10,383 research outputs found

    Distributed Resource Allocation and Performance Analysis in 5G Wireless Cellular Networks

    Get PDF
    This thesis focuses on the study of Heterogeneous Networks (HetNets), Device-to-device (D2D) communication networks, and unmanned aerial vehicle (UAV) networks in fifth generation wireless communication (5G) systems. HetNets that consist of macro-cells and small-cells have become increasingly popular in current wireless networks and 5G systems to meet the exponentially growing demand for higher data rates. Compared to conventional homogeneous cellular networks, the disparity of transmission power among different types of base stations (BSs), the relatively random deployment of SBSs, and the densifying networks, bring new challenges, such as the imbalanced load between macro and small cells and severe inter-cell interference. In the other hand, with the skyrocketing number of tablets and smart phones, the notion of caching popular content in the storage of BSs and users' devices is proposed to reduce duplicated wireless transmissions. To fulfill multi-fold communication requirements from humans, machine, and things, the 5G systems which include D2D communications, UAV communications, and so on, can improve the network performance. Among them, the performance analyses of these emerging technologies are attracting much attention and should be investigated first. This thesis focuses on these hot issues and emerging technologies in 5G systems, analyzing the network performance and conducting the allocation of available resources, such as serving BSs, spectrum resources, and storage resources. Specifically, three main research focuses are included in the thesis. The first focus of this thesis is the impact of the BS idle mode capacity (IMC) on the network performance of multi-tier and dense HCNs with both line-of-sight (LoS) and non-line-of-sight (NLoS) transmissions. I consider a more practical set-up with a finite number of UEs in the analysis. Moreover, the SBSs apply a positive power bias in the cell association procedure, so that macrocell UEs are actively encouraged to use the more lightly loaded SBSs. In addition, to address the severe interference that these cell range expanded UEs may suffer, the MBSs apply enhanced inter-cell interference coordination (eICIC), in the form of almost blank subframe (ABS) mechanism. For this model, I derive the coverage probability and the rate of a typical UE in the whole network or a certain tier. The impact of the IMC on the performance of the network is shown to be significant. In particular, it is important to note that there will be a surplus of BSs when the BS density exceeds the UE density, and thus a large number of BSs switch off. As a result, the overall coverage probability, as well as the area spectral efficiency (ASE), will continuously increase with the BS density, addressing the network outage that occurs when all BSs are active and the interference becomes LoS dominated. Finally, the optimal ABS factors are investigated in different BS density regions. One of major findings is that MBSs should give up all resources in favor of the SBSs when the small cell networks go ultra-dense. This reinforces the need for orthogonal deployments, shedding new light on the design and deployment of the future 5G dense HCNs. The second focus of this thesis is the content caching in D2D communication networks. In practical deployment, D2D content caching has its own problem that is not all of the user devices are willing to share the content with others due to numerous concerns such as security, battery life, and social relationship. To solve this problem, I consider the factor of social relationship in the deployment of D2D content caching. First, I apply stochastic geometry theory to derive an analytical expression of downloading performance for the D2D caching network. Specifically, a social relationship model with respect to the physical distance is adopted in the analysis to obtain the average downloading delay performance using random and deterministic caching strategies. Second, to achieve a better performance in more practical and specific scenarios, I develop a socially aware distributed caching strategy based on a decentralized learning automaton, to optimize the cache placement operation in D2D networks. Different from the existing caching schemes, the proposed algorithm not only considers the file request probability and the closeness of devices as measured by their physical distance, but also takes into account the social relationship between D2D users. The simulation results show that the proposed algorithm can converge quickly and outperforms the random and deterministic caching strategies. With these results, the work sheds insights on the design of D2D caching in the practical deployment of 5G networks. The third focus of this thesis is the performance analysis for practical UAV-enabled networks. By considering both LoS and NLoS transmissions between aerial BSs and ground users, the coverage probability and the ASE are derived. Considering that there is no consensus on the path loss model for studying UAVs in the literature, in this focus, three path loss models, i.e., high-altitude model, low-altitude model, and ultra-low-altitude model, are investigated and compared. Moreover, the lower bound of the network performance is obtained assuming that UAVs are hovering randomly according to homogeneous Poisson point process (HPPP), while the upper bound is derived assuming that UAVs can instantaneously move to the positions directly overhead ground users. From the analytical and simulation results for a practical UAV height of 50 meters, I find that the network performance of the high-altitude model and the low-altitude model exhibit similar trends, while that of the ultra-low-altitude model deviates significantly from the above two models. In addition, the optimal density of UAVs to maximize the coverage probability performance has also been investigated

    Decentralized Resource Allocation for Heterogeneous Cellular Networks

    Get PDF
    Heterogeneous Cellular Network (HetNet) is a promising technology for 5th generation mobile networks (5G) that can potentially improve spatial resource reuse and extend coverage, therefore allowing it to achieve significantly higher data rates than single tier networks. However, the performance of HetNet is limited by co-channel (inter-UE, inter-cell) interference. Hence, resource allocation is carefully done in this paper to ensure that the likely loss in achievable data rate due to interference doesn't diminish the gain in the achievable data rate due to higher spatial reuse. The resources which we consider in this paper are the spatial resource (unit-beamformer) and the power resource. We formulate our distributed spatial resource allocation problem as a quadratic optimization problem with non-convex quadratic constraints and solved it by exploiting stationarity karush-Kuhn-Tucker (KKT) conditions. While our proposed power resource allocation scheme is formulated as a convex optimization problem and is solved by exploiting karush-Kuhn-Tucker (KKT) conditions. Simulation results of our proposed method, when compared with other existing methods show significant improvement

    Co-Channel Interference Cancellation for 5G Cellular Networks Deploying Radio-over-Fiber and Massive MIMO Beamforming

    Get PDF
    In future fifth-generation (5G) cellular networks, distributed multiple-input multiple-output (MIMO) technology will be applied such that much more challenges on efficient resource allocation to user equipment (UE) of high access density are raised in order to support their high mobility among different micro-/pico-cells. In this chapter, we propose a framework to enable an optical back-haul cooperation among different optical network units (ONUs) with distributed MIMO technology in wireless front-haul for next-generation optical-wireless cellular networks. Specifically, our proposal is featured by a downlink resource multi-cell sharing scheme for OFDMA-based passive optical network (PON) supporting radio-over-fiber (RoF). We first consider system architecture with the investigation of related works, and then we propose a co-channel interference mitigation and delay-aware sharing scheme for real-time services allowing each subcarrier to be multi-cell shared by different ONUs corresponding to different micro-/pico-cells. Furthermore, a heuristic algorithm to mitigate co-channel interference, maximize sharing capacity, and minimize network latency is given by employing the graph theory to solve such sharing problems for future 5G. Moreover, simulations are performed to evaluate our proposal

    Proportional Fair RAT Aggregation in HetNets

    Full text link
    Heterogeneity in wireless network architectures (i.e., the coexistence of 3G, LTE, 5G, WiFi, etc.) has become a key component of current and future generation cellular networks. Simultaneous aggregation of each client's traffic across multiple such radio access technologies (RATs) / base stations (BSs) can significantly increase the system throughput, and has become an important feature of cellular standards on multi-RAT integration. Distributed algorithms that can realize the full potential of this aggregation are thus of great importance to operators. In this paper, we study the problem of resource allocation for multi-RAT traffic aggregation in HetNets (heterogeneous networks). Our goal is to ensure that the resources at each BS are allocated so that the aggregate throughput achieved by each client across its RATs satisfies a proportional fairness (PF) criterion. In particular, we provide a simple distributed algorithm for resource allocation at each BS that extends the PF allocation algorithm for a single BS. Despite its simplicity and lack of coordination across the BSs, we show that our algorithm converges to the desired PF solution and provide (tight) bounds on its convergence speed. We also study the characteristics of the optimal solution and use its properties to prove the optimality of our algorithm's outcomes.Comment: Extended version of the 31st International Teletraffic Congress (ITC 2019) conference pape
    • …
    corecore