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ABSTRACT 

          Utility-scale Power-to-Gas (PtG) is defined as one of the emergent and 

promising technologies of energy storage systems. In PtG, the electric energy is 

transformed into renewable hydrogen and/or Synthetic Natural Gas (SNG), which 

can then be injected, transported, stored, and used at a later time in the gas 

network for heating and/or electrical generation. The fast dynamic response of the 

electrolyzer unit of PtG technology makes it also a suitable technology to provide 

several grid services and thus retain the grid flexibility for power system operators 

under high penetration levels of variable Distributed Energy Resources (DERs). 

Further, the production of hydrogen from PtG can create a potential market for 

hydrogen-powered electric vehicles. In this respect, the development of PtG 

technologies will create potential interactions between electrical, gas, and 

transportation sectors. 

             This thesis aims to develop the engineering tools required to simulate, 

design, and optimize the operation of utility-scale PtG energy storage. First, a co-

simulation platform for power and gas distribution networks is developed. The co-

simulation platform could help quantifying the role of PtG technology in shaping 
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the future of power distribution systems. Using the co-simulation platform, several 

research studies can be carried out such as operation scheduling and planning of 

power and gas networks. Thus, the platform is expected to be immensely useful for 

power and gas operators and planners. Second, a new formulation is developed in 

this thesis for the optimal design i.e., sizing, of PtG energy storage. The developed 

formulation aims at minimizing the capital and operation costs of PtG and 

maximizing the harvested power during periods of surplus i.e., low demand and 

high power generation. Third, a new mathematical formulation is proposed for the 

optimal production scheduling of hydrogen, i.e., from PtG, to supply fuel cell 

electric buses. The proposed formulation takes into account the operation 

requirements of both power distribution and electric bus transit networks. Several 

case studies have been carried out to validate the effectiveness of the proposed 

engineering tools. 
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ACRONYM 

A.Variables 

         kmBHP                                 Brake horsepower consumed by the gas compressor, HP       

𝐺𝑠,𝑃2𝐺                                Gas   generation in P2G       

𝐺𝑑,𝐺𝑃𝐺                                 Gas consumption in GPG 

𝑃𝑑,𝑃𝑡𝐺                                 Power consumed by PtG, MW 

𝑃𝑔,𝐺𝑃𝐺                                Power generated by GPG MW 

𝑃𝐺𝐶,𝑘𝑚                                Power consumed by compressor, MW  

         𝐺𝑔𝑎𝑠,𝑘𝑚                                                                    Standard gas flowrate in the pipeline, hm /3  

         G KmGC,
                                Natural gas flow in the compressor hm /3    

         km PP ,                                 The nodal gas pressure at both ends of the  pipeline, kPa 

         mk  ,                                 22, mmkk PP  , k 2
aP  

          
kmgasS ,

                                   gas flow  in the pipeline from  the node k to  m, measured in MW 

          kmkm LD ,                                 The inside diameter of the pipe in meter, the pipe length in kilometer   

B.Parameters  

            Kc  

 

                                Specific heat ration for the natural gas  

            cE                                  Compressor parasitic efficiency, 0.99 for  centrifugal units  

𝐺𝐾                                 The gas flow at node k, hm /3  

𝐺𝑆,𝐾                                 The gas supply at node k, hm /3  
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𝐺𝑑,𝐾                                 The gas demand  at node k, hm /3  

            HR                                 The heat rate, MJ/ MWh 

           GCK                                   Constant of compressor 

           LHV                                   Lower heating value, MJ/m3 

           P b                                    Gas pressure 

𝑃𝑔,𝑖                                  The active power generated of bus i, MW 

𝑃𝑑,𝑖                                  The active power demand of bus i, MW 

𝑄𝑔,𝑖                                  The reactive power generated of bus i, MVar 

𝑄𝑑,𝑖                                  The reactive power demand of bus i, MVar 

         
2
kmkm CR                                    Hydraulic resistance Coefficient of the pipeline

22 )/3/( hmkPa  

             sT                                   Suction temperature of compressor, R 

            bT                                   Gas temperature at base condition, K(273+C) 

            kmaT ,                                   Average absolute temperature of pipeline, (K(273+C) 

             V                                     Bus voltage 

             Y                                  Nodal admittances 

            aZ                                   Average compressibility factor 

             G                                   The natural gas specific gravity, dimensionless 

𝜂𝑐                                   Compression efficiency 

𝜂𝐺𝑃𝐺                                   The energy efficiency of GPG 

𝜂𝑃2𝐺                                   The energy efficiency of PtG 
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Chapter1 

Thesis Overview  

1.1 Motivations 

             Distributed and renewable energy resources (DERs) play a pivotal role to 

meet the objectives of increasing security and reliability of energy supply and 

reducing greenhouse gas emissions [1]. Hence, the electric power system is moving 

rapidly towards an increased penetration of DERS. Yet, the increased penetration of 

DERs has created a paradigm shift of the way electricity is generated, traded, and 

distributed. Although such shift in electricity systems is unparalleled, it is 

accompanied with serious technical challenges that might reach the point of 

diminishing returns. It has been noted in the last few years that the complication of 

the electricity system operation escalated due to the exponential increase of variable 

DERs such as solar and wind [2].  

Energy Storage Systems (ESSs) have recently become matters of significant 

interest to mitigate various existing and imminent issues of evolving power 

systems [3]. The operation of an ESS benefits the grid operator and/or the 
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private owner(s) of the ESS through the following main functionalities: (i) the 

ESS is jointly operated with wind/solar generation units to address the issues 

arisen as a result of sporadic availability of variable DERs; (ii) the ESS is jointly 

operated with loads to shift the energy consumption from peak to off–peak 

periods; and (iii) the ESS is operated to achieve some technical services for the 

grid. Examples of such technical services include but not limited to: enhancing 

the system stability, reducing the system losses, and improving the power 

quality.  

Several utility-scale energy storage technologies have been proposed and 

developed in the last couple of decades. Each technology has its own features 

and operation characteristic and thus the choice of the right technology for each 

application is vital towards the successful adoption of ESSs in power grids [4]. 

Among such technologies, utility scale Power-to-Gas (PtG) has been recently 

introduced as a potential means to provide a long-term e.g., seasonal, storage 

for the surplus of power generation from variable DERs such as solar and wind. 

Further, PtG will also facilitate seamless integration between power and 

Natural Gas (NG) networks when the produced Synthetic Natural Gas (SNG) 

from PtG is injected into the NG pipelines. To that end, several recent 
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publications have focused on the integration of PtG into power and gas systems. 

In [5], the authors evaluated the environmental impact of storing renewable 

energy in the form of gas and concluded that it is environmental friendly. The 

authors in [6] discussed the operational impact of PtG on transmission 

networks of both power and gas transmission systems. The purpose of the 

research in [6] was to construct a model to assess the integration of PtG in the 

energy system and simulate its impacts on the electrical and gas transmission 

systems. However, the study was done for each grid individually. In [7], the 

authors evaluated the coordination of PtG facility and wind power generation. 

In [8], the authors evaluated the energy saving ability, the potential reduction 

in operation costs, and the investment opportunities of both power and gas 

grids when operating together as one integrated system. There are also other 

references that focused on PtG technology as an energy storage technique and 

evaluated its economic feasibility [9], [10]-[11]. 

       PtG will not only facilitate integration between power and NG networks, but 

also the produced gas, whether Hydrogen or SNG, can be utilized as a renewable 

fuel to run Hydrogen and NG vehicles, respectively. In this regard, PtG can 

potentially integrate three low-carbon systems i.e., power, NG, and 
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transportation, in a unified framework.  Research and development in the 

applications of utility-scale PtG in power grids is still in its early stages and, 

thus, not too much work has been done in this area.  

1.2 Thesis layout 

Based on the above discussions, this thesis aims to develop the engineering tools 

required to simulate, design, and optimize the operation of utility-scale PtG energy 

storage. Figure 1-1 shows a schematic diagram of the thesis layout. As depicted in 

the figure, Chapter 2 reviews the different types of utility-scale energy storage 

technologies and summarizes the operation features and characteristics of each 

technology. In Chapter 3, a co-simulation platform for power and gas distribution 

networks is developed. The co-simulation platform is utilized to conduct several 

simulation studies such as operation scheduling and planning of power and gas 

networks. In Chapter 4, a new optimization model is developed to design the size of 

PtG energy storage. The developed optimization model aims at minimizing the 

capital and operation costs of PtG and maximizing the harvested power during 

periods of surplus power generation. In Chapter 5, a novel mathematical formulation 

is presented for the optimal scheduling of hydrogen production from PtG in order to 
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supply fuel cell electric buses. The developed formulation takes into account the 

operation requirements of power distribution and electric city bus transit networks. 

In each chapter, several case studies have been carried out to validate the 

effectiveness of the proposed engineering tools. Chapter 6 summarizes the thesis 

contribution and identified future works.  
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Figure 1-1 Thesis Overview 
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Chapter 2   

Review of Energy Storage Technologies 

2.1 Introduction  

The role of alternative energy in supplementing and securing energy systems has 

been well demonstrated [12]. In particular, DERs will play a vital role in diversifying 

energy systems sustainably. By the year 2040, renewable energy is projected to be 

the second largest source of electrical generation (behind NG) and will account for 

33% of global power supply, according to the most recent International Energy 

Agency report [13]. The growth rates in this model from various energy sources 

would result in renewables accounting for nearly half of the new power generation 

by 2040. 

Renewables, particularly solar and wind, supply intermittent power as these 

sources only produce energy when the sun is shining or the wind is blowing [14]. 

Consequently, it is necessary to normalize their irregular contributions to the total 

power supply so that the load placed on the power grid is accurately met. This is 
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achieved in several ways, depending on the degree of influence the intermittent 

energy has on the overall grid and the time-scale of interaction. On the scale of 

seconds to minutes, power stabilization is achieved through large banks of 

capacitors, spinning reserves, batteries, and mechanical flywheels [15]. These 

methods account for minimizing variation in power output from both conventional 

and renewable energy sources by storing and releasing small amounts of energy. 

For energy variation on the scales of minutes to hours, spinning reserves, quick 

acting NG plants, and hydroelectric generating stations (including both pumped 

and non-pumped hydro), can adequately account for the variation in intermittent 

renewable energy output power [16]. As a result of these technologies, energy 

storage over time frames ranging from seconds to hours is largely achieved with 

known and demonstrated methods. However, moving to longer time scales from 

hours to overnight, global energy storage capacities ranging from 1.9-45.0 x 1016 J 

will be needed by 2040 to ensure power is supplied consistently as the proportion 

of intermittent energy increases. Current energy storage capacity is a meager 1.4 x 

1014 J, and thus meeting future goals will require innovative methods. 
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In order to understand the best method(s) to meet future energy goals, we must 

first identify the characteristics of a good ESS to effectively compare and contrast 

various technologies. At the most essential level, an efficient energy storage system 

(ESS) will have the ability to return a high proportion of the energy initially invested 

[17]. This concept is referred to as energy return on investment (EROI), which is a 

ratio that measures the amount of energy returned by a process over the energy 

initially invested given as follow: 

                  𝐸𝑅𝑂𝐼 =
Energy Return of Process

Energy Loss of process 
                                                     (2.1) 

One can notice that a more efficient ESS will have a higher EROI. As both the 

numerator and the denominator are in units of energy, the resulting ratio is a 

dimensionless measurement of efficiency. EROI is a very useful metric to assess the 

use of energy storage, but additional factors must be evaluated. For example, if one 

type of energy is converted to another, e.g. electricity is used to generate hydrogen, 

the characteristics of each medium of energy must be considered. Furthermore, it 

is important to factor in more than energy efficiency when determining the utility 

of an ESS. 
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In addition to a high EROI, better ESS would have some or all of the following 

features: 

 High-energy density 

 High capacitance 

 Fast discharge and recharge rates 

 Minimal energy loss over time 

 Efficient coupling with an existing system of power generation 

 Cost effective 

 High cycle-life 

 Minimal impacts on natural phenomena 

These criteria create the basis from which ESS can be judged upon, and each 

method will have its own strengths and weaknesses. 
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2.2 Classification of Energy Storage  

In literature there are various types of classification for energy storage 

technologies.  In this thesis, energy storage technologies are classified into four 

main categories: their interaction to power grid, services that can provide to the 

grid, short-term and long-term energy storage capabilities, and the way/medium 

at which the energy is stored. Figure 2-1 shows a schematic diagram of the three 

categories.

 Base on 
Interaction to Grid

Classification of Energy 
storage system

Base on Grid 
Services

Short/long-term 
energy storage 

capabilities,

Base on Manner 
of Storage

 

Figure 2-1 Energy storage classifications   
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2.2.1 Interaction to Power Grid  

The Independent Electricity System Operator (IESO) in Ontario has classified energy 

storage technologies based on the way they interact with the power grid into three 

types: type1, type 2 and type 3 [18]. 

Type 1 – Energy storage technologies that are capable of withdrawing electrical 

energy from the power grid, storing the withdrawn energy for a certain period of 

time and then re-injecting such energy back into the grid [18]. Examples include, 

but are not limited to, batteries, flywheels, compressed air, and pumped 

hydroelectric. 

Type 2 – This type represents energy storage technologies that absorb power from 

the grid and store the energy for a certain period of time. However, instead of 

injecting it back into the grid, the stored energy is used to displace power demand 

of their host facility at a later time [18]. Heat storage is an example of these 

technologies.  

Type 3 – It represents energy storage technologies that would only consume power 

from the grid, but convert it into a storable form of energy or fuel that is 
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subsequently used in an industrial, commercial or residential process. Fuel 

production (hydrogen or methane), steam production and electric vehicles, are 

examples of Type 3 energy storage [19].  

2.2.2 Services Provision to the Power Grid  

ESSs are capable of providing several valuable services in different applications that 

address the needs for flexible grid resources. The following are potential examples 

of service provision for ESSs to power grids.  

Generation Side – ESSs can be applied to provide grid services in support of or 

instead of generation resources [20]. Supporting power generation plants with 

different services can increase their efficiency and lifetime, thus resulting in   less 

fuel consumption and less greenhouse gas emissions per kWh. Further, ESSs 

located near renewable power generation units installed in sub-transmission or 

transmission networks can provide capacity firming, ramp rate control, and 

frequency regulation. This will, in turn, facilitate better integration of renewable 

generation and ensuring system stability. Moreover, ESS located at a generation 

site can be used for energy trading (arbitrage) by shifting the produced energy, i.e. 
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charging during low-price periods and discharging during peak-hours. Energy 

storage technologies categorized as Type 1 are potential examples of the 

generation side.   

Transmission and Distribution System – ESSs located in the transmission grid can 

reduce transmission congestion and support transmission infrastructure to extend 

equipment lifetime and defer investments. They can also provide similar ancillary 

services as the ones connected at the generation site, e.g. reserves, frequency 

regulation, load following, etc. Such services are expected to improve the system 

reliability and reduce the need for additional generation resources to operate in 

partial load.   

ESSs in the distribution network close to demand side could provide grid ancillary 

services such as load levelling, voltage support, and power quality and is able to 

relieve distribution substations and feeders and, thus, defer investments. This will 

in turn facilitate seamless integration for high penetration of renewable energy 

resources. Another mechanism for ESS to support renewable power integration is 

by being placed closely to the renewable generation resources in order to provide 

services such as capacity firming, ramp rate control, and time-shift. 
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End-Consumer – ESSs installed behind the meter at the consumer end can help to 

reduce the electricity bill by peak limiting and thus reducing demand charges, or by 

time-of-use shifting. They can also use to ensure power service reliability and 

quality for sensitive equipment [20]. In combination with renewable energy 

resources, ESSs installed at the consumer side can also increase the self-

consumption of the generated energy or ensure that it is fed into the grid at the 

economically best time. An example of such scenario is Grid-Tied Photovoltaic and 

Battery Storage Systems in the end users. 

2.2.3 The way energy is stored   

As depicted in Figure 2-2, energy can be stored in different forms (mechanical, 

thermal, electrical, electrochemical, and chemical). An example of energy storage 

technologies for each form is also shown in the figure. Among these technologies, 

the most common types of energy storage that offers potential storage of energy 

from renewables are batteries, thermal energy storage, mechanical flywheels, 

power to gas (PtG), and pumped storage hydroelectric. 
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Mechanical Thermal Electrical Electrochemi

cal

Chemical

The way energy 
is stored  

      Flywheels     Heat storage Power to Gas           Capacitor Battery

 

Figure 2-1 Different means of storing the withdrawn energy of ESSs from the grid 

 

2.2.3.1 Batteries  

Batteries are the most familiar method of energy storage. A battery is a closed 

system that converts stored chemical energy into electrical energy via the 

application of a load. Once a battery’s stored chemical energy has been exhausted, 

applying a potential voltage to the cell can restore the electrochemical potential. 

Lithium- ion (Li-ion) is the most familiar type of batteries as it has the highest energy 

density among batteries [21]. The density of the batteries, combined with their 

durability and low operating temperature, makes them ideal for small-scale 

applications e.g., portable electronics and transportation. Further, they have a very 

low self-discharge rate and a high life cycle. Li-ion batteries typically cost three 

times as much as other batteries, meaning they suffer an economic disadvantage 
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when considering them for use in utility-scale applications. Lead-acid (PbA) 

batteries are comparatively cheaper, simpler to manufacture, and have the lowest 

self-discharge rate of any battery. The main disadvantages of PbAs are a low 

recharge rate and a low life cycle [22]. Batteries that are more suitable for utility-

scale energy storage and stabilization include sodium-sulfur and redox-flow 

batteries [23].  

Redox-flow batteries utilize the oxidation and reduction of a liquid electrolytic 

solution, where energy is stored by reducing a solution and can be released by 

oxidizing the same solution [24]. The primary benefit of this method is high 

scalability, as a larger tank can be built to store more electrolytic solution. The 

reduced solution can be stored almost indefinitely, and the rate at which energy is 

released is highly tunable. The primary downfall of this technology currently is that 

it has a very low energy density [25]. 

2.2.3.2 Thermal Energy Storage 

Thermal energy storage is a broad category in which the thermal energy is stored 

in a medium and used to generate heat in order to produce steam and power a 

turbine. The media of storage vary greatly; it ranges from earth, to water, to more 
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technologically advance and expensive options such as molten salt [26]. The most 

developed type of thermal energy storage is pumped heat electrical storage (PHES) 

[27]. In this process, a heat pumped powered by electricity is used to drive energy 

from a cold to a heat sink. Adiabatic containers maintain the thermal differential 

until the energy is needed, at which time heat is transferred via a gas from the heat 

sink to the cold sink in order to power a heat engine. The overall efficiency could 

approach 75-80%, although it diminished as storage time increases, considering the 

heat and cold sinks are not perfectly adiabatic [28]. 

2.2.3.3 Flywheels 

In flywheels, the electrical energy is stored in the form of kinetic energy. 

Although the operation concept of a flywheel is well known, utility-scale 

flywheels used for grid energy storage have several distinctive features [29]. 

The primary loss of energy in flywheels is the heat resulting from friction. 

Placing the flywheel in a vacuum and using permanent and electromagnetic 

bearings as stators that the flywheel is not in physical contact with its support 

could minimize friction. A single flywheel can have a capacity of up to 9 x 105 J, 

and is able to absorb or discharge energy instantaneously [30]. The drawback 
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is that they are capital intensive, and have high losses over time, ranging from 

3-20% per hour. For these reason, flywheels are unable to effectively store 

energy for more than several hours and thus are very limited in the storage of 

intermittent renewable energy resources.  

2.2.3.4 Power to Gas 

Power to gas (PtG) is a method of converting electrical energy into gaseous fuel. 

There are currently three pathways for this particular type of conversion, and all 

utilize the electrolysis of water to generate hydrogen that is then combusted or 

reacted in a variety of ways [31]. 

 In the first method, generated hydrogen is used to directly supplement the 

natural gas grid.  

 The second method utilizes the Sabatier reaction, where hydrogen is reacted 

with carbon dioxide to form methane and water. The methane is then used 

to supplement the natural gas grid.  

 In the third method, hydrogen is mixed with a biogas, where it can undergo 

a Sabatier reaction to improve the quality of the biogas.  
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These methods have been demonstrated to store the energy generated from 

intermitted renewable energy resources at an efficiency rate of more than 60% 

[32]. With regards to environmental impacts, PtG storage technologies are shown 

to pair more efficiency with intermittent renewable energy generation than with 

traditional energy sources. This is largely due to the ability of renewable energy 

resources to produce very cheap electricity during off-peak hours while traditional 

power generation is fully utilized during this period to supply a base load of power 

to the grid. Also, a very important aspect of the PtG process is that it does not 

generate a net increase in greenhouse gases, as shown in the schematic diagram 

presented in Figure 2-3. Utility-scale PtG technology is relatively new, and it does 

not yet make up a significant portion of energy storage.  Several countries are 

investing in the development of utility-scale PtG: Germany, USA, and Canada 

[33]. PtG has the distinct benefit of being easily integrated with existent natural 

gas (NG) networks. However, further research is necessary to improve 

efficiencies so that this technology can compete economically with other 

methods of energy storage. 
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SNG 

 

Electricity 

 

Figure 2-3 Electrolysis diagram in PtG energy storage systems                     

                                                               

Electrolyzer: 

         Let’s consider the electrolyzer, which is at the heart of green hydrogen 

production. This system consists of two electrodes (an anode and a cathode) 

separated by an electrolyte (in which free ions carry the electric charge), as well as 

a catalyst. Today several technologies are mature, amongst which the alkaline 

electrolyzer (hydroxide ions are transported through an alkaline solution) and the 

proton exchange membrane (PEM). In the latter, liquid electrolyte (the alkaline 

solution) is replaced by a solid polymer electrolyte. Both of these technologies work 

at low temperature, i.e. 100 °C, and present a conversion efficiency of around 70 %. 

But better solutions are just around the corner with high-temperature electrolysis 
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(about 800 °C), a process that is currently under development. This technique is used 

in solid oxide electrolysis cells (SOEC), which make conversion efficiencies of up 

to 95 % a possibility, provided that the system can be supplied with an external heat 

source in order to reduce power needs and thereby increase their electrical efficiency. 

This benefit in efficiency will significantly reduce hydrogen production costs (by 

around 30 %) when compared to low temperature technologies. It will also meet the 

needs of mass-scale hydrogen production when connected to a solar power plant, or 

any other large-scale renewable energy power source. 

2.2.3.5 Pumped Storage Hydroelectric Power 

Pumped storage hydroelectric generating stations use electricity to pump water 

from a lower to a higher reservoir. This energy can be recovered by releasing the 

water from the upper reservoir to power a generator [34]. The overall efficiency of 

such reversal process could exceed 80%. Pumped storage is currently used to store 

both traditional and intermittent renewable energy, where water is pumped during 

times of low demand at a low cost and then used to generate electricity during 

times of high demand, which can be sold at a high cost [35]. Pumped storage has 

several benefits, among which the most salient is its responsiveness to power 

demands from the grid, so it can easily normalize irregularities in power demand 
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on an hour to daily basis. Once established, a pumped-hydro station can be cycled 

thousands of times, and the system has very small loss in energy over time. 

However, pump-hydro is geographically restricted because it needs appropriate 

water resources and a suitable location for an upper and a lower reservoir [36]. 

Further, the installation of a pumped hydro storage system requires drastic land 

use change, as at least one reservoir is constructed. Additionally, the hydrologic 

ecosystem that the energy storage system exists with can be altered when water 

temperature, nutrient concentration, turbidity, flow, and many other factors are 

affected. 

2.2.3.6 Compressed Air Energy Storage 

Compressed air energy storage (CAES) is a widely used and economically efficient 

method of storing energy on a utility scale. The principle of CAES operation relies 

on filling an underground geologic cavern with compressed air [37]. This air can 

then be heated and released and then used to spin a gas turbine generator. CAES 

effectively decouples the compression and expansion cycle of a conventional gas 

turbine to allow the temporal separation of the use of a fuel and the generation of 

electricity [38]. The most important benefit of CAES is the large power capacity that 
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a single CAES site can hold i.e., the capacity of a single CAES can vary from 1.8 to 

10.8 x 1011 J. CAES is also relatively temporally stable; where the compression can 

last for more than a year. The efficiencies for CAES-based systems typically range 

from 60-80%. Also, the capital investments range from $400 to 800 per kW. 

Combined, these factors make CAES the leading utility scale energy storage 

technology.  

The main drawbacks of CAES are that sites are geographically restrained. The 

underlining technological foundation is geologically restricted, specifically to 

requiring a large and stable geological cavern or aquifer. For this reason, the 

application of CAES system is limited to specific geological contexts. Although 

geologic caverns are not rare over a wide swath of land, they must be in close 

proximity to a large gas turbine plant in order for a CAES system to be economically 

feasible [39]. It is this factor that results in the implementation of a small number 

of CAES systems in a highly economic manner. Here it is noteworthy that CAES 

Cannot be paired with power generation plants such as coal-fired, nuclear, wind, 

or solar. 
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Figure 2-4 Classification of energy storage based on the storage capability 

2.2.4 Storage Capabilities  

ESS technologies can be also classified according to the period of energy storage 

into short term and long term. Figure 2-4 shows the types of ESS technologies 

classified into short and long term technologies.  

2.3 EES installed capacity worldwide 

  The energy storage technology application varying based on its capability of 

providing the required services to power grid. The first largest installed energy 

storages capacity is the Pumped hydro storage (PHS) that provides 99% of all  
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                                                                 Table 2-1 capacity of EES systems used in electricity grids 

No EES MW  MWH 

1 Pumped hydro storage 127,000 MW 1,500,000 MWh 

 2 Compressed Air Energy 

Storage 

440 MW 3,730 MWh 

3 Sodium Sulphur Battery 316 MW 1,900 MWh 

4 Lithium Ion Battery ~70 MW ~17 MWh 

5 Lead Acid Battery ~35 MW ~70 MWh 

6 Nickel Cadmium Battery 27 MW 6,75 MWh 

7 Flywheels <25 MW <0,4 MWh 

8 Redox Flow Battery <3 MW <12 MWh 

 

storage facility with 127 GW, which is 3% of global generation of power capacity. 

The second most widely used energy storage technology is Compressed Air Energy 

Storage (CAES) [40]. The third largest installed energy storage capacity is NaS. This 

storage technology is installed in so many countries around the world e.g., Japan, 

France, Germany, UAE and USA in 223 locations with a total capacity of 316 MW. 

Table 2-1 shows the installed capacity of installed EES systems used in electricity 

grids. It is expected that a large quantity of other EES to be installed given the 

emerging market needs for different applications.  
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Chapter 3 

   A Co-Simulation Platform for Power and 

Natural Gas Networks 

3.1 Introduction  

PtG is a new concept, which enables the transformation of surplus power generation 

to hydrogen by electrolysis, or even to methane by an additional methanation process. 

The produced gas can then be sold directly or stored for future usage [41]. Recent 

studies have shown that PtG and gas-fired power generation (GPG) technologies can 

potentially play an important role in the energy system [42]. On another avenue, the 

penetration of renewable energy resources has been increasing for the last few 

decades. Of the existing renewable energy resources, wind and solar energy 

production systems have been seeing an increased application [43]. The variability 

associated with the wind and solar systems production, introduces instants where the 

energy production is beyond the system demands and as such the curtailment of 

excess generation has to be adopted to ensure the system’s stable operation [44]-[45].   
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Figure 3-1 an overview of integrated power and gas networks 

 

An alternative to the curtailment and waste of the excess renewable power generation 

is to store the excess power using energy storage technologies [46]-[47]. PtG is one 

of the most promising technologies of energy storage [48]. In PtG, the electrolysis of 

water is used to produce hydrogen or Synthetic Natural Gas (SNG).   

Hence the excess power is stored in the gas network in the form of gas and is then 

used to supply gas demand or in converting it back to electricity using GPG units 

during times with high power demand [3]. Figure 3-1 gives an overview of the PtG 

concept and how it connects the gas and power networks. Several recent publications 

have focused on the integration of PtG into power and gas systems. In [49], the 

authors evaluated the environmental impact of storing renewable energy in the form 

of gas and concluded that it is environmental friendly. The authors in [50] discussed 
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the operational impact of PtG on transmission networks of both power and gas 

transmission systems. The purpose of the research in [50] was to construct a model 

to assess the integration of PtG in the energy system and simulate its impacts on the 

electrical and gas transmission systems. However, the study was done for each grid 

individually. In [51], the authors evaluated the coordination of PtG facility and wind 

power generation. In [52], the authors evaluated the energy saving ability, the 

potential reduction in operation costs, and the investment opportunities of both power 

and gas grids when operating together as one integrated system. There are also other 

references that focused on PtG technology as an energy storage technique and 

evaluated its economic feasibility [53]. The optimization of the integrated power and 

gas system was investigated in [54]. In [55], a co-optimization scheduling of the 

integrated system was proposed. 

In this chapter, a co-simulation platform for power and gas distribution networks is 

developed. The co-simulation platform could help quantifying the role of PtG 

technology in shaping the future of energy distribution systems. Using the co-

simulation platform, several research studies can be carried out such as operation 

scheduling and planning of power and gas networks. Thus, the platform is expected 

to be immensely useful for power and gas operators and planners. 
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3.2 PtG CO-SIMULATION PLATFORM 

The power and gas co-simulation platform comprises three sets of equations; first, 

equations describing the distribution power network behavior; second, equations 

describing the distribution gas network behavior and finally, equations describing 

the connection between the two networks. The equations describing the power 

network behavior are the steady-state power flow model. In this work, a global 

formulation for the problem of power flow in distribution networks is briefly 

presented. The first step in the problem formulation is to designate the injected 

current
injiI ,  at any bus i as a representative of the sum of all the branch currents 

connected with bus i so that the injected current can be given as follows: 

                   𝐼𝑖,𝑖𝑛𝑗 = ∑ 𝐼𝑖𝑗
𝑛𝑏𝑟
𝑗=1,𝑗≠𝑖                            (3.1) 

Where nbr is the number of branches in the distribution network. Using (3.1) and the 

relation between the branch voltage Vij and branch current Iij between two buses i and 

j in the distribution network, the injected apparent power Si at bus i can be expressed 

as:  

                         𝑆𝑖 = 𝑉𝑖  (∑ 𝑦𝑖𝑗(𝑉𝑖 − 𝑉𝑗)𝑗=1,𝑗≠𝑖 )∗                                              (3.2)  
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where yij is the admittance between two nodes i and j and (*) is the conjugate. From 

(3.1) and (3.2), the calculated active power Pi  and reactive power Qi at each bus i 

can be given as formulated in (3.3) and (3.4), respectively.  

                                              (3.3) 

                                           (3.4)  

where θij is the angle of the admittance between buses i and j, and δi, δj are the voltage 

angles of buses i and j, respectively. In active power distribution networks, DG units 

are installed along the distribution feeders. The majority of such DG units are 

interfaced via dc-ac power electronic inverter systems [56]. The power flow models 

of DER units depend on its control scheme, which may vary with the DER type. Yet, 

most of the DER units are not utility owned and are characterized by being 

intermittent energy sources e.g., wind and solar. The deployment of smart inverters 

interfacing the DERs and the grid has created seamless control of the reactive power 

and/or power factor of DER units. Also, active power curtailment (i.e. de-rating) can 

be applied to provide full control of the generated power of DER units. For this 
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reason, DER units can be modeled as controlled PQ buses. Hence, the active and 

reactive power mismatch equations of each bus i can be given as follows: 

                                                     (3.5) 

                                (3.6)  

where Pd,i and Qd,i are the active and reactive power demand at bus i, and Pg,i and 

Qg,i are the active and reactive power generation at bus i, respectively.  

Similar to the power flow problem, in order to describe the gas flow, there is a gas 

pressure variable associated with each node in the gas distribution network and a gas 

flow variable associated with each pipeline in the gas network. One gas node in the 

gas network is typically assumed as the reference node. Corresponding to the gas 

flow variables, there is a nodal gas balance equation for each gas node. Similarly, 

corresponding to each gas flow variable there is a corresponding pipeline flow 

equation [57].  

The relation between the gas flow in the pipeline and the pressure at its terminals 

can be given as [57]: 

                                                   (3.7) 
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Where and  are the gas pressure in kPa at nodes k and m, respectively; Rkm is 

the hydraulic resistance coefficient of the pipeline; and Ggas,km is the standard gas 

flow rate in the pipeline in m3/h measured at the base temperature and pressure. The 

steady state flow rate of an isothermal gas is affected by various factors, including 

the pressure drop, friction factor, type flow regime in pipeline, gas temperature, pipe 

diameter, and other parameters related to the type of gas. Equation (3.8) hereunder 

gives the formula to calculate the gas flow rate in a pipeline [57]  

                    (3.8)  

Where C is a constant; Tb and b are the gas temperature and pressure at base 

conditions, respectively; Dkm and Lkm are the inner diameter in meter and the length 

of the pipeline in km, respectively. is a dimensionless the natural gas specific 

gravity; is the average absolute temperature of the pipelines;  represents the 

average compressibility factor; is the friction factor; and  is the pipeline 

efficiency.  To that end, the nodal gas balance equation maintains that the sum of 

inflow and outflow at each gas node should be zero, and is given as follows:  

                                                                  (3.9) 
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Where  and  are the gas supply and gas demand in m3/h, respectively at node 

i; and Ggas,km is the standard gas flow rate in pipeline in m3/h. 

Here, it is worth noting that the connection between the gas network and the 

electric network occurs at three types of components, namely the compressors, gas-

fired power generation units and power to gas units. Gas compressor units have the 

responsibility to compensate the pressure drop in the network. Gas compressors are 

one of the main components of the gas network and they need energy to balance the 

pressure in the gas grid. This energy is taken from the electricity grid. The brake 

horsepower (
kmBHPP ,

) of gas compressor is related to the compressor ratio and gas 

flow rate from the compressor and it can be written as follow: 

                                          (3.10) 

Where is a Constant of compressor; is natural gas flow in the compressor 

in m3/h; is Suction temperature of compressor in oR. is the compressor parasitic 

efficiency, which is 0.99 for centrifugal units;  is the compression efficiency;  is 

Specific heat ratio for the natural gas; and and  are nodal gas pressure at both 

ends of the pipeline measured in kPa. 
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Given that, GPG units consume gas to produce electric power, the relation 

between the consumed gas by each unit and its electric power production can be 

given as follows: 

                          

GPG
s

GPG

GPG
d P

LHV
G )

3600
(


                                             (3.11)                     

Equation (3.11) shows the amount of gas demand for power generation; where 

the amount of is required gas for power generation,  is the amount of 

power generated by GPG,  is the energy efficiency of gas to power conversion 

and is the lower heating value in MJ/m3.  

                                                                                  (3.12) 

Similarly, equation (3.12) shows the amount of gas storage from power to gas 

conversion, where the generated gas from the PtG unit is, is the electric power 

consumed by PtG and is the efficiency of the PtG unit. 

It is worth noting that, the LHV is known as net calorific value, and is defined as the 

amount of heat released by combusting a specified quantity (i.e. initially at 25°C) 
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and returning the temperature of the combustion products to 150°C, which assumes 

the latent heat of vaporization of water in the reaction products is not recovered. 

3.3 CASE STUDIES 

The set of algebraic equations of power and gas distribution networks has been coded 

and solved in Matlab environment. Figure 3-2 shows the integrated system utilized 

to test the formulated power and gas flow problem. As shown in the figure, the 

integrated system composed of the 33-bus Baran power distribution test system 

connected to a 7-node gas network. Three equal-sized Photovoltaic (PV) units of 1.25 

MVA are located at buses 18, 25 and 33. The generation and load profile for a typical 

day with 15-minutes time step is shown in Figure 3-3 the main gas source is located 

Table 3-1 shows the gas pipeline data.  
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Figure 3-2 the integrated power and gas distribution networks 

         

         Figure 3-3 Load and generation profile of the studied test system 

                                                                                   

                                                                                      Table 3-1  Gas pipeline data  

Branch 
From 

node 
To node  𝑹𝒌𝒎   

1 1 2 0.0003 

 2 2 3 0.0004 

3 2 4 0 

4 4 5 0.00025 

5 5 6 0.0002 

6 4 7 0.0003 

232 )//( hmkpa
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            Figure 3-4 Gas Demand profile in per unit                                                                               

                                                                                        

The normalized daily gas consumption profile is shown in Figure 3-4. As depicted in 

Figure 3-2, there are three connection points between the power and gas networks. 

The GPG is located between node N1 and bus 8; the compressor is placed between 

bus 12 and branch 3 and the PtG is installed at bus 14 and N4. The GPG is assumed 

to a fixed gas amount of 12,000 m3/h for the studied day.  

Two case studies are carried out to test the proposed platform. In the first case study, 

the PtG is deactivated. In the second case study, PtG is activated during the periods 

at which the power generated by PV units exceeds the total power demand in the 

system. In such a case, the PtG is operated as a dispatchable load to prevent the 

substation reverse power flow. 



Page | 39 
 
 

 

 

Figure 3-5 shows the maximum voltage in the 33-bus system during the studied day 

without and with the activation of PtG. As shown in the figure, a voltage rise 

problem occurs due to the reverse power flow at times when production is at a 

peak. As depicted, the problem of voltage rise can be mitigated by effectively 

activating the PtG unit during such periods, which facilitate the high penetration of 

renewable generation. When the produced gas of PtG is injected into the gas grid, 

it will affect the gas flow and pressure. Figure 3-6 and Figure 3-7 show the daily gas 

flow between N1 and N2 and the pressure at N2 without and with the activation of 

PtG, respectively. As shown in Figure 3-6, the gas flow between N1 and N2 

decreases when the PtG unit is activated to compensate for high PV production. 

When the renewable gas produced by PtG is injected into the gas system, the flow 

of the gas supply decreases, which is reflected on the gas flow of N1-N2 pipeline. 

Nonetheless, the pressure of N2 increases when the PtG is activated, where the gas 

flow decreases. 
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Figure 3-5 studied system maximum bus voltage with and without PtG 

 

Figure 3-6 Gas flow between nodes N1 and N2 with and without PtG

 

Figure 3-7 Pressure of node N2 with and without PtG 
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Chapter 4  

Optimal Design of Power to Gas Energy 

Storage Systems 

 4.1 Introduction  

The 21st century required that power industries should use smart equipment in 

classical power grid and this will cause variation in the performance of power 

systems; specifically the optimum use of power energy in the near future [58]. Some 

changes are required to take places for instances, use of controllable load, 

penetration of renewable energy and increasing the use of energy storage technology 

can be efficient solutions to create the balance between the production and 

consumption in conventional power grids [59]. 

ESS is playing a vital role in providing multiple services in several electricity 

markets. However, the benefits and risks of ESS participation vary across the type 

of markets and time of participation. In this chapter, a review of three different types 

of markets, at which ESS could potentially participate, is presented. Also, a new 

formulation for the optima sizing of PtG energy storage is developed.  
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4.2 Review of Electricity Markets  

4.2.1 Energy arbitrage market 

Price arbitrage is for storage to charge during low price periods and discharge during 

high price periods, but this requires a significant price difference to ensure the initial 

investment can be repaid [60]. However, the uncertainty for energy arbitrage is from 

price variations, which cannot be predicted accurately. This is possible in all 

countries with a wholesale energy market. 

4.2.2 Ancillary service markets 

Numerous ancillary service markets exist worldwide, with several commercial 

frequency response markets. ESS is involved with a payment structure reflecting its 

operation, which normally consists of two fees: the availability fee and response 

energy fee [61]. Frequency response (FR) markets vary across the world depending 

on system requirements, but FR is an essential resource to ensure stable energy 

network operation, to which ESS can contribute. In the FR market, the risk comes 

from the customers’ behaviors, causing system frequency to fluctuate. 
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4.2.2 Distribution Network Operator’s market 

The Distribution Network Operator (DNO’s) market is focused on the deferral of 

network investment by reducing peak energy flows. The introduction of ESS allows 

the peak load on the electricity networks to be reduced [62]. By providing proper 

peak shaving and/or congestion management services to DNOs, ESS can help save 

the investment and operation and maintenance costs of distribution networks.  

4.3 Formulation of the Optimization 

Model 

In this work a new formulation is developed to optimize the electrolyzer size that 

would produce hydrogen fuel to supply a hydrogen consumer facility e.g., 

transportation. The developed formulation aims at minimizing the capital and 

operation costs of the electrolyzer. Simultaneously, the algorithm aims to coordinate 

the operation of the electrolyzer unit across the seasons of the year. This is to 

maximize the harvested power during periods of surplus power i.e., low demand and 

low electricity prices. Using such algorithm, hydrogen generation facility will 

generate and store hydrogen during periods/seasons of low electricity prices for later 

use e.g., arbitrage.  
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4.3.1 Objective Function: 

The objective function of the optimization problem is defined to minimize the 

annualized capital expenditure (CAPEX) and the operation expenditure (OPEX) as 

follows: 

        𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:   𝐶𝐴𝑃𝐸𝑋 + 𝑂𝑃𝐸𝑋                                                                      (4.1) 

The annualized CAPEX is given as the product of the electrolyzer capital cost and 

the maximum of the electrolyzer operation (i.e.,𝑃𝑡
𝐸𝑙𝑧) in MW over the optimization 

horizon, which is divided by the electrolyzer life span (i.e., 𝐿𝑆), as shown in equation 

(4.2). 

       𝐶𝐴𝑃𝐸𝑋 =  
𝑚𝑎𝑥{𝑃𝑡

𝐸𝑙𝑧}×𝐶𝐸𝑙𝑧

𝐿𝑆
,    ∀ 𝑡 𝜖 𝑇                                                            (4.2) 

where, 𝐶𝐸𝑙𝑧 is the capital cost per MW, and 𝑡 denotes for the optimization time 

step within the optimization time horizon 𝑇 given as follows: 

         𝑇 =  {1, 1 + ∆𝑡, ⋯ ⋯ , 𝑡, ⋯ ⋯ , 𝑁𝑡 − ∆𝑡, 𝑁𝑡}                                             (4.3) 

where, ∆𝑡 and 𝑁𝑡 represents the optimization horizon time step and number of time 

steps, respectively. 

The annualized OPEX in the objective function is given as the product of the 

electrolyzer operation set points and: (i) the electricity prices (i.e., 𝐸𝑡
𝑃𝑟𝑐) in $/MW, 

and (ii) the electrolyzer operation cost (i.e., 𝑂𝐶𝐸𝑙𝑧) in $/MW as follows: 
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𝑂𝑃𝐸𝑋 =  ∑ 𝑃𝑡
𝐸𝑙𝑧 × (𝐸𝑡

𝑃𝑟𝑐 + 𝑂𝐶𝐸𝑙𝑧), ∀ 𝑡 𝜖 𝑇.                                    

𝑡 𝜖 𝑇

         (4.4) 

Where, the operation cost is given as follows: 

𝑂𝐶𝐸𝑙𝑧 =
3% × 𝐶𝐴𝑃𝐸𝑋 × 𝐿𝑆

8760
                                                                           (4.5) 

 

4.3.2: Electrolyzer constraints: 

The objective function in (4.1) is subject to the electrolyzer operation constraints. 

Equation (4.6) expresses the hydrogen outflow of the electrolyzer unit as a function 

of its input power [61].  

𝐹𝑡
𝐸𝑙𝑧 =  𝑃𝑡

𝐸𝑙𝑧 × 𝛽𝐸𝑙𝑧 × 𝜂𝐸𝑙𝑧                                                                           (4.6) 

where, 𝐹𝑡
𝐸𝑙𝑧 denotes the outflow of the electrolyzer unit, 𝛽𝐸𝑙𝑧 is the conversion factor 

of the electrolyzer in m3/MW, 𝜂𝐸𝑙𝑧 is the efficiency of the electrolyzer unit. As such, 

the conversion factor of the electrolyzer unit is determined based on Faraday 

constant (𝐹), Faraday’s efficiency (𝜂𝐹), and the electrolyzer input voltage (𝑣𝐸𝑙𝑧), as 

shown in (6) [61]. 

𝛽𝐸𝑙𝑧 =  
𝜂𝐹

2 × 𝐹 × 𝑣𝐸𝑙𝑧
                                                                                            (4.7) 
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Also, it is worth noting that the electrolyzer hydrogen generation is constrained to 

satisfy the hydrogen demand as follows: 

∑ 𝐹𝑡
𝐸𝑙𝑧

𝑡 𝜖 𝑇

= ∑ 𝐹𝑡
𝐷𝑒𝑚

𝑡 𝜖 𝑇

,    ∀ 𝑡 𝜖 𝑇                                                                           (4.8) 

where, 𝐹𝑡
𝐷𝑒𝑚 denotes the hydrogen demand by the customer. 

4.3.3: Power network constraints: 

The formulated optimization model is subjected to the power distribution system 

power mismatch constraints given in (4.9)-(4.10). 

∆𝑃𝑖,𝑡 = 𝑃𝑖,𝑡
𝑔𝑒𝑛

  − (𝑃𝑖,𝑡
𝑑𝑒𝑚 + 𝛼𝑖𝑃𝑡

𝐸𝑙𝑧 ) − 𝑃𝑖,𝑡 = 0,    ∀ 𝑡 𝜖 𝑇  ∧    𝑖 𝜖 𝐼              (4.9) 

∆𝑄𝑖,𝑡 = 𝑄𝑖,𝑡
𝑔𝑒𝑛

  − 𝑄𝑖,𝑡
𝑑𝑒𝑚 − 𝑄𝑖,𝑡 = 0,    ∀ 𝑡 𝜖 𝑇  ∧    𝑖 𝜖 𝐼                                  (4.10) 

where, 𝑖 is an index for the power distribution system nodes within the set of nodes 

𝐼; 𝑃𝑖,𝑡
𝑔𝑒𝑛

 and 𝑄𝑖,𝑡
𝑔𝑒𝑛

are the active and reactive power generation, respectively; 𝑃𝑖,𝑡
𝑑𝑒𝑚 

and 𝑄𝑖,𝑡
𝑑𝑒𝑚 are the active and reactive power demand. Here, it is worth noting that 𝛼𝑖 

represents the interconnection between the electrolyzer and the power distribution 

system.  As such, 𝛼𝑖 is equal to one, if the electrolyzer is connected to node 𝑖, 

otherwise it is equal to zero.  𝑃𝑖,𝑡 and 𝑄𝑖,𝑡 are the active and reactive power at node𝑖, 

which are given as follows: 



Page | 47 
 
 

 

 

𝑃𝑖,𝑡 = 𝑉𝑖,𝑡 ∑ 𝑉𝑖′,𝑡

𝑖′ 𝜖 𝐼

× 𝑌𝑖𝑖′ × 𝐶𝑜𝑠(𝛿𝑖 − 𝛿𝑖′ − 𝜃𝑖𝑖′),    ∀ 𝑡 𝜖 𝑇  ∧    𝑖 𝜖 𝐼             (4.11) 

𝑄𝑖,𝑡 = 𝑉𝑖,𝑡 ∑ 𝑉𝑖′,𝑡

𝑖′ 𝜖 𝐼

× 𝑌𝑖𝑖′ × 𝑆𝑖𝑛(𝛿𝑖 − 𝛿𝑖′ − 𝜃𝑖𝑖′),    ∀ 𝑡 𝜖 𝑇  ∧    𝑖 𝜖 𝐼             (4.12) 

where, 𝑉𝑖,𝑡 denotes the voltage magnitude at node 𝑖; 𝑌𝑖𝑖′ represent the line admittance 

between node 𝑖 and node 𝑖′; 𝛿𝑖 is the voltage angle at node 𝑖; and 𝑌𝑖𝑖′ is the 

admittance angle between node 𝑖 and node 𝑖′.  The objective function is also 

subjected to the power distribution node voltage and line capacity constraints as 

shown in equations (4.13) and (4.14), respectively. 

𝑉𝑖,𝑚𝑖𝑛 ≤ 𝑉𝑖,𝑡 ≤ 𝑉𝑖,𝑚𝑎𝑥                                                                                             (4.13) 

𝑃𝑖,𝑡 ≤ 𝑃𝑖,𝑚𝑎𝑥                                                                                                               (4.14) 

4.4 Case Study 

A case study is carried out in this section to validate the effectiveness of the 

proposed optimization model. To that end, the system data during the planning period 

is normalized annually. Without loss of generality, the studied year is divided into 

four seasons and each season is represented by a single day. Hence, the entire year is 

represented by four days. The time step of each day is assumed to be one hour. Figure 

4-1 shows the electricity price for each day in each season. The data is obtained from 
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the IESO website [63]. Figure 4-2 shows a typical load profile for each season 

represented in a day [63]. The hydrogen demand is assumed to be 3060 m3/day (i.e., 

255 kg) of hydrogen on a daily basis. 

Fig. 4-3 shows the 33-bus power distribution system. As shown in the figure the 

electrolyzer unit is assumed to be connected at node 9. Where, the power 

distribution system node voltages are constrained to their minimum and maximum 

voltage limit of 0.95 pu and 1.05 pu, respectively, as per the ANSI code regulation 

[64]. In addition, the power distribution system lines are constrained to their 

Physical capacity of 10 MW. The integrated electrolyzer unit into the power 

distribution system has a hydrogen conversion factor of 360 m3/MW, operational 

efficiency of 60%, and a capital cost of 1.25 M$/MW [61]. 

To that end, the developed optimization model takes place to optimize the 

electrolyzer unit size and operation to supply the hydrogen demand. In addition, the 

optimization model exploits the lower electricity prices to generate hydrogen, in 

order to minimize the OPEX. 
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Figure 4-1 Electricity price of the four days representing the four seasons 

 
         

  

Figure 4-2 Load profile of the year in each season 
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Figure 4-3 the studied 33-bus power distribution system 

 

Figure 4-4 shows the optimal operation of the electrolyzer across the simulated 

four different seasons. As shown in the figure, the maximum capacity of the 

electrolyzer is 2.17 MW that have a capital cost of $2.7M. As such, the annual OPEX 

is estimated at   507.4 k$/year.  Figure 4-5 shows the voltage profile of the 

electrolyzer unit. As can be seen in the figure, the electrolyzer voltage is maintained 

within the allowable voltage boundaries specified by the ANSI code [64].  
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Figure 4-4 Electrolyzer Operation schedule 

           

 

Figure 4-5 Electrolyzer interconnection node (i.e., Bus 9) voltage 

Figure 4-6 shows the hydrogen generation during the time of the day across the 

studied seasons. As shown in the figure, the production of hydrogen is high during 

the night until the early morning hours due to the low electricity prices and low 

power demand during the overnight periods. However, the hydrogen production is 

low during the daily peak power demand that corresponds to high electricity prices. 
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Figure 4-6 Hydrogen production across the simulated seasons. 

 

 



Page | 53 
 
 

 

 

Chapter 5 

    Optimal Design of PtG Electrolyzer to 

Supply Fuel Cell Transit Bus Networks  

5.1 Introduction 

Environment Canada has forecasted that greenhouse gas (GHG) emissions will 

rise to 862Mt by 2020 in Canada, which corresponds to a rise of over 15% 

compared to 2010 [65]. Oil and gas, energy, and transportation are identified 

as the main sectors that contribute to GHG emissions in Canada. The 

transportation sector contributes over 22% of global GHG emissions, a share 

that is often flagged as a target for potential emissions reduction [66]. For this 

reason, alternative powertrain technologies have been under close analysis to 

identify suitable replacements for the traditional oil-dependent Internal 

Combustion Engine (ICE). Electric Vehicle (EV) technologies are regarded a 

promising replacement for its ICE counterpart [67]. Transportation sector is 

thus on the verge of a paradigm shift to mitigate global GHG emissions, through 

the utilization of electric transportation systems.  
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5.1.1 Hydrogen’s Overview  

             In industry, innovation and industrialization must work to reverse the 

balance of power between the production of hydrogen using fossil fuels and green 

hydrogen produced by electrolysis. As a means to store energy and create a bridge 

between the electricity and gas networks, this energy system must be addressed as a 

whole in order to intelligently and successfully negotiate the energy transition. 

              In the transport and mobility sector, hydrogen-powered vehicles are part of 

the wide array of zero-emission solutions. They have a vital role to play in meeting 

the objective fixed by various governments around the world to stop selling vehicles 

that emit greenhouse gases by 2040. It is already upon us and we must get ready by 

planning the complementary development of different alternative fuels. 

Different EV technologies have been proposed and are further being developed, such 

as: hybrid electric vehicles (EVs), plug-in hybrid EVs, battery EVs, and Fuel cell 

EVs. A brief introduction of each technology is given hereunder:  

5.1.2 Hybrid EVs 

Hybrid EVs were proposed to improve the efficiency and reduce the GHG emission 

of the ICE. Hybrid EVs can also tackle the deficiencies of battery EVs such as short 
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driving range, the need for charging infrastructure, and long refuelling time 

limitations [68]. Hybrid EVs utilize a conventional ICE propulsion system integrated 

with an ESS (i.e., battery or supercapacitors), and an electrical motor. In hybrid EVs, 

the ICE is used to either charge the battery or directly drive the vehicle. The electrical 

motor, on the other hand, is utilized to recover the kinetic energy by the regenerative 

braking system during deceleration situations. This, in turn, improves the overall 

efficiency [69].   

5.1.3 Plug-in Hybrid EVs 

Plug-in hybrid EVs have the same characteristics of hybrid EVs in addition to their 

abilities to be plugged into the electrical grid to be charged [70]. This feature allows 

for powering the vehicles from zero-emission energy resources.  Plug-in hybrid EVs 

are designed to get most of its power from the electrical propulsion system, while 

the ICE acts as a backup powertrain. 

 

5.1.4 Battery EVs  

It has been argued that battery EVs are the cleanest powertrain technology, 

especially if the charged power is completely drawn from renewable energy 



Page | 56 
 
 

 

 

resources [71].Battery EVs have two main concepts of refuelling (i.e., recharge the 

battery packs): on-board battery charging or battery swapping. Currently, Li-ion 

outcompete other types of batteries, due to it high energy density [72]. Battery EVs 

retains some adoption barriers in the market due to: 1) life cycle and degradation of 

batteries; 2) high cost of purchase; 3) lack of public charging infrastructure; and 4) 

impacts of adopting high EVs on the utility grid [73].   

5.1.5 Fuel cell EVs 

Fuel cell EVs utilize hydrogen fuel and air to generate electricity from fuel cell. The 

generated electricity is used to propel the vehicle or to be stored in a storage device 

(i.e., batteries or supercapacitors). Unlike battery-based EVs, fuel cell vehicles are 

characterized by high system efficiency and long driving range [74]. However, fuel 

cell vehicles is characterised by high cost and short life span. Furthermore, the lack 

of hydrogen fuelling stations infrastructure is identified as the key barrier to the 

adoption of fuel cell vehicles.  
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Figure 5-1 a schematic diagram of powering FCEBs using PtG technology 

5.2 Fuel Cell (Hydrogen) Electric Buses 

Among different types of vehicles, electrification of transit vehicles (e.g. public, 

campuses, and schools) is seen as a suitable context to reduce transportation-related 

GHG emissions, where it offers defined routes, timely operation, and share 

infrastructure among several other parameters that could aid the implementation of 

EV technology [75]. Unlike All Battery Electric Buses, Fuel Cell Electric Bus 

(FCEB) technologies have short refueling time i.e., 3 to 5 minutes, and can run for 

long distances i.e., about 300 miles to refuel [76]. FCEBs will produce zero-emission 

when the hydrogen is produced using the electrolyzer of PtG during the periods of 

surplus renewable energy resources i.e., well to wheel production of hydrogen has 

zero emission [77, 78]. Figure 5-1 shows a schematic diagram for the integration of 
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power and transportation systems in order to produce the required hydrogen to power 

FCEBs. As depicted in the figure, the produced hydrogen from the electrolyzer could 

be stored in a hydrogen tank i.e., the gas storage network to be utilized in a later time 

to fuel the FCEBs. Hence, the excess renewable power is basically stored in the gas 

storage network in the form of hydrogen and is then used to supply hydrogen demand 

to the local transit buses network. There are several ongoing demonstration projects 

for the implementation of FCEBs. For instance, Japan targets to have 6000 fuel cell 

cars, 100 FCEBs and 35 Hydrogen refueling station by 2020 for the Olympic Games 

[79].   

 In addition to the above characteristics of the FCEB technologies, there are a 

number of other reasons that make hydrogen (in compressed form) and fuel cells 

would appear to be a suitable option for electric buses: 

• They return regularly to a depot thus minimizing fuel infrastructure 

requirements; 

• They are “large”, thus minimizing the need for compactness of the 

technology; 

• Subsidies may be available from urban authorities in order to demonstrate 

urban pollution reduction commitments 
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• They operate almost continually over long periods, thus making fuel-

efficient technology more attractive. 

In terms of the mechanical properties, the total force for driving a FCEB can be 

written as follow [80]:         

           𝐹𝑇 = ∑  𝑅 = 𝑅𝑊 + 𝑅𝑆 + 𝑅𝐴 + 𝑅𝐼                                                            (5. 1) 

where RW is rolling resistance, RS slope resistance, RA air resistance and RI inertial 

resistance. The force can be also represented in a detailed formula as: 

    𝐹𝑇 = (𝑚 +
Θ𝑤

𝑟2 )
𝑑𝑣

𝑑𝑡
+

1

2
𝑝𝐶𝑑𝐴𝑓𝑉2 + 𝑚𝑔𝐶𝑟 cos(𝛼) + 𝑚𝑔 sin(𝛼)                (5.2)  

where m is the vehicle gross mass, w is the wheels inertia, r is the wheel radius, ρ is 

the air density, Cd is the aerodynamic drag coefficient, Af is the vehicle frontal area, 

g is the acceleration of gravity, Cr is the friction coefficient and α is the road angle 

which is set to zero for the evaluation driving cycle. The Citaro Fuel Cell Hybrid 

transit bus from Mercedes Benz is used as a reference for the vehicle parameters. The 

simplified formula for power demand of a bus can be defined as follow 

                 𝑃𝑚 = 𝑉𝑇 ∗ 𝑣                                                                                          (5.3) 

The size and location of tank in a vehicle can be design with the help of the equation  
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           L=𝑊𝐵 − (2𝐹 + 𝐺 + 𝐻 + 𝐼)                                                           (5.4) 

it explains that the size and location of tank in vehicle is varies based on the type of 

vehicle for instance smaller size and high volume size as the height and wide of 

vehicle changes the exact location and size  of the tank in vehicle will be design with 

the help of equation (5.4).  

5.3 Proposed Optimization Model 

In this section, an optimization model is developed for the daily schedule of 

hydrogen production in order to supply a FCEB transit network. The model is 

formulated to optimize the cost of producing the hydrogen required to supply a 

FCEB network for the next day i.e., day ahead.  

4.3.1: Objective Function of the Optimization Model: 

The objective function of the optimization model is formulated as follows:  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:   ∑ 𝑃𝑡
𝐸𝑙𝑧 × 𝐸𝑡

𝑃𝑟𝑐∀ 𝑡 𝜖 𝑇.

𝑡 𝜖 𝑇

                                                             (5.5) 

where 𝑃𝑡
𝐸𝑙𝑧 is the power consumed by the electrolyzer and 𝐸𝑡

𝑃𝑟𝑐 is the price of 

electricity at each time instant t. The time 𝑡 denotes for the optimization time step 

within the optimization time horizon 𝑇 given as follows: 
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 𝑇 =  {1, 1 + ∆𝑡, ⋯ ⋯ , 𝑡, ⋯ ⋯ , 𝑁𝑡 − ∆𝑡, 𝑁𝑡}                                                          (5.6) 

The objective function represents the daily electricity cost of the hydrogen required 

to supply the FCEBs. It is noted that ∆𝑡 and 𝑁𝑡 represent the optimization horizon 

time step and number of time steps, respectively. 

4.3.2: FCEB Hydrogen Demand: 

The objective function in (5.1) is subject to the satisfaction of the FCEBs hydrogen 

demand for the next day. Such constraint can be represented mathematically as 

follows: 

𝐹𝑡𝑟𝑎𝑛𝑠𝑖𝑡
𝐷𝑒𝑚 = ∑ 𝐹𝑡

𝐸𝑙𝑧

𝑡 𝜖 𝑇

,    ∀ 𝑡 𝜖 𝑇                                                                            (5.7) 

where 𝐹𝑡𝑟𝑎𝑛𝑠𝑖𝑡
𝐷𝑒𝑚  denotes the total hydrogen demand by the transit sector. The amount 

of required hydrogen per day for a FCEB transit network is calculated as: 

𝐹𝑡𝑟𝑎𝑛𝑠𝑖𝑡
𝐷𝑒𝑚 = ∑ ℎ𝑅 × 𝑙𝑡𝑟𝑖𝑝 × 𝑁𝑡𝑟  

𝑁𝐹𝐶𝐸𝐵

𝑏=1

                                                                             (5.8) 

 

where ℎ𝑅 is the rate of hydrogen consumption in kg per kilometer, 𝑙𝑡𝑟𝑖𝑝 is the length 

of each trip for each bus b, 𝑁𝑡𝑟  is the total number of trips for each bus b per day, 

and 𝑁𝐹𝐶𝐸𝐵 is the total number of operating buses in the transit network . It is 
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noteworthy that 𝐹𝑡𝑟𝑎𝑛𝑠𝑖𝑡
𝐷𝑒𝑚  cannot exceed the capacity of the hydrogen tank 𝐻𝑐𝑎𝑝 given 

as follows:  

𝐹𝑡𝑟𝑎𝑛𝑠𝑖𝑡
𝐷𝑒𝑚 ≤ 𝐻𝑐𝑎𝑝                                                                                                   (5.9) 

4.3.3: Power Flow and Electrolyzer constraints: 

The objective function is subject to the electrolyzer operation constraints described 

in chapter 4 i.e., equations (4.6)-(4.8). It is also subject to the power flow and voltage 

constraints of the distribution system stated in (4.9)-(4.14).  

5.4 Simulation Results 

The optimization model described above has been coded in MATLAB environment 

and solved using its optimization toolbox. Figure 5-2 shows the integrated system of 

power and FCEB transit systems. As shown in the figure, the integrated system 

composed of the 33-bus Baran power distribution test system connected to through 

electrolysis in bus to Hydrogen storage systems. Three equal-sized Photovoltaic (PV) 

units of 1.25 MVA are located at buses 18, 25 and 33.  
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Figure 5-2 integrated power and FCEB transit networks 

  

the electrolyzer is arbitrary allocated at bus # 14 of the power distribution system.         

The electricity price of the studied day is shown in Figure 5-3 below. Figure 5-4 

shows the daily electric load profile of the test system. 
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Figure 5-3 Daily electricity price 

 

Figure 5-4 Daily load demand of the studied system 

Three different real transit bus systems with different sizes are studied. The transit 

networks under study are Belleville, Stratford, and Cornwall located in Ontario, 

Canada. The typical public bus as shown in the figure above requires 0.1548 kg of 

Hydrogen per kilometer. The above estimation is from fuel cell bus network that was 

implemented for four years in BC Canada. To elaborate more for each studied 

network, the amount of required hydrogen to supply the FCEBs is calculated based 
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on equation (3.12) and the transit data summarized in Tables 5-1, 5-2, and 5-3 for the 

three networks under study, respectively. Figures 5-5, 5-6, and 5-7 shows the 

optimized scheduling of the hydrogen production for three networks under study, 

respectively. 

                                                           

                                                                     Table 5-1 Studied Belleville transit network  

Rout ID 
Length 

(Km) 
Trip  Route Name 

                                                                         

H in KG 

1 9.564 24 Plaza  Dundas 22.95 

 2 9.705 31 Parkwood Heights 30.086 

3 12.392 29 College East 35.93 

4 9.601 28 Mall North Front 26.88 

5 9.448 31 Parkdale mall 29.28 

6 10.378 24 Avondale 33.07 

7 12.157 29 Loyalist 35.25 

8 9.998 28 North Part 27.99 

9 8.508 23 Quinte Sport Center 19.568 

                                                            

                                                                    

                                                                         Table 5-2 Studied Straftford  transit network  

Rout ID 
Length 

(Km) 
Trips  Route Name 

                                                                      

H in KG 

1 7.7 32 Huron 38 

 2 8.2 32 East end 40.6 

3 10 32 McCartly 49.53 

4 9.5 32 Queensland 47.1 

5 11.7 32 Devon 48.1 

6 9.7 32 Downie 57.96 
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                                                                          Table 5-3 Studied Cornwall transit network  

Rout ID Length (Km) Trip  Route Name 
                                                                           

H in KG 

1 12.837 30 Pitt 59.6 

 2 11.058 30 McConnell 51.35 

3 11.28 30 Sunrise 52.38 

4 10.346 30 Cumberland 48.05 

5 10.22 31 Brookdale 49.04 

6 9.901 30 Montreal 46 

7 12.076 28 Riverdale 52 

8 11.76 7 Community Service Eest 19.3 

9 17.76 9 Community Service West 24.7 

10 13.8 3 Supplementary 1 6.41 

11 19.9 1 Supplementary 2 3.1 

12 18.2 3 Supplementary 3 8.45 

                                                                                                                                             

    

 

Figure 5-5 Optimized hydrogen production for Belleville 
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Figure 5-6 Optimized hydrogen for Stratford 

 

Figure 5-7 Optimized hydrogen production for Cornwall 

  In order to simulate a large amount of hydrogen demand, the three networks are 

combined and represented as one transit network and the simulation result is plotted 

in the following graph 5-8: The total amount of demand gas is 1093.3 kg. 
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Figure 5-8 Optimized hydrogen of all three networks together 

 

The simulation results of all three studied networks: Belleville, Stratford and 

Cornwall, shows that the optimized model will provide required amount of hydrogen 

for each network with the cheapest price. As shown in Figure 5-5, the hydrogen can 

be mostly produced for the network in the interval of [3:30 am – 3:30 pm], times of  

less power demand and convenient price. The same study is implemented for 

Stratford and Cornwall bus networks and the results are demonstrated in  Figures 5-

6 and 5-7, respectively. As shown in Figure 5-s6, the right time for producing the 

Hydrogen demand for the buses in this network is found to be [4:30am -1:30 pm].  

The time interval for producing the amount of Hydrogen in for Cornwall is found to 

be almost the same as it is for Belleville with little changes because the required 
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amount of hydrogen for both network is almost the same i.e., 391.7 kg for Belleville 

and 420.4 kg for Cornwall. 
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Chapter 6 

Contribution and future works  

This chapter summarizes the main contributions and findings of this thesis and 

states future work. 

6.1 Thesis Summary   

Utility-scale PtG is a new type of energy storage technologies, which enables 

the transformation of surplus power generation to hydrogen by electrolysis, 

or even to methane by an additional methanation process. The produced gas 

can then be sold directly or stored for future usage. This thesis aims at 

developing the modeling tools required to simulate, design, and optimize the 

operation of utility-scale PtG energy storage to quantify its benefits for 

potential applications in smart grids.  

Toward that end, in chapter 1 of this thesis, the motivation for the research 

work is defined and thesis layout is presented. Chapter 1 introduces energy 

storage technologies as potential means to mitigate key challenges in 
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sustainable energy: reducing GHG emission from energy sectors, seamless 

integration for renewable energy resources, electrification of transportation, 

and production of renewable gas. 

In chapter 2, different types of utility-scale energy storage technologies have 

been reviewed and compared.  In literature one can find various types of 

classification for energy storage technologies. In this thesis, energy storage 

technologies are classified into four main categories: their interaction to 

power grid, services that can provide to the grid, short-term and long-term 

energy storage capabilities, and the way/medium at which the energy is 

stored.   

A co-simulation platform for both power and NG distribution networks is 

proposed and developed in chapter 3. The developed co-simulation platform 

aims at quantifying the impacts of PtG technology on both power and NG 

distribution networks. In chapter 4, a mathematical model for the optimal 

sizing of PtG energy storage to supply a hydrogen demand has been 

formulated. The objective function of the optimization model is to minimize 

the capital and operation costs of PtG. Chapter 5 has introduced a new 
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formulation for the optimal design and production scheduling of hydrogen, 

i.e., from PtG, to supply public transit bus networks. The proposed 

formulation takes into account the operation requirements of both power 

distribution and electric bus transit networks. There are several case studies 

that have been carried out in chapters 3 to 5 in order to validate the 

effectiveness of the proposed engineering tools.  

 

6.2 Contribution 

As a result throughout the research period, several contributions have been 

achieved in this thesis. First, a co-simulation platform for power and gas 

distribution networks is developed [81]. The co-simulation platform could 

help quantifying the role of PtG technology in shaping the future of energy 

systems. Using the co-simulation platform, several research studies can be 

carried out such as operation scheduling and planning of power and gas 

distribution networks. Thus, the platform is expected to be immensely useful 

for the operators and planners of power and gas distribution networks. 
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Second, a new mathematical formulation has been developed in this thesis 

for the optimal design i.e., sizing, of PtG energy storage. The developed 

formulation aims at minimizing the capital and operation costs of PtG. The 

formulation also aims to maximize the harvested power during periods of 

surplus energy i.e., low demand and high power generation. The formulated 

model could be utilized to assess the technical and economic feasibility of 

PtG energy storage and quantify its potential role to facilitate seamless 

adoption for high penetration of renewable energy resources.  

Third, a new mathematical formulation is proposed for the optimal sizing and 

production scheduling of hydrogen, i.e., from PtG, to supply fuel cell electric 

bus transit networks. The proposed formulation takes into account the 

operation requirements of both power distribution and electric bus transit 

networks. Transit network operators could potentially use the developed 

model to design and optimize the operation of their fuel cell buses.  
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6.3 Future work 

Many countries around the world set ambitious target to replace 

conventional energy generation with Renewable energy resources [82],[83]. 

The German government, for instance, is targeting 80% share of renewable 

energy resources in electricity generation by 2050. ESS technologies will play 

a major role in meeting the ambitious targets of renewable energy 

penetration levels. Hence, future work may include the following: 

 Develop dynamic models for ESS technologies to study their technical 

role of responding to grid services such as frequency regulation 

 Extend the work of fuel cell electric buses to include electric cars and 

distributed hydrogen fueling stations 

 Develop a model to compare the techno-economic aspects of 

centralized MW-scale versus distributed community kW-scale hydrogen 

production facilities 

 Assess the impacts of safety challenges for hydrogen storage on the 

future adoption for high penetration of fuel cell electric vehicles. 
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