and other social factors. Relative to white suspects, Black suspects are more likely to be observed, interrogated, and frisked or searched controlling for gang membership and prior arrest history. Moreover, relative to their black counterparts, white police officers conduct high numbers of field investigations and are more likely to frisk/search subjects of all races. We distinguish between preference-based and statistical discrimination by comparing stops by officer-suspect racial pairs. If officer activity is independent of officer race, we would infer that disproportionate stops of minorities reflect statistical discrimination. We show instead that officers seem more likely to investigate and frisk or search a minority suspect if officer and suspect race differ. We locate these results in the broader tensions of racial profiling that pose recurring social and constitutional concerns in the โ€œnew policing.โ€

    INRISCO: INcident monitoRing in Smart COmmunities

    Get PDF
    Major advances in information and communication technologies (ICTs) make citizens to be considered as sensors in motion. Carrying their mobile devices, moving in their connected vehicles or actively participating in social networks, citizens provide a wealth of information that, after properly processing, can support numerous applications for the benefit of the community. In the context of smart communities, the INRISCO [1] proposal intends for (i) the early detection of abnormal situations in cities (i.e., incidents), (ii) the analysis of whether, according to their impact, those incidents are really adverse for the community; and (iii) the automatic actuation by dissemination of appropriate information to citizens and authorities. Thus, INRISCO will identify and report on incidents in traffic (jam, accident) or public infrastructure (e.g., works, street cut), the occurrence of specific events that affect other citizens' life (e.g., demonstrations, concerts), or environmental problems (e.g., pollution, bad weather). It is of particular interest to this proposal the identification of incidents with a social and economic impact, which affects the quality of life of citizens.This work was supported in part by the Spanish Government through the projects INRISCO under Grant TEC2014-54335-C4-1-R, Grant TEC2014-54335-C4-2-R, Grant TEC2014-54335-C4-3-R, and Grant TEC2014-54335-C4-4-R, in part by the MAGOS under Grant TEC2017-84197-C4-1-R, Grant TEC2017-84197-C4-2-R, and Grant TEC2017-84197-C4-3-R, in part by the European Regional Development Fund (ERDF), and in part by the Galician Regional Government under agreement for funding the Atlantic Research Center for Information and Communication Technologies (AtlantTIC)

    A systematic literature review on the relationship between autonomous vehicle technology and traffic-related mortality.

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ํ–‰์ •๋Œ€ํ•™์› ๊ธ€๋กœ๋ฒŒํ–‰์ •์ „๊ณต, 2023. 2. ์ตœํƒœํ˜„.The society is anticipated to gain a lot from Autonomous Vehicles (AV), such as improved traffic flow and a decrease in accidents. They heavily rely on improvements in various Artificial Intelligence (AI) processes and strategies. Though some researchers in this field believe AV is the key to enhancing safety, others believe AV creates new challenges when it comes to ensuring the security of these new technology/systems and applications. The article conducts a systematic literature review on the relationship between autonomous vehicle technology and traffic-related mortality. According to inclusion and exclusion criteria, articles from EBSCO, ProQuest, IEEE Explorer, Web of Science were chosen, and they were then sorted. The findings reveal that the most of these publications have been published in advanced transport-related journals. Future improvements in the automobile industry and the development of intelligent transportation systems could help reduce the number of fatal traffic accidents. Technologies for autonomous cars provide effective ways to enhance the driving experience and reduce the number of traffic accidents. A multitude of driving-related problems, such as crashes, traffic, energy usage, and environmental pollution, will be helped by autonomous driving technology. More research is needed for the significant majority of the studies that were assessed. They need to be expanded so that they can be tested in real-world or computer-simulated scenarios, in better and more realistic scenarios, with better and more data, and in experimental designs where the results of the proposed strategy are compared to those of industry standards and competing strategies. Therefore, additional study with improved methods is needed. Another major area that requires additional research is the moral and ethical choices made by AVs. Government, policy makers, manufacturers, and designers all need to do many actions in order to deploy autonomous vehicles on the road effectively. The government should develop laws, rules, and an action plan in particular. It is important to create more effective programs that might encourage the adoption of emerging technology in transportation systems, such as driverless vehicles. In this regard, user perception becomes essential since it may inform designers about current issues and observations made by people. The perceptions of autonomous car users in developing countries like Azerbaijan haven't been thoroughly studied up to this point. The manufacturer has to fix the system flaw and needs a good data set for efficient operation. In the not-too-distant future, the widespread use of highly automated vehicles (AVs) may open up intriguing new possibilities for resolving persistent issues in current safety-related research. Further research is required to better understand and quantify the significant policy implications of Avs, taking into consideration factors like penetration rate, public adoption, technological advancements, traffic patterns, and business models. It only needs to take into account peer-reviewed, full-text journal papers for the investigation, but it's clear that a larger database and more documents would provide more results and a more thorough analysis.์ž์œจ์ฃผํ–‰์ฐจ(AV)๋ฅผ ํ†ตํ•ด ๊ตํ†ต ํ๋ฆ„์ด ๊ฐœ์„ ๋˜๊ณ  ์‚ฌ๊ณ ๊ฐ€ ์ค„์–ด๋“œ๋Š” ๋“ฑ ์‚ฌํšŒ๊ฐ€ ์–ป๋Š” ๊ฒƒ์ด ๋งŽ์„ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค. ๊ทธ๋“ค์€ ๋‹ค์–‘ํ•œ ์ธ๊ณต์ง€๋Šฅ(AI) ํ”„๋กœ์„ธ์Šค์™€ ์ „๋žต์˜ ๊ฐœ์„ ์— ํฌ๊ฒŒ ์˜์กดํ•œ๋‹ค. ์ด ๋ถ„์•ผ์˜ ์ผ๋ถ€ ์—ฐ๊ตฌ์ž๋“ค์€ AV๊ฐ€ ์•ˆ์ „์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ์—ด์‡ ๋ผ๊ณ  ๋ฏฟ์ง€๋งŒ, ๋‹ค๋ฅธ ์—ฐ๊ตฌ์ž๋“ค์€ AV๊ฐ€ ์ด๋Ÿฌํ•œ ์ƒˆ๋กœ์šด ๊ธฐ์ˆ /์‹œ์Šคํ…œ ๋ฐ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์˜ ๋ณด์•ˆ์„ ๋ณด์žฅํ•˜๋Š” ๊ฒƒ๊ณผ ๊ด€๋ จํ•˜์—ฌ ์ƒˆ๋กœ์šด ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐํ•œ๋‹ค๊ณ  ๋ฏฟ๋Š”๋‹ค. ์ด ๋…ผ๋ฌธ์€ ์ž์œจ์ฃผํ–‰์ฐจ ๊ธฐ์ˆ ๊ณผ ๊ตํ†ต ๊ด€๋ จ ์‚ฌ๋ง๋ฅ  ์‚ฌ์ด์˜ ๊ด€๊ณ„์— ๋Œ€ํ•œ ์ฒด๊ณ„์ ์ธ ๋ฌธํ—Œ ๊ฒ€ํ† ๋ฅผ ์ˆ˜ํ–‰ํ•œ๋‹ค. ํฌํ•จ ๋ฐ ์ œ์™ธ ๊ธฐ์ค€์— ๋”ฐ๋ผ EBSCO, ProQuest, IEEE Explorer ๋ฐ Web of Science์˜ ๊ธฐ์‚ฌ๋ฅผ ์„ ํƒํ•˜๊ณ  ๋ถ„๋ฅ˜ํ–ˆ๋‹ค.์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” ์ด๋Ÿฌํ•œ ์ถœํŒ๋ฌผ์˜ ๋Œ€๋ถ€๋ถ„์ด ๊ณ ๊ธ‰ ์šด์†ก ๊ด€๋ จ ์ €๋„์— ๊ฒŒ์žฌ๋˜์—ˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค. ๋ฏธ๋ž˜์˜ ์ž๋™์ฐจ ์‚ฐ์—…์˜ ๊ฐœ์„ ๊ณผ ์ง€๋Šฅํ˜• ๊ตํ†ต ์‹œ์Šคํ…œ์˜ ๊ฐœ๋ฐœ์€ ์น˜๋ช…์ ์ธ ๊ตํ†ต ์‚ฌ๊ณ ์˜ ์ˆ˜๋ฅผ ์ค„์ด๋Š” ๋ฐ ๋„์›€์ด ๋  ์ˆ˜ ์žˆ๋‹ค. ์ž์œจ์ฃผํ–‰ ์ž๋™์ฐจ ๊ธฐ์ˆ ์€ ์šด์ „ ๊ฒฝํ—˜์„ ํ–ฅ์ƒ์‹œํ‚ค๊ณ  ๊ตํ†ต ์‚ฌ๊ณ ์˜ ์ˆ˜๋ฅผ ์ค„์ผ ์ˆ˜ ์žˆ๋Š” ํšจ๊ณผ์ ์ธ ๋ฐฉ๋ฒ•์„ ์ œ๊ณตํ•œ๋‹ค. ์ถฉ๋Œ, ๊ตํ†ต, ์—๋„ˆ์ง€ ์‚ฌ์šฉ, ํ™˜๊ฒฝ ์˜ค์—ผ๊ณผ ๊ฐ™์€ ์ˆ˜๋งŽ์€ ์šด์ „ ๊ด€๋ จ ๋ฌธ์ œ๋“ค์€ ์ž์œจ ์ฃผํ–‰ ๊ธฐ์ˆ ์— ์˜ํ•ด ๋„์›€์„ ๋ฐ›์„ ๊ฒƒ์ด๋‹ค. ํ‰๊ฐ€๋œ ๋Œ€๋ถ€๋ถ„์˜ ์—ฐ๊ตฌ์— ๋Œ€ํ•ด ๋” ๋งŽ์€ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์‹ค์ œ ๋˜๋Š” ์ปดํ“จํ„ฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์‹œ๋‚˜๋ฆฌ์˜ค, ๋” ์ข‹๊ณ  ํ˜„์‹ค์ ์ธ ์‹œ๋‚˜๋ฆฌ์˜ค, ๋” ์ข‹๊ณ  ๋” ๋งŽ์€ ๋ฐ์ดํ„ฐ, ๊ทธ๋ฆฌ๊ณ  ์ œ์•ˆ๋œ ์ „๋žต ๊ฒฐ๊ณผ๊ฐ€ ์‚ฐ์—… ํ‘œ์ค€ ๋ฐ ๊ฒฝ์Ÿ ์ „๋žต์˜ ๊ฒฐ๊ณผ์™€ ๋น„๊ต๋˜๋Š” ์‹คํ—˜ ์„ค๊ณ„์—์„œ ํ…Œ์ŠคํŠธ๋  ์ˆ˜ ์žˆ๋„๋ก ํ™•์žฅ๋˜์–ด์•ผ ํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๊ฐœ์„ ๋œ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ์ถ”๊ฐ€ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ถ”๊ฐ€ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•œ ๋˜ ๋‹ค๋ฅธ ์ฃผ์š” ๋ถ„์•ผ๋Š” AV์˜ ๋„๋•์ , ์œค๋ฆฌ์  ์„ ํƒ์ด๋‹ค. ์ •๋ถ€, ์ •์ฑ… ์ž…์•ˆ์ž, ์ œ์กฐ์—…์ฒด ๋ฐ ์„ค๊ณ„์ž๋Š” ๋ชจ๋‘ ์ž์œจ ์ฃผํ–‰ ์ฐจ๋Ÿ‰์„ ํšจ๊ณผ์ ์œผ๋กœ ๋„๋กœ์— ๋ฐฐ์น˜ํ•˜๊ธฐ ์œ„ํ•ด ๋งŽ์€ ์กฐ์น˜๋ฅผ ์ทจํ•ด์•ผ ํ•œ๋‹ค. ์ •๋ถ€๋Š” ํŠนํžˆ ๋ฒ•, ๊ทœ์น™, ์‹คํ–‰ ๊ณ„ํš์„ ๊ฐœ๋ฐœํ•ด์•ผ ํ•œ๋‹ค. ์šด์ „์ž ์—†๋Š” ์ฐจ๋Ÿ‰๊ณผ ๊ฐ™์€ ์šด์†ก ์‹œ์Šคํ…œ์—์„œ ์ƒˆ๋กœ์šด ๊ธฐ์ˆ ์˜ ์ฑ„ํƒ์„ ์žฅ๋ คํ•  ์ˆ˜ ์žˆ๋Š” ๋ณด๋‹ค ํšจ๊ณผ์ ์ธ ํ”„๋กœ๊ทธ๋žจ์„ ๋งŒ๋“œ๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ์ด์™€ ๊ด€๋ จํ•˜์—ฌ, ์„ค๊ณ„์ž์—๊ฒŒ ํ˜„์žฌ ์ด์Šˆ์™€ ์‚ฌ๋žŒ์— ์˜ํ•œ ๊ด€์ฐฐ์„ ์•Œ๋ ค์ค„ ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์‚ฌ์šฉ์ž ์ธ์‹์ด ํ•„์ˆ˜์ ์ด ๋œ๋‹ค.์ œ์กฐ์—…์ฒด๋Š” ์‹œ์Šคํ…œ ๊ฒฐํ•จ์„ ์ˆ˜์ •ํ•ด์•ผ ํ•˜๋ฉฐ ํšจ์œจ์ ์ธ ์ž‘๋™์„ ์œ„ํ•ด ์ข‹์€ ๋ฐ์ดํ„ฐ ์„ธํŠธ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๋ฉ€์ง€ ์•Š์€ ๋ฏธ๋ž˜์—, ๊ณ ๋„๋กœ ์ž๋™ํ™”๋œ ์ฐจ๋Ÿ‰(AV)์˜ ๊ด‘๋ฒ”์œ„ํ•œ ์‚ฌ์šฉ์€ ํ˜„์žฌ์˜ ์•ˆ์ „ ๊ด€๋ จ ์—ฐ๊ตฌ์—์„œ ์ง€์†์ ์ธ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ํฅ๋ฏธ๋กœ์šด ์ƒˆ๋กœ์šด ๊ฐ€๋Šฅ์„ฑ์„ ์—ด์–ด์ค„ ์ˆ˜ ์žˆ๋‹ค. ๋ณด๊ธ‰๋ฅ , ๊ณต๊ณต ์ฑ„ํƒ, ๊ธฐ์ˆ  ๋ฐœ์ „, ๊ตํ†ต ํŒจํ„ด ๋ฐ ๋น„์ฆˆ๋‹ˆ์Šค ๋ชจ๋ธ๊ณผ ๊ฐ™์€ ์š”์†Œ๋ฅผ ๊ณ ๋ คํ•˜์—ฌ Avs์˜ ์ค‘์š”ํ•œ ์ •์ฑ… ์˜ํ–ฅ์„ ๋” ์ž˜ ์ดํ•ดํ•˜๊ณ  ์ •๋Ÿ‰ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ์ถ”๊ฐ€ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์กฐ์‚ฌ๋ฅผ ์œ„ํ•ด ๋™๋ฃŒ ๊ฒ€ํ† ๋ฅผ ๊ฑฐ์นœ ์ „๋ฌธ ์ €๋„ ๋…ผ๋ฌธ๋งŒ ๊ณ ๋ คํ•˜๋ฉด ๋˜์ง€๋งŒ, ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๊ฐ€ ์ปค์ง€๊ณ  ๋ฌธ์„œ๊ฐ€ ๋งŽ์•„์ง€๋ฉด ๋” ๋งŽ์€ ๊ฒฐ๊ณผ์™€ ๋” ์ฒ ์ €ํ•œ ๋ถ„์„์ด ์ œ๊ณต๋  ๊ฒƒ์ด ๋ถ„๋ช…ํ•˜๋‹ค.Abstract 3 Table of Contents 6 List of Tables 7 List of Figures 7 List of Appendix 7 CHAPTER 1: INTRODUCTION 8 1.1. Background 8 1.2. Purpose of Research 13 CHAPTER 2: AUTONOMOUS VEHICLES 21 2.1. Intelligent Traffic Systems 21 2.2. System Architecture for Autonomous Vehicles 22 2.3. Key components in AV classification 27 CHAPTER 3: METHODOLOGY AND DATA COLLECTION PROCEDURE 35 CHAPTER 4: FINDINGS AND DISCUSSION 39 4.1. RQ1: Do autonomous vehicles reduce traffic-related deaths 40 4.2. RQ2: Are there any challenges to using autonomous vehicles 63 4.3. RQ3: As a developing country, how effective is the use of autonomous vehicles for reducing traffic mortality 72 CHAPTER 5: CONCLUSION 76 5.1. Summary 76 5.2. Implications and Recommendations 80 5.3. Limitation of the study 91 Bibliography 93 List of Tables Table 1: The 6 Levels of Autonomous Vehicles Table 2: Search strings Table 3: Inclusion and exclusion criteria List of Figures Figure 1: Traffic Death Comparison with Europe Figure 2: Research strategy and study selection process List of Appendix Appendix 1: List of selected articles์„

    Environmental damage risk assessment and emergency scheme of ship oil spill around Xiamen sea

    Get PDF

    Cyberspace Sovereignty: Is Territorializing Cyberspace Opposed to Having a Globally Compatible Internet?

    Get PDF
    The internet is at a crossroads today. Whence once viewed as a borderless domain, today it is spoken of in alarmist terms that warn against its demise in the context of growing government censorship programs and powerful commercial interests. This essay reviews the literature on cyberspace and sovereignty, showing the emergence of pro-sovereigntist perspectives and predictions of cyberspace Balkanization in recent decades. It further links the conceptual debate over cyber-sovereignty to real-world geopolitical conflicts and struggles over the future of Internet governance, showing how different conceptions of cyberspace are functions of the geopolitical interests of different powers. Drawing on recent literature on cyber espionage, this essay provides a review of the defensive and offensive practices of state powers in and through cyberspace to argue that while impulses towards re-territorialization of cyberspace are undeniable, such attempts are ultimately frustrated by operations aiming to use common protocols for external security and internal surveillance. Such practices illustrate a more nuanced depiction of sovereignty in cyberspace that goes beyond the borderless versus Balkanized dichotomy
    • โ€ฆ
    corecore