72,492 research outputs found

    Price-Based Optimal Resource Allocation in Multi-Hop Wireless Networks

    Get PDF
    Recent advances in wireless communications and digital electronics have enabled rapid development of a variety of wireless network technologies. The undeniable popularity of wireless network is due to its ubiquity and convenience, which is appreciated by the users. In this dissertation, we study the problem of resource allocation in multihop wireless networks (so called ad hoc networks). A wireless ad hoc network consists of a collection of wireless nodes without a fixed infrastructure. Two wireless nodes communicate with each other directly, if they are within the transmission range of each other. Otherwise, the communication is achieved through the relays of intermediate nodes. Compared with traditional wireline networks, the unique characteristics of wireless networks pose fundamental challenges to the design of effective resource allocation algorithms that are optimal with respect to resource utilization and fair across different network flows. Particularly, the following issues of wireless networks need fresh treatment: (1) Interference of wireless communication. Flows not only contend at the same node (contention in the time domain), but also compete for shared channel if they are within the interference ranges of each other (contention in the spatial domain). (2) Multiple resource usage. Sending data from one wireless node to another needs to consume multiple resources, most notably wireless bandwidth and battery energy. (3) Autonomous communication entities. The wireless nodes usually belong to different autonomous entities. They may lack the incentive to contribute to the network functionality in a cooperative way. (4) Rate diversity. Wireless nodes can adaptively change the transmission bit rate based on perceived channel conditions. This leads to a wireless network with rate diversity, where competing flows within the interference range transmit at different rates. None of the existing resource allocation algorithms in wireless ad hoc networks have realistically considered end-to-end flows spanning multiple hops. Moreover, strategies proposed for wireline networks are not applicable in the context of wireless ad hoc network, due to its unique characteristics. In this dissertation, we propose a new price-based resource allocation framework in wireless ad hoc networks to achieve optimal resource utilization and fairness among competing end-to-end flows. We build our pricing framework on the notion of maximal cliques in wireless ad hoc networks, as compared to individual links in traditional wide-area wireline networks. Based on such a price-based theoretical framework, we present a two-tier iterative algorithm. Distributed across wireless nodes, the algorithm converges to a global network optimum with respect to resource allocations. Further, we present a price pair mechanism to coordinate multiple resource allocations, and to provide incentives simultaneously such that cooperation is promoted and the desired global optimal network operating point is reached by convergence with a fully decentralized self-optimizing algorithm. Such desired network-wide global optimum is characterized with the concept of Nash bargaining solution, which not only provides the Pareto optimal point for the network, but is also consistent with the fairness axioms of game theory. Finally, we present a channel aware price generation scheme to decompose the bit rate adjustment and the flow rate allocation. The allocation result achieves channel time fairness where user fairness and channel utilization is balanced. The major achievements of this dissertation are outlined as follows. It models a system-wide optimal operation point of a wireless network, and outlines the solution space of resource allocation in a multihop wireless network; It presents a price-based distributed resource allocation algorithm to achieve this global optimal point; It presents a low overhead implementation of the price-based resource allocation algorithm; It presents an incentive mechanism that enables the resource allocation algorithm when users are selfish

    Adaptive resource allocation for cognitive wireless ad hoc networks

    Get PDF
    Widespread use of resource constrained wireless ad hoc networks requires careful management of the network resources in order to maximize the utilization. In cognitive wireless networks, resources such as spectrum, energy, communication links/paths, time, space, modulation scheme, have to be managed to maintain quality of service (QoS). Therefore in the first paper, a distributed dynamic channel allocation scheme is proposed for multi-channel wireless ad hoc networks with single-radio nodes. The proposed learning scheme adapts the probabilities of selecting each channel as a function of the error in the performance index at each step. Due to frequent changes in topology and flow traffic over time, wireless ad hoc networks require a dynamic routing protocol that adapts to the changes of the network while allocating network resources. In the second paper, approximate dynamic programming (ADP) techniques are utilized to find dynamic routes, while solving discrete-time Hamilton-Jacobi-Bellman (HJB) equation forward-in-time for route cost. The third paper extends the dynamic routing to multi-channel multi-interface networks which are affected by channel uncertainties and fading channels. By the addition of optimization techniques through load balancing over multiple paths and multiple wireless channels, utilization of wireless channels throughout the network is enhanced. Next in the fourth paper, a decentralized game theoretic approach for resource allocation of the primary and secondary users in a cognitive radio networks is proposed. The priorities of the networks are incorporated in the utility and potential functions which are in turn used for resource allocation. The proposed game can be extended to a game among multiple co-existing networks, each with different priority levels --Abstract, page iv

    Resource Allocation in Ad Hoc Networks

    No full text
    Unlike the centralized network, the ad hoc network does not have any central administrations and energy is constrained, e.g. battery, so the resource allocation plays a very important role in efficiently managing the limited energy in ad hoc networks. This thesis focuses on the resource allocation in ad hoc networks and aims to develop novel techniques that will improve the network performance from different network layers, such as the physical layer, Medium Access Control (MAC) layer and network layer. This thesis examines the energy utilization in High Speed Downlink Packet Access (HSDPA) systems at the physical layer. Two resource allocation techniques, known as channel adaptive HSDPA and two-group HSDPA, are developed to improve the performance of an ad hoc radio system through reducing the residual energy, which in turn, should improve the data rate in HSDPA systems. The channel adaptive HSDPA removes the constraint on the number of channels used for transmissions. The two-group allocation minimizes the residual energy in HSDPA systems and therefore enhances the physical data rates in transmissions due to adaptive modulations. These proposed approaches provide better data rate than rates achieved with the current HSDPA type of algorithm. By considering both physical transmission power and data rates for defining the cost function of the routing scheme, an energy-aware routing scheme is proposed in order to find the routing path with the least energy consumption. By focusing on the routing paths with low energy consumption, computational complexity is significantly reduced. The data rate enhancement achieved by two-group resource allocation further reduces the required amount of energy per bit for each path. With a novel load balancing technique, the information bits can be allocated to each path in such that a way the overall amount of energy consumed is minimized. After loading bits to multiple routing paths, an end-to-end delay minimization solution along a routing path is developed through studying MAC distributed coordination function (DCF) service time. Furthermore, the overhead effect and the related throughput reduction are studied. In order to enhance the network throughput at the MAC layer, two MAC DCF-based adaptive payload allocation approaches are developed through introducing Lagrange optimization and studying equal data transmission period

    Network-Layer Resource Allocation for Wireless Ad Hoc Networks

    Get PDF
    This thesis contributes toward the design of a quality-of-service (QoS) aware network layer for wireless ad hoc networks. With the lack of an infrastructure in ad hoc networks, the role of the network layer is not only to perform multihop routing between a source node and a destination node, but also to establish an end-to-end connection between communicating peers that satisfies the service level requirements of multimedia applications running on those peers. Wireless ad hoc networks represent autonomous distributed systems that are infrastructure-less, fully distributed, and multi-hop in nature. Over the last few years, wireless ad hoc networks have attracted significant attention from researchers. This has been fueled by recent technological advances in the development of multifunction and low-cost wireless communication gadgets. Wireless ad hoc networks have diverse applications spanning several domains, including military, commercial, medical, and home networks. Projections indicate that these self-organizing wireless ad hoc networks will eventually become the dominant form of the architecture of telecommunications networks in the near future. Recently, due to increasing popularity of multimedia applications, QoS support in wireless ad hoc networks has become an important yet challenging objective. The challenge lies in the need to support the heterogeneous QoS requirements (e.g., data rate, packet loss probability, and delay constraints) for multimedia applications and, at the same time, to achieve efficient radio resource utilization, taking into account user mobility and dynamics of multimedia traffic. In terms of research contributions, we first present a position-based QoS routing framework for wireless ad-hoc networks. The scheme provides QoS guarantee in terms of packet loss ratio and average end-to-end delay (or throughput) to ad hoc networks loaded with constant rate traffic. Via cross-layer design, we apply call admission control and temporary bandwidth reservation on discovered routes, taking into consideration the physical layer multi-rate capability and the medium access control (MAC) interactions such as simultaneous transmission and self interference from route members. Next, we address the network-layer resource allocation where a single-hop ad hoc network is loaded with random traffic. As a starting point, we study the behavior of the service process of the widely deployed IEEE 802.11 DCF MAC when the network is under different traffic load conditions. Our study investigates the near-memoryless behavior of the service time for IEEE 802.11 saturated single-hop ad hoc networks. We show that the number of packets successfully transmitted by any node over a time interval follows a general distribution, which is close to a Poisson distribution with an upper bounded distribution distance. We also show that the service time distribution can be approximated by the geometric distribution and illustrate that a simplified queuing system can be used efficiently as a resource allocation tool for single hop IEEE 802.11 ad hoc networks near saturation. After that, we shift our focus to providing probabilistic packet delay guarantee to multimedia users in non-saturated IEEE 802.11 single hop ad hoc networks. We propose a novel stochastic link-layer channel model to characterize the variations of the IEEE 802.11 channel service process. We use the model to calculate the effective capacity of the IEEE 802.11 channel. The channel effective capacity concept is the dual of the effective bandwidth theory. Our approach offers a tool for distributed statistical resource allocation in single hop ad hoc networks, which combines both efficient resource utilization and QoS provisioning to a certain probabilistic limit. Finally, we propose a statistical QoS routing scheme for multihop IEEE 802.11 ad hoc networks. Unlike most of QoS routing schemes in literature, the proposed scheme provides stochastic end-to-end delay guarantee, instead of average delay guarantee, to delay-sensitive bursty traffic sources. Via a cross-layer design approach, the scheme selects the routes based on a geographical on-demand ad hoc routing protocol and checks the availability of network resources by using traffic source and link-layer channel models, incorporating the IEEE 802.11 characteristics and interaction. Our scheme extends the well developed effective bandwidth theory and its dual effective capacity concept to multihop IEEE 802.11 ad hoc networks in order to achieve an efficient utilization of the shared radio channel while satisfying the end-to-end delay bound

    A Tutorial on Cross-layer Optimization Wireless Network System Using TOPSIS Method

    Get PDF
    Each other, leading to issues such as interference, limited bandwidth, and varying channel conditions. These challenges require specialized optimization techniques tailored to the wireless environment. In wireless communication networks is to maximize the overall system throughput while ensuring fairness among users and maintaining quality of service requirements. This objective can be achieved through resource allocation optimization, where the available network resources such as bandwidth, power, and time slots are allocated to users in an optimal manner. Optimization-based approaches in wireless resource allocation typically involve formulating the resource allocation problem as an optimization problem with certain constraints.. These techniques provide practical solutions with reduced computational complexity, although they may not guarantee optimality. In summary, optimization-based approaches have been instrumental in studying resource allocation problems in communication networks, including the wireless domain. While techniques from the Internet setting have influenced the understanding of congestion control and protocol design, specific challenges in wireless networks necessitate tailored optimization techniques that account for interference, limited bandwidth, and varying channel conditions. power allocation problem in wireless ad hoc networks Cross-layer optimization refers to the process of jointly optimizing the allocation of resources across different layers of wireless networks, the interactions between different layers become more complex due to the shared medium and time-varying channel conditions.  Nash equilibrium, where no user can unilaterally improve its own performance by changing its strategy. Game theory can capture the distributed nature of wireless networks and provide insights into the behavior of users in resource allocation scenarios Additionally, heuristics and approximation algorithms are often employed in wireless resource allocation due to the complexity of the optimization problems involved. In traditional cellular systems, each user is allocated a fixed time slot for transmission, regardless of their channel conditions. However, in opportunistic scheduling. Alternative parameters for “Data rate Ĺ˝ kbps, Geographic coverage ,  Service requirements , cost ” Evaluation parameter for “Circuit-switched cell, CDPD, WLAN, Paging, Satellite.” “the first ranking training is obtained with the lowest quality of compensation.

    Smoothed Airtime Linear Tuning and Optimized REACT with Multi-hop Extensions

    Get PDF
    abstract: Medium access control (MAC) is a fundamental problem in wireless networks. In ad-hoc wireless networks especially, many of the performance and scaling issues these networks face can be attributed to their use of the core IEEE 802.11 MAC protocol: distributed coordination function (DCF). Smoothed Airtime Linear Tuning (SALT) is a new contention window tuning algorithm proposed to address some of the deficiencies of DCF in 802.11 ad-hoc networks. SALT works alongside a new user level and optimized implementation of REACT, a distributed resource allocation protocol, to ensure that each node secures the amount of airtime allocated to it by REACT. The algorithm accomplishes that by tuning the contention window size parameter that is part of the 802.11 backoff process. SALT converges more tightly on airtime allocations than a contention window tuning algorithm from previous work and this increases fairness in transmission opportunities and reduces jitter more than either 802.11 DCF or the other tuning algorithm. REACT and SALT were also extended to the multi-hop flow scenario with the introduction of a new airtime reservation algorithm. With a reservation in place multi-hop TCP throughput actually increased when running SALT and REACT as compared to 802.11 DCF, and the combination of protocols still managed to maintain its fairness and jitter advantages. All experiments were performed on a wireless testbed, not in simulation.Dissertation/ThesisMasters Thesis Computer Science 201

    Infective flooding in low-duty-cycle networks, properties and bounds

    Get PDF
    Flooding information is an important function in many networking applications. In some networks, as wireless sensor networks or some ad-hoc networks it is so essential as to dominate the performance of the entire system. Exploiting some recent results based on the distributed computation of the eigenvector centrality of nodes in the network graph and classical dynamic diffusion models on graphs, this paper derives a novel theoretical framework for efficient resource allocation to flood information in mesh networks with low duty-cycling without the need to build a distribution tree or any other distribution overlay. Furthermore, the method requires only local computations based on each node neighborhood. The model provides lower and upper stochastic bounds on the flooding delay averages on all possible sources with high probability. We show that the lower bound is very close to the theoretical optimum. A simulation-based implementation allows the study of specific topologies and graph models as well as scheduling heuristics and packet losses. Simulation experiments show that simple protocols based on our resource allocation strategy can easily achieve results that are very close to the theoretical minimum obtained building optimized overlays on the network

    Cross-Layer Optimal Rate Allocation for Heterogeneous Wireless Multicast

    Get PDF
    Heterogeneous multicast is an efficient communication scheme especially for multimedia applications running over multihop networks. The term heterogeneous refers to the phenomenon when multicast receivers in the same session require service at different rates commensurate with their capabilities. In this paper, we address the problem of resource allocation for a set of heterogeneous multicast sessions over multihop wireless networks. We propose an iterative algorithm that achieves the optimal rates for a set of heterogeneous multicast sessions such that the aggregate utility for all sessions is maximized. We present the formulation of the multicast resource allocation problem as a nonlinear optimization model and highlight the cross-layer framework that can solve this problem in a distributed ad hoc network environment with asynchronous computations. Our simulations show that the algorithm achieves optimal resource utilization, guarantees fairness among multicast sessions, provides flexibility in allocating rates over different parts of the multicast sessions, and adapts to changing conditions such as dynamic channel capacity and node mobility. Our results show that the proposed algorithm not only provides flexibility in allocating resources across multicast sessions, but also increases the aggregate system utility and improves the overall system throughput by almost 30% compared to homogeneous multicast

    Group data communication with M2MI

    Get PDF
    The Anhinga Project is developing an infrastructure that supports board range of collaborative systems running on small proximal wireless devices in ad-hoc networks. The core of Anhinga Infrastructure is a new method invocation technology called the Many-to-Many Invocation (M2MI). In this technology, every method invocation is broadcasted through the network and all the objects that implement the same method execute it. M2MI is layered on a new network protocol, Many-to-Many Protocol (M2MP), which is designed for broadcasting messages within small wireless devices in Ad hoc network. In this project, I will provide three different design patterns of M2MI-based collaborative systems, implement and simulate those designs in LAN environment, and compare the advantages and disadvantages of the M2MI-based solutions with RMI-based solutions of those three different problems, collaborative groupware, multiple participants chat system, and the distributed solution of shared resource allocation. This project has the following research concepts: a) Investigate the design pattern and model design of collaborative groupware; b) Investigate the JAVA design and implementation of the collaborative groupware; c) Investigate M2MI mechanism using in the three different problems in ad hoc environment; d) Investigate the architecture, mechanism and performance of the designs of the three problems and compare them with RMI based solution. Test will be performed while using varieties of M2MP packet
    • …
    corecore