9,046 research outputs found

    Distributed asynchronous supply coordination for energy producers embedded in the energy grids

    Get PDF
    This paper studies the congestion control and energy flow allocation of renewable energy producers equipped with local energy storage devices and energy converters. The producers are embedded in the existing energy grids. Based on the producers’ own measurements and some coordination with the grid operators, the energy producers adjust locally their supply levels injected to the energy grids so as to maximize their profit without exceeding the grid capacities. We incorporate an asynchronous implementation in the distributed supply coordination and prove its convergence. We implement the proposed algorithm for Power-to-Gas facilities embedded in the energy grids, which consist of a gas grid, mobility sector, and power grid, to demonstrate that the distributed asynchronous supply coordination achieves the same optimal performances as those of the synchronized distributed supply coordination

    Bringing power and progress to Africa in a financially and environmentally sustainable manner

    Full text link
    EXECUTIVE SUMMARY: The future of electricity supply and delivery on the continent of Africa represents one of the thorniest challenges facing professionals in the global energy, economics, finance, environmental, and philanthropic communities. Roughly 600 million people in Africa lack any access to electricity. If this deficiency is not solved, extreme poverty for many Africans is virtually assured for the foreseeable future, as it is widely recognized that economic advancement cannot be achieved in the 21st Century without good electricity supply. Yet, if Africa were to electrify in the same manner pursued in developed economies around the world during the 20th Century, the planet’s global carbon budget would be vastly exceeded, greatly exacerbating the worldwide damages from climate change. Moreover, due to low purchasing power in most African economies and fiscal insolvency of most African utilities, it is unclear exactly how the necessary infrastructure investments can be deployed to bring ample quantities of power – especially zero-carbon power – to all Africans, both those who currently are unconnected to any grid as well as those who are now served by expensive, high-emitting, limited and unreliable electricity supply. With the current population of 1.3 billion people expected to double by 2050, the above-noted challenges associated with the African electricity sector may well get substantially worse than they already are – unless new approaches to infrastructure planning, development, finance and operation can be mobilized and propagated across the continent. This paper presents a summary of the present state and possible futures for the African electricity sector. A synthesis of an ever-growing body of research on electricity in Africa, this paper aims to provide the reader a thorough and balanced context as well as general conclusions and recommendations to better inform and guide decision-making and action. [TRUNCATED]This paper was developed as part of a broader initiative undertaken by the Institute for Sustainable Energy (ISE) at Boston University to explore the future of the global electricity industry. This ISE initiative – a collaboration with the Global Energy Interconnection and Development Cooperation Organization (GEIDCO) of China and the Center for Global Energy Policy within the School of International and Public Affairs at Columbia University – was generously enabled by a grant from Bloomberg Philanthropies. The authors gratefully acknowledge the support and contributions of the above funders and partners in this research

    Overlay networks for smart grids

    Get PDF

    Rationalising territorially dispersed consumption: the projects of Fernand Courtoy for the electricity production and distribution of Belgium

    Get PDF
    The electrification of the notoriously dispersed urbanization patterns of Belgium was a complex and confused operation. The superposition of a nationwide industrial framework, consisting of large elements such as coal basins and sea ports, and a territory characterized by a very fragmented and functionally diverse spatial structure, led to the appearance of electricity in all sorts of locations following diverse arrangements. Within fifty years, large-scale industrial self-producers, regional electricity companies, provincial projects, urban municipal companies and small-scale local initiatives brought electricity to every part of Belgium, barely guided by a national policy. Within this disordered context, Fernand Courtoy occupied a very particular and somewhat exceptional position. As electrical engineer and shareholder of a local electricity company he was able to rationalize the electricity supply, first within his company (1911), and soon after in the entire industrial city of Liege (1919). Later, he became the driving force behind the establishment of the association of industrial self-producers (1922) and founded a consultancy firm that developed electricity plans for private companies as well as strategies for the electrification of whole provinces. Moreover, Courtoy was able to put his mark on the 1927 governmental commission that investigated the organization of an efficient electricity supply on the national scale. As the report of this commission proved to be too controversial for the strongly divided electricity sector, few of its propositions were realized. Nonetheless, through the debate provoked by the commission and through the numerous projects undertaken by his firm, Courtoy was able to introduce a perspective which was rather unusual for the Belgian context, combining large-scale rationalization with the national economic policies of dispersion. The paper discusses the various ways in which his plans searched for an efficient electricity supply, while recognizing the generalized availability of electricity as a necessary condition for Belgium’s distributed model of industrialization

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Smart Grid Communications: Overview of Research Challenges, Solutions, and Standardization Activities

    Full text link
    Optimization of energy consumption in future intelligent energy networks (or Smart Grids) will be based on grid-integrated near-real-time communications between various grid elements in generation, transmission, distribution and loads. This paper discusses some of the challenges and opportunities of communications research in the areas of smart grid and smart metering. In particular, we focus on some of the key communications challenges for realizing interoperable and future-proof smart grid/metering networks, smart grid security and privacy, and how some of the existing networking technologies can be applied to energy management. Finally, we also discuss the coordinated standardization efforts in Europe to harmonize communications standards and protocols.Comment: To be published in IEEE Communications Surveys and Tutorial

    Advances in Energy System Optimization

    Get PDF
    The papers presented in this open access book address diverse challenges in decarbonizing energy systems, ranging from operational to investment planning problems, from market economics to technical and environmental considerations, from distribution grids to transmission grids, and from theoretical considerations to data provision concerns and applied case studies. While most papers have a clear methodological focus, they address policy-relevant questions at the same time. The target audience therefore includes academics and experts in industry as well as policy makers, who are interested in state-of-the-art quantitative modelling of policy relevant problems in energy systems. The 2nd International Symposium on Energy System Optimization (ISESO 2018) was held at the Karlsruhe Institute of Technology (KIT) under the symposium theme “Bridging the Gap Between Mathematical Modelling and Policy Support” on October 10th and 11th 2018. ISESO 2018 was organized by the KIT, the Heidelberg Institute for Theoretical Studies (HITS), the Heidelberg University, the German Aerospace Center and the University of Stuttgart

    Applications of Utility-Scale Power to Gas Energy Storage Systems in Smart Grids

    Get PDF
    ABSTRACT This thesis aims to develop the engineering tools required to simulate, design, and optimize the operation of utility-scale power to gas (PtG) energy storage. First, a co-simulation platform for power and gas distribution networks is developed. The co-simulation platform could help quantifying the role of PtG technology in shaping the future of power distribution systems. Using the co-simulation platform, several research studies can be carried out such as operation scheduling and planning of power and gas networks. Second, a new formulation is developed for the optimal design i.e., sizing, of PtG energy storage. The developed formulation aims at minimizing the capital and operation costs of PtG and maximizing the harvested power during periods of surplus. Third, a new mathematical formulation is proposed for the optimal production scheduling of hydrogen to supply fuel cell buses. The proposed formulation takes into account the operation requirements of both power distribution and electric bus transit networks
    corecore