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Abstract

This thesis focuses on the study of Heterogeneous Networks (HetNets), Device-

to-device (D2D) communication networks, and unmanned aerial vehicle (UAV) net-

works in fifth generation wireless communication (5G) systems. HetNets that consist

of macro-cells and small-cells have become increasingly popular in current wireless

networks and 5G systems to meet the exponentially growing demand for higher da-

ta rates. Compared to conventional homogeneous cellular networks, the disparity of

transmission power among different types of base stations (BSs), the relatively ran-

dom deployment of SBSs, and the densifying networks, bring new challenges, such as

the imbalanced load between macro and small cells and severe inter-cell interference.

In the other hand, with the skyrocketing number of tablets and smart phones, the

notion of caching popular content in the storage of BSs and users’ devices is proposed

to reduce duplicated wireless transmissions.

To fulfill multi-fold communication requirements from humans, machine, and

things, the 5G systems which include D2D communications, UAV communication-

s, and so on, can improve the network performance. Among them, the performance

analyses of these emerging technologies are attracting much attention and should be

investigated first.

This thesis focuses on these hot issues and emerging technologies in 5G systems,

analyzing the network performance and conducting the allocation of available re-

sources, such as serving BSs, spectrum resources, and storage resources. Specifically,

three main research focuses are included in the thesis.

The first focus of this thesis is the impact of the BS idle mode capacity (IMC) on

the network performance of multi-tier and dense HCNs with both line-of-sight (LoS)

and non-line-of-sight (NLoS) transmissions. I consider a more practical set-up with a

finite number of UEs in the analysis. Moreover, the SBSs apply a positive power bias

in the cell association procedure, so that macrocell UEs are actively encouraged to use

the more lightly loaded SBSs. In addition, to address the severe interference that these
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cell range expanded UEs may suffer, the MBSs apply enhanced inter-cell interference

coordination (eICIC), in the form of almost blank subframe (ABS) mechanism. For

this model, I derive the coverage probability and the rate of a typical UE in the whole

network or a certain tier. The impact of the IMC on the performance of the network

is shown to be significant. In particular, it is important to note that there will be a

surplus of BSs when the BS density exceeds the UE density, and thus a large number

of BSs switch off. As a result, the overall coverage probability, as well as the area

spectral efficiency (ASE), will continuously increase with the BS density, addressing

the network outage that occurs when all BSs are active and the interference becomes

LoS dominated. Finally, the optimal ABS factors are investigated in different BS

density regions. One of major findings is that MBSs should give up all resources in

favor of the SBSs when the small cell networks go ultra-dense. This reinforces the

need for orthogonal deployments, shedding new light on the design and deployment

of the future 5G dense HCNs.

The second focus of this thesis is the content caching in D2D communication net-

works. In practical deployment, D2D content caching has its own problem that is not

all of the user devices are willing to share the content with others due to numerous

concerns such as security, battery life, and social relationship. To solve this prob-

lem, I consider the factor of social relationship in the deployment of D2D content

caching. First, I apply stochastic geometry theory to derive an analytical expression

of downloading performance for the D2D caching network. Specifically, a social re-

lationship model with respect to the physical distance is adopted in the analysis to

obtain the average downloading delay performance using random and deterministic

caching strategies. Second, to achieve a better performance in more practical and

specific scenarios, I develop a socially aware distributed caching strategy based on a

decentralized learning automaton, to optimize the cache placement operation in D2D

networks. Different from the existing caching schemes, the proposed algorithm not

only considers the file request probability and the closeness of devices as measured

by their physical distance, but also takes into account the social relationship between

D2D users. The simulation results show that the proposed algorithm can converge

quickly and outperforms the random and deterministic caching strategies. With these

results, the work sheds insights on the design of D2D caching in the practical deploy-

ment of 5G networks.

The third focus of this thesis is the performance analysis for practical UAV-enabled

networks. By considering both LoS and NLoS transmissions between aerial BSs and
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ground users, the coverage probability and the ASE are derived. Considering that

there is no consensus on the path loss model for studying UAVs in the literature, in

this focus, three path loss models, i.e., high-altitude model, low-altitude model, and

ultra-low-altitude model, are investigated and compared. Moreover, the lower bound

of the network performance is obtained assuming that UAVs are hovering randomly

according to homogeneous Poisson point process (HPPP), while the upper bound

is derived assuming that UAVs can instantaneously move to the positions directly

overhead ground users. From the analytical and simulation results for a practical

UAV height of 50 meters, I find that the network performance of the high-altitude

model and the low-altitude model exhibit similar trends, while that of the ultra-low-

altitude model deviates significantly from the above two models. In addition, the

optimal density of UAVs to maximize the coverage probability performance has also

been investigated.
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Chapter 1

Introduction

This chapter firstly describes the history and motivation for the research work in

this thesis. Then the major research problems and the main contributions in this issue

are summarized.

1.1 History and Motivation

Since Alexander Graham Bell carried out the first bi-directional telephone trans-

mission in 1876, the development of telecommunication has changed people’s lives

incredibly. Meanwhile, requirements for higher speed and better service have kept

pushing forward advancements in communication theory.

Voice services were the dominant application at the beginning of this century,

demanding tens of Kbps for each user, while data traffic constitutes more than 90%

of the total bits in many wireless networks nowadays [1], needing tens of Mbps or even

Gbps per user. According to Cisco, an unprecedented worldwide growth of mobile

data traffic is expected to continue at an annual rate of 45% over the next decade,

surpassing 30 exabytes per month by 2020 [2]. With the fast development of mobile

data applications such as wireless video streaming and social networking, the huge

1



Chapter 1. Introduction 2

demand pushes operators to provide high-throughput wireless access services in 5th

generation (5G) networks.

To meet the explosively increasing demand for more mobile data traffic [2], com-

mercial wireless networks are evolving to looking for every possible tool to improve

network capacity. In [3], the existing tools are classified into paradigms:

• Increase node density to enhance spatial reuse gain;

• Exploit new spectrum resources to enlarge the available bandwidth;

• Enhance spectral efficiency through multi-antenna transmissions, cooperative

communications, dynamic Time-Division Duplexing (TDD) techniques, etc.

Among them, higher frequency reusing by deploying more and more small cells [3]

is a straightforward way to improve wireless capacity. A major part of the mobile

throughput growth has already been supplied by the so-called network densification

during the past few years, and this trend is expected to continue in the years to come.

Thus, the emerging fifth generation (5G) cellular network deployments are envisaged

to be heterogeneous and dense. Such a dense heterogeneous cellular network (HCN)

will be comprised of a conventional cellular network overlaid with a variety of small

cells, metro, pico, and femtocells. This will greatly help to realize the 5G requirement

of a 100x increase in mobile network throughput with respect to the current 4G one.

However, with the increasing amount of node’ density, the cell splitting gain sig-

nificantly reduces inter-cell interference [4]. More importantly, how to allocate the

radio frequency and bandwidth resource to macro base stations (MBSs) and smal-

l base stations (SBSs) should be seriously considered and carefully designed in the
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future ultra-dense HetNets. Andrews et al. in [5] first analyzed the coverage proba-

bility of a single-tier small cell network by modeling BS locations as a homogeneous

point Poisson process (HPPP). That study concluded that the coverage probability

of the network did not depend on the density of BSs in interference-limited scenar-

ios. Following [5], Dhillon et al. in [6] also reached the same conclusion for each BS

tier in a multi-tier HCN, but it is important to note that the aforementioned studies

assumed an unlimited number of user equipment (UE) in the network, which implies

that all BSs would always be active and transmit in all time and frequency resources.

Obviously, this may not be the case in practice, especially in ultra-dense networks

(UDNs).

To attain a more practical network performance, Lee et al. in [7] first analyzed

the coverage probability of a single-tier small cell network with a finite number of

UEs, and derived the optimal BS density accordingly. This was done considering the

tradeoff between the performance gain and the resultant network cost. Moreover, a

system-level analysis of cellular networks with respect to the density of BSs and block-

ages was conducted in [8], which showed the validity for the footprints of buildings in

dense urban environments. A trackable performance analysis was proposed in [9], and

they found that the increasing trend of the ASE was highly related to the density of

BSs and UEs. Recently, the authors in [10] studied the coverage probability and ASE

of a single-tier small cell network with probabilistic line-of-sight (LoS) and non-LoS

(NLoS) transmissions, in which the UE number is finite and the small cell BS has

an idle mode capability (IMC). More specifically, if there is no active UE within the

coverage area of a certain BS, the BS will be turned off and will not transmit. The

IMC switches off unused BSs, and thus can improve the UEs’ coverage probability
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and network energy efficiency as the network density increases. This is because UEs

can receive stronger signals from the closer BSs, while the interference power remains

constant or even decreases thanks to the IMC. This conclusion in [10] - the cover-

age probability depends on the density of BSs in an interference-limited network -

is fundamentally different from the previous results in [5] and [6], and presents new

insights for the design and deployment of 5G networks [11]. To realize the aggres-

sive 5G version, milimeter-wave (mmWave) massive MIMO used for the access and

backhaul in UDN has been considered as a promising technique to enable gigabit-

per-second user experience, seamless coverage, and green communication [12]. Due

to the ultra-dense deployment, each user may receive the signal from multiple BSs.

To exploit the advantage of this architecture, the accurate channel state information

(CSI) associated with multiple cells is essential for the joint beamforming, scheduling

and cooperation among the ultra-dense small-cell BSs. To require the reliable CSI

with low overhead, [13], [14] have proposed a multilevel codebook based joint chan-

nel estimation and beamforming for mmWave access and backhaul, and in [15] the

hybrid analog-digital beamforming scheme is proposed to support the multi-stream

transmission with low hardware cost and energy consumption. Motivated by the gap

that none of the aforementioned works considered the IMC in the dense HetNets, in

Chapter 3, a basic analysis of the network performance has been derived by consider-

ing practical setting, and the results can shed light on the design and the deployment

of the future ultra-dense HetNets.

Although the spectrum efficiency is improved with the densifying network, the cur-

rent wireless access technologies have almost approached their theoretical limits and

it is imperative to develop new communication strategies to meet the ever-increasing
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demand from mobile subscribers [1]. To tackle this problem, several new technologies

are proposed to show their high effectiveness. One of the promising approaches in 5G

is content caching, as this technology can significantly offload the network traffic by

optimally and intelligently storing the content files in the small base stations (SBSs)

[4] and/or in mobile users’ devices [11, 16, 17] that are closer to end-users. As a

result, network congestion can be eased and users’ quality-of-experience (QoE) can

be significantly improved. With the emergence of 5G, exchanging the cached files

among mobile devices through D2D communications, termed as D2D caching, has

attracted considerable attention recently [18]. In [19], Ji et al. considered the D2D

caching from the perspective of information theory and proposed deterministic and

random caching schemes, both of which are shown to be able to achieve the infor-

mation theoretic bound within a constant multiplicative factor. In addition, Ji et

al. in [20] analyzed the basic principle and system performance of the D2D caching

networks, and demonstrated that the gain from the unicast transmission is compa-

rable to the gain from the coded BS multicast in [21]. However, in device-to-device

(D2D) caching, due to limited memory and energy resources, users may be unwill-

ing to serve data over the aforementioned D2D transmission unless they can obtain

benefits (e.g., monetary incentives) from the operator [22] or other incentives (e.g.,

social relationship) from the users [23]. Furthermore, the social interactions between

users should also be carefully taken into consideration. To make full advantage of the

social characters as well as the content request probability, which needs to solve a

complicated combinatorial optimization problem, the classical optimization methods

are not suitable to address such a challenging problem. This motivate me to design

a reinforcement learning based iterative algorithm, by simulating the exact content
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requested by the user, and then observing the resultant reward or penalty. To the

best of my knowledge, how to design the content placement in D2D caching by in-

corporating the social characters between users remains an open question, and there

is a lack of performance analysis for the socially aware D2D caching networks, which

motivated Chapter 4 of this thesis.

Another focus of this thesis is the performance analysis of the unmanned aerial

vehicles (UAVs)-mounted networks. Due to the flying nature of unmanned aerial ve-

hicles (UAVs), base stations (BSs) can be mounted on the UAV to support wireless

communications and boost the network performance of the 5G systems. For exam-

ple, UAV-mounted base stations (UAV-BSs) are introduced when a natural disaster

interrupts communications or ground base stations are overloaded [24]. Compared

with ground BSs, the flexibility of UAV-BSs allows them to adapt their locations to

the demand of users.

In the analysis of the network performance, although the path loss model has

been considered as a key factor in the performance analysis for UAV networks, there

is no consensus on this issue yet. For example, the work in [24] and [25] only con-

sidered the UAV hovering in a LoS-dominated network for simplicity. To conduct a

practical analysis for UAV, the authors of [26] proposed a general path loss model

which considers both LoS and NLoS connections and their occurrence probabilities,

depending on the elevation angle between a UAV and a user. Despite that this model

has been widely adopted as the high-altitude model (a typical height is around 1000

meters), the network performance has not been investigated due to the complexity of

the proposed model. On the other hand, the work in [27] provided a network analysis

of the terrestrial cellular network where the antenna height between BSs and users
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is around 10m∼30m, together with 3GPP LoS and NLoS models. Considering that

the height of UAVs is comparable with that of ground base stations in future UAV

networks, the curent macrocell-to-UE model (a typical height is around 32 meters)

and picocell-to-UE model (a typical height is around 10 meters) proposed for ter-

restrial communication in 3GPP standards can also be applied to the UAV-based

network. Such macrocell-to-UE model and picocell-to-UE model are referred to as

the low-altitude model and the ultra-low-altitude model hereafter. To the best of my

knowledge, the path loss model for UAV-BSs has not been adequately explored in the

literature, which motivated Chapter 5 of this thesis.

1.2 Research Problems and Contributions

The main topics of the thesis are the performance analysis of the 5G wireless

network and the design of the resource allocation. Specially, the performance analysis

of the dense HetNets and the D2D-enabled cellular networks are presented in Chapter

3, 4, and 5. Additionally, the corresponding design of the radio frequency resource

allocation is discussed in Chapter 3 and a novel caching strategy for D2D users is

proposed in Chapter 4. In the sequel of this section, I elaborate the thesis research

problems and the corresponding contributions.

The first research problem in this thesis is the theoretical study of the dense

HCNs. It is commonly assumed that there is an unlimited number of UEs in the

network, which is not the case in practice for the dense or ultra-dense networks. To

attain a more practical network performance, the idle mode capacity (IMC) of the

BSs should be considered. Moreover, to encourage UEs to take advantage of the

large amount of resource at the SBSs, cell range expansion (CRE) combined with
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the enhanced intercell interference coordination (eICIC) scheme has been introduced

to the networks, which can significantly reduce interference among UEs. One such

eICIC strategy implemented in the time-domain, called almost blank subframe (ABS),

received a lot of attention for the easy implementation. To the best of my knowledge,

the theoretical study of dense HCNs with a realistic path loss model, a finite number

of UEs as well as CRE together with ABSs has not been conducted before, although

some preliminary simulation results can be found in [3] and [28]. Motivated by this

theoretical gap, in Chapter 3, I analyze for the first time the coverage probability and

ASE of a HCN with i) two BS tiers, ii) a general and practical path loss model, iii) a

finite number of UEs, iv) an IMC at small cell BSs, and v) a flexible cell association

strategy with CRE and ABS.

This results in a completely new modelling and analysis, through which I provide

the following theoretical contributions:

• I calculate an analytical expression to derive the density of active BSs in a two

tier HCN. Based on this, I compute the analytical expressions of the coverage

probability and ASE for such two tier HCN, while considering the IMC.

• The optimal ABS factor, i.e., the ratio between the number of ABS to the

number of total subframes, is showed numerically and obtained by simulations

for scheduling in MBSs for different SBS density regions. Moreover, I prove

that ASE can achieve the maximum value if the ABS factor is set to one when

the small cell networks go ultra-dense.

• I perform an extensive simulation campaign to validate the accuracy of the

analytical results. Both simulation and analytical results match and shed new
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insights on the design and deployment of BSs in 5G UDNs. One important

finding is that MBSs should give up all resources in favour of the SBSs when

the small cell network goes ultra-dense. This reinforces the need for orthogonal

spectrum assignments for macrocell and ultra-dense small cell deployments.

The second research problem in this thesis is to investigate the system design

and performance analysis of the D2D caching networks. Exchanging the cached files

among mobile devices through D2D communications, termed D2D caching, has at-

tracted considerable attention. However, how to activate users to share the cached

contents always is a problem. To solve this, the concept of the social network is

proven to be a useful tool in this application. By using the social relationship among

users, D2D communications should be able to promote and the corresponding caching

scheme could be implemented. To the best of my knowledge, how to design the con-

tent placement in D2D caching by incorporating the social characters between users

remains an open question, and there is a lack of performance analysis for the socially

aware D2D caching networks. Motivated by the above observations, it is interesting

and challenging to investigate the system design and performance analysis of the D2D

caching networks. In Chapter 4, I study the caching placement problem among D2D

users. First, using the stochastic geometry tool, a probabilistic caching scheme is

analyzed when the social relationship between users is distance-dependent. Then, a

distributed caching algorithm is proposed for a deterministic network scenario.

It is important to note that the first contribution is regarding the theoretical per-

formance bounds using the random and deterministic caching strategies. However, it

still remains unclear how to implement the 5G D2D caching in practice. And more

importantly, can we even do better than the derived analytical results by means of
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more advanced algorithms? In practice, it is desirable and might be feasible to opti-

mize the D2D content placement on the fly, and popular content can be thus placed

in particular devices to achieve high performance gains in particular areas. There-

fore, the second contribution is related to devising a distributed algorithm for D2D

caching with known number and locations of users in realistic scenarios. Specifically,

the following contributions are made:

• I derive an analytical expression of downloading performance for the D2D

caching network using stochastic geometry. Specifically, by adopting the physi-

cal distance-dependent social model wherein the probability that two users have

a social relationship is assumed to be a decreasing function of their physical dis-

tance, the average transmission probability for a D2D user is analyzed and the

average downloading delay performance of the proposed scheme is derived using

random and deterministic caching strategies. An interesting finding is that the

successful transmission probability will become stable when the density of users

is large enough.

• Following the theoretical finding, in order to reduce the downloading delay, I

optimize the caching strategy in a deterministic network scenario. More specif-

ically, I develop a content caching algorithm based on a decentralized learning

approach, termed DGPA. Different from most papers on D2D caching (e.g.,

[29]-[30]), I embrace several practical features of D2D communications, such

as different cache sizes, different requesting distribution and social interaction

among users, into the design of the caching algorithm. To the best of my knowl-

edge, the proposed caching algorithm is the first one that considers not only

the file request probability and the closeness of devices as measured by their
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physical distance, but also takes into account the social relationship among D2D

users. Furthermore, to increase the diversity of the cached contents in the net-

work, the mutual impact between the different cached D2D users is considered.

The convergence of the proposed caching algorithm is also analyzed.

• Simulations are conducted to validate the accuracy of the analytical results.

Both simulation and analytical results show that the proposed algorithm not

only outperforms its counterpart using deterministic caching, but also outper-

forms that in the existing literature.

The third research problem in this thesis is to conduct the performance analysis of

the UAV-enabled network. By utilising the flexibility of the UAVs, the UAV mounted

BSs can provide an enhanced cover to remedy the shortage of the ground BSs and

improve the service quality of users. Before the UAV deployments are designed, the

performance of this 3D network should be conducted first and the path loss model is

one of the key factors in the system model. Although several works have considered

different path loss models, there is no consensus on this issue yet. Motivated by the

above theoretical gap and to answer such a fundamental question, in this paper, I

analyze the performance of UAV-enabled networks on the condition of different path

loss models. Specifically, the following contributions are made:

• I provide three path loss models, i.e., high-altitude model, low-altitude model,

and ultra-low-altitude model, for different ranges of UAV’s height in the system.

The analytical results of the coverage probability and ASE are investigated and

compared.

• I provide the lower and upper bounds of the network performance by assuming
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that UAVs are hovering randomly or moving instantaneously to the positions

directly overhead ground users.

• The optimal density of UAVs to maximize the coverage probability performance

is also investigated.



Chapter 2

Background

This chapter introduces several basic point processes in stochastic geometry as

math preliminary. Then HetNets in the 5G systems are introduced, including their

structures, challenges, and related works. At last, the basic, and the concepts of

caching and UAV-communication are included.

2.1 Stochastic Geometry / Point Process

Stochastic geometry deals with random spatial patterns. Point processes are the

most basic and important objects in stochastic geometry, which are defined as follows

[31].

Definition 2.1.1. A point process is a countable random collection of points that
reside in some measure space, usually the Euclidean space Rd, d ≥ 1. The associated
σ-algebra consists of the Borel sets Bd, and the measure is the Lebesgue measure.

Following this definition, the point process can be viewed as a countable random

set Φ = x1, x2, · · · ⊂ Rd, consisting of random variables xi ∈ Rd as elements. There

are several important properties related to a point process.

Counting Measure

13
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The counting measure N denotes the number of points falling in set B ⊂ Rd. As

we know, N(B) is a random non-negative integer, which can be calculated as

N(B) =
∞∑
i=1

1(xi ∈ B), (2.1.1)

where 1(·) is the indicator function.

Intensity Measure

The intensity measure Λ represents the expected number of points falling in the

set B, which is defined as

Λ(B) � E[N(B)]. (2.1.2)

If there exists a density λ of Λ, then λ is called the intensity function. That is,

Λ(B) =

∫
B

λ(ξ)dξ. (2.1.3)

The intensity function λ represents the expected number of points in the process per

unit volume.

Void Probability

The distribution of a simple point process can be uniquely determined by its void

probabilities of bounded Borel sets. The void probability of B ⊂ Rd is

v(B) � Pr[N(B)− 0]. (2.1.4)

Probability Generating Functional

The probability generating functional plays the same role for a point process as

the probability generating functional plays for a non-negative integer-valued random

variable. The probability generating functional for a point process Φ is defined as

GΦ(f) = E

[
exp

(∫
Rd

ln f(ξ)dN(ξ)

)]
= E

[∏
ξ∈Φ

f(ξ)

]
, (2.1.5)

where function f : Rd −→ [0, 1] with {ξ ∈ Rd : f(ξ) < 1}.
Moreover, there are a few dichotomies concerning point processes.
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1) simple: A point process is simple if only one point can exist at a given location,

i.e., no coincident points.

2) stationary: A point process is stationary if its distribution is translation invariant,

i.e., Φ + s = {x+ s : x ∈ Φ} has the same distribution as Φ, ∀s ∈ Rd.

3) isotropic: A point process is isotropic if its distribution is invariant under rotations

around the origin, i.e., OΦ = {Ox : x ∈ Φ} has the same distribution as Φ for any

rotation O around the origin.

4) homogeneous: A point process is homogeneous if its intensity function λ exists and

is constant.

In the following, I briefly introduces several point processes used to model wireless

networks in this thesis.

2.1.1 Poisson Point Process

The Poisson point process (PPP) offers a computational framework, so it is widely

used in the analysis of wireless networks. Its formal definition is given as follows.

Definition 2.1.2. A point process Φ is a Poisson point process if the following two
properties hold:

• For all B ⊂ Rd, N(B) has a Poisson distribution. That is, with the intensity
measure Λ(B),

Pr[N(B) = k] = exp(−Λ(B)) · Λ
k(B)

k!
. (2.1.6)

• For all disjoint bounded sets B1, B2, · · · , Bm in Rd, N(B1), N(B2), · · · , N(Bm)
are independent random variables.

From this definition, we can see that the key property of a PPP is complete spatial

randomness. That is, all the points are independently located in the space.
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With the intensity measure Λ(B) for B ⊂ Rd, because N(B) follows a Poisson

distribution, the void probability of a Poisson point process can be calculated as

Pr[N(B) = 0] =
exp(−Λ(B))Λ0(B)

0!
= exp(−Λ(B)). (2.1.7)

The probability generating function of a PPP is

GΦ(f) = exp

(
−
∫
Rd

(1− f(ξ))λ(ξ)dξ

)
, (2.1.8)

which can be used to calculate the Laplace transform related to Φ.

There are several appealing features of a PPP.

• A disjoint union
⋃∞

i=1 Φi of the point processes Φ1,Φ2, · · · is called a superpo-

sition. The superposition of two or more mutually independent Poisson point

processes is again a PPP.

• The thinned point process Φthin ⊂ Φ is obtained by including ξ ⊂ Rd in Φthin

with retention probability p(ξ), where the points are included or excluded inde-

pendently on each other, said to be an independent thinning. The independent

thinning of a PPP with intensity function λ(ξ) is again a PPP with intensity

function p(ξ)λ(ξ).

• Given that a PPP Φ has a point x0, the law of point process Φ − x0 is the

same as the law of Φ. That is, the reduced Palm probability of a PPP is the

distribution of this PPP itself.

Moreover, a PPP is homogeneous or uniform if its intensity function is constant

across the space. Given the intensity λ, N(B) follows a Poisson distribution with

mean λ|B|. The homogeneous Poisson point process (HPPP) is simple, stationary,

and isotropic. It is considered as one of the simplest point processes.
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Given mutually independent HPPPs Φi with intensity λi, i = 1, 2, · · · , the super-

position Φ =
⋃

i Φi is an HPPP with intensity λ =
∑

i λi. Moreover, let an HPPP with

intensity λ subject to an independent thinning with a constant retention probability

p, and then the point processes Φthin and Φ\Φthin are both HPPPs, with intensities

pλ and (1− p)λ, respectively.

2.1.2 Cluster Processes

A general cluster process is generated by taking a parent point process and

daughter point processes, one per parent, and translating the daughter processes

to the position of their parent [32]. The cluster process is then the union of all

the daughter points. Denote the parent point process by ΦP = {x1, x2, ...}, and let

n = #ΦP ∈ N
⋃{∞} be the number of parent points. Further, let Φi be a family of

finite point sets, the untranslated clusters or daughter processes. The cluster process

is then the union of the translated clusters:

Φ �
⋃

Φi + xi. (2.1.9)

In terms of random counting measures, letting Ni be the family of counting measures

for the clusters, the cluster process is given by

N �
∑

Ni + xi. (2.1.10)

Alternatively, the counting measure may be expressed using the cluster field Nc(·|y)
for y ∈ Rd, which is sampled at the points of the parent process, i.e.,

N(A) =

∫
Nc(A|y)ΦP (dy) =

∑
Nc(A|y)). (2.1.11)

In this representation, Nc(·|yi), which is indexed by the cluster centers or parent

points, assumes the role of Φi, which is indexed by the cardinal i.

If the parent process is a lattice, the process is called a lattice cluster process.
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Analogously, if the parent process is a PPP, the resulting process is a Poisson cluster

process.

2.1.3 Gibbs process

Gibbs processes are related to Gibbs distributions in statistical physics. The main

idea is to shape the distribution of a basic point process, usually a PPP, using a density

on the space of counting measures N .

Definition 2.1.3. Let Φ be a PPP with intensity measure Λ such that Λ(Rd) = 1
and denote its distribution by Q. Define a new point process distribution Pf by

Pf (Y ) =

∫
Y

fλ(ϕ)Q(dϕ), (2.1.12)

where fλ : N 	→ R+ is given by

fλ(ϕ) = λψ(Rd) exp(1− λ). (2.1.13)

The new distribution Pf defines a PPP of intensity measure λΛ. To see this, let P

be the distribution of a PPP Φ of intensity measure λΛ, and compare the measures

that P and Pf give to the event

YK = {ϕ ∈ N : ϕ(Rd) = n, ϕ(K) = 0}. (2.1.14)

Since P (YK) = Pf (YK) for all n ∈ N and compact K, the void probabilities agree,

and the distributions are equal.

2.1.4 Voronoi Polygon

Definition 2.1.4. For a simple point process Φ ⊂ Rd and any point u ∈ Φ, the
Voronoi polygon V(u) with the center u is the subset

V(u) = {x ∈ R
d :‖ x− u ‖<‖ x− xj ‖, ∀xj ∈ Φ, xj �= u

}
. (2.1.15)

In other words, the Voronoi Polygon or Voronoi cell associated with the point

u ∈ Φ is the set of all points in the space whose distance to u is smaller than their

distance to the other points in Φ.
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2.2 Heterogeneous Networks

2.2.1 Heterogeneous LTE/LTE-A Networks

In LTE/LTE-Advanced, HetNets contain conventionally deployed HPNs, (i.e.,

MBSs) and overlapping LPNs, which are generally known as SBSs, e.g., pico, fem-

to, and relay base stations [33]. As mentioned in the previous chapter, HetNets in

LTE/LTE-A systems are usually classified as intra-HetNets. That is, HPNs and LP-

Ns use the same RAT. The aim of these low-power and flexibly deployed SBSs is to

eliminate coverage holes and increase capacity in hot spots. Usually, the locations of

MBSs are carefully chosen, and properly configured to minimize interference among

them, while SBSs are deployed in a relatively unplanned manner. The three different

types of SBSs in LTE/LTE-A HetNets are introduced as follows [4]:

• Pico-cells: Pico BSs are regular eNBs with the distribution of having lower

transmission power than conversional MBSs. They are typically equipped with

omnidirectional antennas, i.e., not sectorized, and are deployed indoors or out-

doors in a planned manner. Their transmission power ranges from 250mW to

2W for outdoor deployments, while it is typically 100mW or less for indoor

deployments. Because pico BSs are regular eNBs, they can benefit from X-2

based inter-cell interference coordination (ICIC).

• Femto-cells: Femto BSs, also known as the Home evolved NodeB, are typical-

ly deployed in indoor environments. The installation of femto BSs is usually

subscriber deployed based on a simple ”plug and play” method, which is typ-

ically unplanned. The backhaul of femto-cells can be carried via subscribers’
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broadband wireline (such as digital subscriber line, fiber optic, and cable mo-

dem). Femto BSs are typically equipped with omni-directional antennas, and

their transmission power is 100mW or less. However, the absence of the X2

interference makes ICIC impossible for them.

• Relay nodes: The backhaul that connects relay nodes to the rest of the network,

is wireless and uses spectrum resource as well. If back-haul communication uses

the same frequency as communication with MU, the relays are referred to as out-

of-band relays. Usually relay nodes are deployed at the cell-edge area to enhance

the coverage. Relay nodes are typically equipped with directional antennas in

the back-haul link and omnidirectional antennas in the link with MUs.

Although the deployment of HetNets benefits LTE/LTE-A systems in many ways,

technical challenges and issues also arise due to their characteristics, i.e., the large

disparities of transmission power used by different types of BSs and the relatively

random locations of SBSs.

User Association

As mentioned before, one major issue in HetNets is how to associate each MU

with a proper BS, i.e., user association, to achieve optimal performance. Due to

the large transmission power of MBSs, the conventional association criterion, i.e.,

maximum received pilot signal, pushes many MUs to MBSs even if they are located

close to SBSs. In such cases, MBSs may struggle to supper so many MUs, which

SBSs only serve a small portion of MUs and become under-utilized. This imbalanced

load among BSs leads to system performance loss and uneven user experience. Much

effort has been invested in this issue.
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An effective association scheme is to adapt the coverage of SBSs to control the

number of MUs connecting to them. This kind of solution is firstly used in WLANs.

In details, a cell breathing technique was proposed to balance the load of APs by

tuning transmission power [34]. However, this technique is not suitable for HetNets,

because transmission power is quite different between MBSs and SBSs. Instead,

cell range expansion (CRE) was introduced in long term evolution (LTE) networks

to proactively offload UEs from MBSs to SBSs. This is done by adding a positive

offset to the pilot RSS of the SBSs during the cell selection procedure [3]. CRE

allows UE not associating with the BS that provides the strongest signal strength,

but with those with more resources. Intuitively speaking, more UEs will be offloaded

to the SBSs with a larger range expansion bias (REB). CRE without interference

management has been shown to increase the sum capacity of the macrocell UEs due

to the offloading, but decrease the overall throughput of the network due to strong cell-

edge interference [35]. The offloaded UEs do not connect to the strongest cell anymore.

To address this cell-edge performance issue, the use of enhanced intercell interference

coordination (eICIC) schemes was also introduced in LTE networks [36], [37]. One

such eICIC strategy implemented in the time-domain, called almost blank subframe

(ABS), received a lot of attention. No control or data signals but only reference

signals are transmitted in an ABS. Thus, when an MBS schedules ABSs, SBSs can

schedule their offloaded UEs in subframes overlapping with the MBS ABSs. This

significantly reduces interference towards those offloaded UEs.

One extension to the eICIC in 5G is ultra-reliable low latency communication

(URLLC), which is the hottest research topic [38]. From a physical-layer perspective,

the URLLC design is challenging as it ought to satisfy two conflicting requirements:
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low latency and ultra-high reliability [39]. On the one hand, minimizing latency man-

dates the use of short packets which in turns causes a severe degradation in channel

coding gain [40]. On the other hand, ensuring reliability requires more resources

(e.g., parity, redundancy, and re-transmissions) albeit increasing latency (notably

for time-domain redundancy). This ranges from users connected to the radio access

network which must receive equal grade of service, to vehicles reliably transmitting

their safety messages and industrial plants whereby sensors, actuators and controllers

communicate within very short cycles [41].

Deployment Scenarios

There are several deployment options in LTE/LTE-A HetNets [4], [42].

• Orthogonal Deployment: In this scenario, orthogonal frequency resources are

allocated to MBSs and SBSs. For instance, pico BSs are allocated with carriers

that are not being used by MBSs. In such scenarios, each frequency resource

utilization ratio is low, which limits system performance.

• Co-channel Deployment: In this scenario, all BSs are deployed in the same

frequency tier to avoid bandwidth segmentation. MBSs and SBSs can both

access the entire spectrum bandwidth, and the spectrum is reused as long as

the interference constraint is satisfied. This kind of deployment improves the

frequency resource utilization ratio. However, the co-tier interference between

MBSs and SBSs is more challenging.

• Mixed: In this scenario, a portion of spectrum bandwidth is shared between

MBSs and SBSs, while another portion of the spectrum bandwidth is assigned

to MBSs and SBSs separately.
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As spectrum resources available for an LTE/LET-A system become rare and expen-

sive, co-channel deployment is more desirable to operators [43]. However, co-channel

transmissions will lead to severe inter-tier interference, and the interference is further

exacerbated due to the random locations of SBSs. Therefore, to mitigate the interfer-

ence and highlight the benefits of co-channel deployment, it is necessary to consider

interference management techniques in such scenarios.

In addition, a high level network deployment is introduced in [44]. As the popu-

larity of new information technologies grows dramatically, personal requirement has

become more and more diversified. To meet this requirement, service network (SV)

is a feasible approach to deal with this problem [45]. An SN is considered as a

persistent social service infrastructure consisting of massive interconnected small ser-

vices. When a specific requirement is raised, the SN is customized by dynamically

looking for a sub-network, which satisfies the requirement exactly. In this way, mas-

sive personalized with traditional service composition approaches, especially in mass

customization scenarios [46].

2.2.2 Heterogeneous Networks for 5G Systems

The 5G system to be deployed initially in 2020 is expected to provide approximate-

ly 1000 times higher wireless area capacity and save up to 90% energy consumption

per service compared with the current LTE-A system. More than 1000 Gbps/km2

area spectral capacity in dense urban environments, ten times higher battery life of

connected devices, and five times reduced end-to-end latency are anticipated in 5G

system [47].

Among many advanced technologies, 5G HetNets have been presented as a po-

tential solution to provide universal high-rate coverage and seamless user experience.
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Besides more RATs considered, such as D2D communications, M2M communications

and the Internet of Things, the ultra-dense SBSs are provided in the deployment

of the 5G systems. In this context, the co-channel deployment of macro cell BSs

(MBSs) and small cell BSs (SBSs) in HCNs, i.e., all BS tiers operating on the same

frequency spectrum, have recently attracted considerable attention, e.g., [48, 49] and

[50]. Using a dual slope path loss model, Zhang et al. in [51] demonstrated that the

coverage probability strongly depends on the BS density. In the same line, using a

multi-slope path loss model and the smallest path loss association rule, the authors

in [52] showed that the coverage probability first increases with the BS density and

then decreases, while the area spectral efficiency (ASE) will grow almost linearly as

the BS density goes asymptotically large. In [53], a stretched exponential path loss

model was proposed for the short-range communication, and they proved that the

ASE is non-decreasing with the BS density and converges to a constant for high den-

sities. These works all show that the density of the BS plays an important role in

estimating and analysing the performance of the 5G dense or ultra-dense HetNets.

2.2.3 Caching in Heterogeneous Networks

Caching Strategies in Wireless Networks Video traffic will be the major traffic

source due to the growing success of on-demand video streaming services. The huge

demand pushes operators to provide high-throughput wireless access services in 5th

generation (5G) networks. However, the current wireless access technologies have

almost approached their theoretical limits and it is imperative to develop new com-

munication strategies to meet the ever-increasing demand from mobile subscribers

[1].

One of the promising approaches to tackle this problem in 5G is content caching,
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as this technology can significantly offload the network traffic by optimally and intel-

ligently storing the content files in the small base stations (SBSs) [4],[29], [54] and/or

in mobile users’ devices [11], [18], which are closer to end-users. As a result, network

congestion can be eased and users’ quality-of-experience (QoE) can be significant-

ly improved. The authors in [4] introduced the ideas of caching in heterogeneous

networks, wherein one macro cell is divided into multiple small cells. Within each

small cell, one low power base station, termed as SBS, is deployed to serve the users

within its coverage. The requested files by users are first transmitted from the MBS

to the SBSs through the backhaul connections between them in off-peak period and

then transmitted from the SBSs to the users. To optimize the cache content place-

ment in the SBSs, two algorithms have been proposed in the literature: a) discrete

generalized pursuit algorithm (DGPA)-based scheme proposed in [29] for which the

SBSs can place the content according to the local demands; b) belief propagation

(BP) algorithm based on the factor graph [54], which allows the file placement to be

arranged in a distributed manner between the users and SBSs. Also, the caching is

investigated in wireless network virtualization [55].

D2D Caching

In HetNets, D2D caching attracts lots of attention, because (i) The large number

of users’ devices in 4G and 5G networks have the capability to provide a promising

basis for caching [56]; and (ii) Compared to SBS caching, D2D caching has several

advantages. For example, it may be costly to set up and maintain the SBSs as well as

the backhaul. Furthermore, the SBS caching may suffer from long latency and slow

update of popular contents, which could hinder its application in practice.

With the emergence of 5G, exchanging the cached files among mobile devices
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through D2D communications, termed D2D caching, has attracted considerable at-

tention recently [18]. In [21], probalistic content placement was proposed and analyzed

in the context of D2D caching, where each mobile terminal caches a specific subset

of contents with a given caching probability. The throughput versus outage trade-off

was analyzed and the optimal caching distribution was derived for a grid network

relying on a particular protocol model.

However, in practice, due to limited memory and energy resources, users may be

unwilling to serve data over the aforementioned D2D transmission unless they can

obtain benefits (e.g., monetary incentives) from the operator [22] or other incentives

(e.g., social relationship) from the users [11], [57], and [23]. In [58], Chen et al.

proposed an incentive mechanism in which the BS rewards those users that share

contents with others using D2D communication. But the social relationships among

users are not considered. Compared with SBSs, the storage capacities at users are

much smaller. In this context, different from the existing works on SBS and D2D

caching, it is not optimal and practical to store same files in all users, and hence

the optimization of the content placement becomes more critical and complex in the

design of D2D caching strategies. Furthermore, the interactions between users should

also be carefully taken into consideration [59].

To address the aforementioned issues, social relationship among mobile users can

be a useful tool. The ideas of applying social characters to promote D2D communi-

cations and to design D2D caching was first proposed in [56]. In By using the close

social ties in the same community, the resource allocation problem of D2D pairs was

formulated and optimized by a two-step coalitional game. Besides, the use of posi-

tive social relationship among mobile users was investigated in [11], which helps to
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reduce malicious or irrational users in the system. Moreover, a content dissemination

scheme based on the common interest of users in a social group was proposed in [30].

A considerable delay reduction can be obtained when there are a large number of

users in the same social group. In addition, in [60], a socially incentive mechanism for

content distribution through D2D communications has been proposed. The contract

theory investigated in this work can effectively incentivize user’s participation, and

increase capacity of the cellular network. In [61] the traffic fluctuation has already

been derived as an important social characteristic to indicate the similarity of traffic

variation of BSs. By utilizing the social relationship between BSs, the cache can be

appropriately deployed to improve the network performance.

2.2.4 UAVs in Heterogeneous Networks

A drone is an unmanned aerial vehicle (UAV) designed to be flown either through

remote control or autonomously using embedded software and sensors. Historically,

drones were used mainly in military for reconnaissance purposes, but with recent

developments in light-weight battery-powered drones, many civilian applications are

emerging [62]. Using drones to deploy small cells in the HetNets of urgent needs is one

of the most interesting applications. The greatest advantage of this approach is that

drones can be equipped with small cell base station module and sent to a specific tar-

get location immediately to establish emergency communication links without having

to deploy any infrastructure. For example, UAV-mounted base stations (UAV-BSs)

are introduced when a natural disaster interrupts communications or ground base

stations are overloaded [63].

Most of the literature on the UAV-BS focuses on its deployment. The work in [64]

proposed that fixed-wing UAVs at a constant height are more applicable for aerial



Chapter 2. Background 28

networks due to less power consumption. Positions of UAV-BSs were modeled as a

3D Poisson Point Process (3D-PPP) distribution with a limited height in [24], but

the analysis in [65] showed that the flexible height of UAV is not as helpful as a

well-chosen fixed altitude. In [25], UAV-mounted mobile base stations were deployed

in a fixed altitude and placed along an optimal trajectory to cover as much as user

equipment (UE) whose locations are already known in a given area. Finding the 3D

optimal location for deploying a drone cell was studied in [66]. When some users

with QoS requirements are distributed in an area, a 3D location could be found for

deploying a drone cell to provide services for the maximum number of users satisfying

the SNR constraints.

Beyond the UAV deployment, the performance of 3D networks also attracts much

attention in the existing literature. The work in [65] analyzed the average downlink

spectral efficiency without considering the environment noise, while the authors of

[67] evaluated the performance of UAV at a low altitude platform in terms of the

coverage area, and transmit power. Similarly, the optimal deployment model in [68]

led to the analysis of coverage and transmit power. Furthermore, the analysis in [69]

introduced a tractable analytical framework for the coverage and the rate in UAV

based network with the coexistence of device-to-device (D2D) network. Moreover,

applying stochastic tools to 3D UAV-mounted HetNets, different coverage probability

and throughput scaling behaviors in terms of the path loss components using a dual

path-loss model are discussed in [70].

Besides the performance analysis, exploiting the UAV’s high mobility in the

mobile-UAV enabled wireless networks is anticipated to unlock the full controllable
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UAV-ground communications. With the fully controllable UAV mobility, the commu-

nication distance between the UAV and ground users can be significantly shortened

by proper UAV trajectory design and user scheduling. This is analogous and yet in

sharp contrast to the existing small-cell technology [71]. Motivated by this, the UAV

trajectory design is rigorously studied in [72] and [73] for a mobile relaying system

and a point-to-point energy-efficient system, respectively, where sequential convex

optimization techniques are applied to solve the non-convex trajectory optimization

problems therein. For UAV-enabled multi-user systems, a novel cyclical multiple ac-

cess scheme is proposed in [74], where the UAV communicates with ground users

when it flies sufficiently close to each of them in a periodic time-division manner.

An interesting throughput-access delay tradeoff is revealed and it has been shown

that significant throughput gains can be achieved over the case of a static UAV for

delay-tolerant applications.



Chapter 3

Performance Analysis of the Idle
Mode Capability in a Dense
Heterogeneous Cellular Network

In this chapter, the impact of the BS IMC on the multi-tier and dense HCNs

is conducted to investigate the network performance. To be more practical, a finite

number of UEs is considered and the mechanism of the ABS is applied by the MBSs

to enhance the ICIC. As a result, the developing trend of the coverage probability and

ASE are shown with the densifying network. Finally, the optimal ABS factors are

investigated in different BS density regions.

3.1 System Model

In this chapter, I assume a wireless network consisting of two BS tiers. The

locations of the BSs of the kth tier (k = 1, 2) are modeled as a two-dimensional

HPPP Φk with a density λk. Without loss of generality, I denote the macrocell tier

and the small cell tier as tier 1 and tier 2. The locations of UEs (denoted by U) in
the network are modeled as another independent HPPP Φu with a density λu. In

most existing works, λu was assumed to be sufficiently large, so that each BS in each

30
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Figure 3.1: A network scenario consisting of two BS tiers. Each UE is connected to
the BS that provides the strongest average signal, which is marked by the designed
signal. BSs with no UE associated are in idle mode.

tier always has at least one associated UE. However, in the model with finite BS and

UE densities, a BS might serve no UE, and thus be turned off thanks to the IMC1.

Following [52], I adopt a general and practical path loss model, in which the path loss

ζ(r) associated with distance r is calculated as

ζk(r) =

⎧⎨⎩ζLk (r) = AL
kr

−αL
k , LoS: PrLk (r);

ζNL
k (r) = ANL

k r−αNL
k , NLoS: PrNL

k (r)=1− PrLk (r),
(3.1.1)

where AL
k and ANL

k are the path losses at a reference distance r = 1 for the kth tier

and for the LoS and the NLoS cases, respectively, and αL
k and αNL

k are the path loss

exponents for the kth and for the LoS and NLoS cases, respectively. Moreover, PrLk (r)

is the LoS probability function with a distance r. For example, as recommended by

the 3GPP, PrLk (r) can be computed as

PrLk (r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min (0.018/r, 1) ∗(1− exp(−r/0.063)) + exp(−r/0.063),

when k=1;

0.5−min(0.5, 5 exp(−0.156/r))+min(0.5, 5 exp(−r/0.03)),

when k=2.

(3.1.2)

1The mobility of UEs is not considered in the work. It is worth noting that if mobility is present,
MBSs may not be turned off easily, as the MBSs need to support the UE handover. Several works
considering the mobility can be found in [75] and [76].
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Moreover, I consider a cell association based on the maximum received power,

where a UE is associated with the strongest BS:

Xk = Pkζk(r)Dk, (3.1.3)

where Pk and Dk denote the transmit power and the REB of a BS in the kth tier,

where D1 = 0 dB for the macrocell tier and D2 = D dB for the small cell tier.

Because UEs are randomly and uniformly distributed in the network, I adopt a

common assumption that the activated BSs in each tier also follows an independent

HPPP distribution Φ̃i, the density of which is denoted by λ̃i BSs/km
2 [77], [78].

Finally, I assume that each UE/BS is equipped with an isotropic antenna, and as

a common practice in the field, that the multi-path fading between an arbitrary UE

and an arbitrary BS is modeled as independently identical distributed (i.i.d) Rayleigh

fading.

The SINR of the typical UE with a random distance r to its associated BS in the

kth tier is given by

SINRk(r) =
Pkhk0ζk(r)∑K

j=1

∑
i∈˜Φ\b0 Pjhjiζj(|Yji|) + σ2

, (3.1.4)

where hk0 and hji are the exponentially distributed channel power with unit mean

from the serving BS and the i-th interfering BS in the j-th tier, respectively. |Yji|
is the distance from the activated BS in the j-th tier to the origin, and b0 is the

serving BS in the k-th tier. Note that only the activated BSs in Φ̃\b0 inject effective

interference into the network, because the other BSs are turned off thanks to the

IMC.

In Fig. 3.1, I show an illustration of the proposed network, which consists of two

BS tiers. In this case, UE 1 is offloaded from the MBS to the SBS because of the

REB. The other SBS is in idle mode in that there is no UE associated to it.
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3.2 Density of the activated BSs

To evaluate the impact of the IMC on the performance of each BS tier, I first

analyze the probability of having a given average number of UEs in each cell. Then,

I derive expressions for the density of active BSs in each tier.

3.2.1 Average Number of UEs in Each Cell

The coverage area of each small cell is a random variable V , representing the size

of a Poisson Voronoi cell. Although there is no known closed-form expression for V ’s

probability distribution function (PDF), some accurate estimates of this distribution

have been proposed in the literature, e.g., [79] and [80].

In [79], a simple gamma distribution derived from Monte Carlo simulations was

used to approximate the PDF of V for the kth BS tier, given by

fVk
(x) =(bλk)

qxq−1 exp(−bλkx)

Γ(q)
, (3.2.1)

where q and b are fixed values, Γ(x) =
∫ +∞
0

tx−1e−tdt is the standard gamma function

and λk is the BS density of the kth BS tier.

Remind here I assume that the coverage area of each cell has not considered the

associating relation to users, where each user may be covered by multiple BSs in

different tiers, and the average number of UEs in each cell may be a little larger than

the actual one. This inaccuracy is shown to be ignorable in the Sec. V-A. If the

association probability is considered here, each user can only be covered by one BS,

then the Poisson Voronoi cell will change to be a weighted cell, and the shape of cell

will become irregular. The works in [81] show how to calculate the weighted Poisson

Voronoi cell and are useful for further discussion.

In that the distribution of UEs follows an HPPP with a density of λu, given a
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Voronoi cell with size x, the number of UEs located in this Voronoi cell is a Poisson

random variable with a mean of λux. Denoting by Nk the number of UEs located in

a Voronoi cell of the kth BS tier, I have that

P[Nk = n] =

∫ +∞

0

(λux)
n

n!
exp(−λux)fVk

(x)dx

(a)
=

Γ(n+ q)

Γ(n+ 1)Γ(q)

(
λu

λu + bλk

)n(
bλk

λu + bλk

)q

, n ≥ 0

(3.2.2)

where step (a) is computed by using the definition of the gamma function.

3.2.2 Probability of a UE Associated to the kth Tier

According to Eq. (3.1.3), each BS tier density and transmit power determine the

probability that a typical UE is associated with a BS in this tier. The following

Lemmas provide the per-tier association probability, which is essential for deriving

the main results in the sequel.

If one UE connects to one MBS (k = 1), this MBS can be a MBS with a LoS

path or a NLoS path. In the following, I provide the probability that one such UE is

associated with a LoS MBS in Lemma 3.2.1.

Lemma 3.2.1. The probability that the UE is associated with a LoS MBS can be
written as

P
L
1 =

∫ ∞

0

pL11(r)× pL12(r)× pL13(r)× fL
1 (r)dr, (3.2.3)

where pL11(r) = exp
(
− ∫ ΔL

11(r)

0
PrNL

1 (u)× 2πuλ1du
)
, ΔL

11(r) = (
ANL

1

AL
1
)

1

αNL
1 r

αL
1

αNL
1 , and

pL12(r) = exp
(
− ∫ ΔL

12(r)

0
PrL2 (u)× 2πuλ2du

)
, ΔL

12(r) =
(

DP2AL
2

P1AL
1

) 1

αL
2 r

αL
1

αL
2 , and

pL13(r) = exp
(
− ∫ ΔL

13(r)

0
PrNL

2 (u)× 2πuλ2du
)
, ΔL

13(r) =
(

DP2ANL
2

P1AL
1

) 1

αNL
2 r

αL
1

αNL
2 , respec-

tively, and fL
1 (r) is the PDF that the UE is associated with a LoS MBS, which can be

written as

fL
1 (r) = exp

{
−
∫ r

0

PrL1 (u)2πλ1udu

}
× PrL1 (r)2πλ1r. (3.2.4)

Proof. See Appendix A.1.
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Following the same logic, I provide the probability that the UE is associated with

a NLoS MBS in Lemma 3.2.2.

Lemma 3.2.2. The probability that the UE is associated with a NLoS MBS can be
written as

P
NL
1 =

∫ ∞

0

pNL
11 (r)× pNL

12 (r)× pNL
13 (r)× fNL

1 (r)dr, (3.2.5)

where pNL
11 (r) = exp

(
− ∫ ΔNL

11 (r)

0
PrL1 (u)× 2πuλ1du

)
, ΔNL

11 (r) = (
AL

1

ANL
1
)

1

αL
1 × r

αNL
1
αL
1 , and

pNL
12 (r) = exp

(
− ∫ ΔNL

12 (r)

0
PrL2 (u)× 2πuλ2du

)
, ΔNL

12 (r) =
(

DP2AL
2

P1ANL
1

) 1

αL
2 × r

αNL
1
αL
2 , and

pNL
13 (r) = exp

(
− ∫ ΔNL

13 (r)

0
PrNL

2 (u)× 2πuλ2du
)
, ΔNL

13 (r) =
(

DP2ANL
2

P1ANL
1

) 1

αNL
2 × r

αNL
1

αNL
2 , re-

spectively, and fNL
1 (r) is the PDF that the UE is associated with a NLoS MBS, which

can be written as

fNL
1 (r) = exp

{
−
∫ r

0

PrNL
1 (u)2πλ1udu

}
× PrNL

1 (r)2πλ1r. (3.2.6)

Proof. See Appendix A.2.

If one UE connects to one SBS (K = 2), this SBS can also be a SBS with a LoS

path or a NLoS path. Similarly, the corresponding UE association probabilities are

derived in Lemma 3.2.3 and Lemma 3.2.4.

Lemma 3.2.3. The probability that the UE is associated with a LoS SBS can be
written as

P
L
2 =

∫ ∞

0

pL21(r)× pL22(r)× pL23(r)× fL
2 (r)dr, (3.2.7)

where pL21(r) = exp(− ∫ ΔL
21

0
PrNL

1 (u)× 2πuλ1du), Δ
L
21(r) = (

P1AL
1

DP2AL
2
)

1

αL
1 × r

αL
2

αL
1 , and

pL22(r) = exp(− ∫ ΔL
22

0
×PrL1 (u)2πuλ1du), Δ

L
22(r) = (

P1ANL
1

DP2AL
2
)

1

αNL
1 r

αL
2

αNL
1 , and

pL23(r) = exp(− ∫ ΔL
23

0
PrNL

2 (u)× 2πuλ2du), ΔL
23(r) = (

ANL
2

AL
2
)

1

αNL
2 × r

αL
2

αNL
2 , respectively,

and
fL
2 (r) = PrL2 (r)2πλ2r × exp

{− ∫ r

0
PrL2 (u)2πλ2udu

}
.

Lemma 3.2.4. The probability that the UE is associated with a NLoS SBS can be
written as

P
NL
2 =

∫ ∞

0

pNL
21 (r)× pNL

22 (r)× pNL
23 (r)× fNL

2 (r)dr, (3.2.8)
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where pNL
21 (r) = exp(− ∫ ΔNL

21

0
×PrL1 (u)2πuλ1du), Δ

NL
21 (r) = (

P1AL
1

DP2ANL
2
)

1

αL
1 × r

αNL
2
αL
1 , and

pNL
22 (r) = exp(− ∫ ΔNL

22

0
×PrNL

1 (u)2πuλ1du), Δ
NL
22 (r) = (

P1ANL
1

DP2ANL
2
)

1

αNL
1 × r

αNL
2

αNL
1 , and

pNL
23 (r) = exp(− ∫ ΔNL

23

0
PrL2 (u)× 2πuλ2du), Δ

NL
23 (r) = (

AL
2

ANL
2
)

1

αL
2 ×r

αNL
2
αL
2 , respectively, and

fNL
2 (r) = exp

{− ∫ r

0
PrNL

2 (u)2πλ2udu
}× PrNL

2 (r)2πλ2r.

Proof. The proofs of Lemma 3.2.3 and Lemma 3.2.4 are similar to Lemma 3.2.1 and
Lemma 3.2.2, so the proof are omitted here.

3.2.3 Density of activated BSs in the kth tier

After attaining the probability of one UE associating to a BS in the kth tier, I am

ready to derive the density of active BSs in the kth tier.

Defining by Poff
k (n) the probability that a BS in the kth tier is inactive when there

are n UEs in its coverage, then Poff
k (n) can be calculated by

P
off
k (n) = P[Nk = n](1− Ak)

n, (3.2.9)

where P[Nk = n] is the probability of having n UEs located in a cell of the kth

tier, which can be obtained from Eq. (3.2.2), and Ak = PL
k + PNL

k , which denotes the

per-tier association probability.

With this result, the density of active BSs in the kth tier λ̃k can now be derived

as

λ̃k = λk

(
1−

∞∑
n=0

P
off
k (n)

)
, (3.2.10)

where Poff
k (n) is the probability that the kth tier is inactive when there are n UEs in

its coverage.
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3.3 Main Results

Recall that in this paper, The REB for the first tier (macro tier) is D1 = 0 dB

and that for the second tier is simply denoted by D, where D ≥ 0 dB.

With the modelling, a UE u ∈ U belongs to the following six disjoint sets:

u ∈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1

⎧⎨⎩UL
1 ,The UE connects to a LoS MBS;

UNL
1 ; The UE connects to a NLoS MBS;

U2

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

UL
2 ,The UE connects to a LoS SBS without

power bias;

UNL
2 ; The UE connects to a NLoS SBS without

power bias;

U3

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

UL
3 ,The UE is offloaded from a MBS to a LoS

SBS;

UNL
3 ; The UE is offloaded from a MBS to a NLoS

SBS,

(3.3.1)

where U1

⋃U2

⋃U3 = U . The set U1 is the set of macrocell UEs and the set U2 is the

set of unbiased small cell UEs. The UEs offloaded from macrocells to small cells due

to CRE constitute set U3, and are referred to as range expanded (RE) UEs.

Moreover, an ABS approach to eICIC is considered, in which MBSs shut their

transmissions on certain fraction of time/frequency resources, and SBSs schedule their

RE UEs on the corresponding resources, which are free from macrocell interference.

Definition 3.3.1. η: The resource partitioning fraction η is the fraction of resources
on which the MBSs are inactive, where 0 < η < 1. η is also known as the ABS factor.

Thus, with resource partitioning, 1− η is the fraction of resources that the MBSs

and the SBSs allocate to UEs in U1 and U2, respectively, while η is the fraction of
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Figure 3.2: MBS schedules ABSs, and the UEs associated with it cannot get service
in such subframes.

resources in which the MBSs do not transmit and the SBSs can schedule UEs in U2

and U3.

In Fig. 3.2, I show an illustration of the proposed network when the ABS frame-

work is in place. When the MBS schedules ABSs and mutes its transmission, UE 3

and UE 4 will not receive any signal from their serving MBS. In contrast, the UEs

associated with the SBS, i.e., UE 1 (the RE SBS UE) and UE 2 (the native SBS UE),

can be served without the interference from the MBS.

As a result of resource partitioning, the SINR of a typical UE u, when it belongs

to Uk, can be written as

SINR = 1(k ∈ 1, 2)
Pkhk,0ζk(r)∑2
k=1 Ik + σ2

+ 1(k ∈ 2, 3)
P2h2,0ζ2(r)

I2 + σ2
, (3.3.2)

where 1(A) is the indicator of the event A, and Ik is the interference from the kth

tier.

3.3.1 The Coverage Probability

Let us define the coverage probability S as the probability that the instantaneous

SINR of a randomly located UE is larger than a target SINR (τ). In that the typical
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UE is associated with at most one BS, the coverage probability can be calculated by

S =
3∑

k=1

Sk =
3∑

k=1

P(SINRk > τ). (3.3.3)

The results of the coverage probability is presented in Theorem 3.3.1.

Theorem 3.3.1. (Coverage Probability) For a typical UE in the presented framework,
the SINR coverage probability is

S(τ) = SL
1 (τ) + SNL

1 (τ) + SL
2 (τ) + SNL

2 (τ) + SL
3 (τ) + SNL

3 (τ), (3.3.4)

where SL/NL
1 (τ) =

∫∞
0

Pr

[
S
L/NL
1 (x)h

Iagg+σ2 > τ

]
FL/NL

1 (x)dx, S
L/NL
2 (τ) =

θ
∫∞
0

Pr

[
S
L/NL
2 (x)h

Iagg1+σ2 > τ

]
FL/NL

2 (x)dx + (1 − θ)
∫∞
0

Pr

[
S
L/NL
2 (x)h

Iagg2+σ2 > τ

]
FL/NL

2 (x)dx, and

SL/NL
3 (τ) =

∫∞
0

Pr

[
S
L/NL
3 (x)h

Iagg+σ2 > τ

]
FL/NL

3 (x)dx, where θ represents the ABS fraction,

and θ = 1− η. Moreover, FL/NL
1 (x)dx, FL/NL

2 (x)dx and FL/NL
3 (x)dx are represented

by

FL/NL
1 (x) = p

L/NL
11 (x)× p

L/NL
12 (x)× p

L/NL
13 (x)× f

L/NL
1 (x),

FL/NL
2 (x) = p

L’/NL’
21 (x)× p

L’/NL’
22 (x)× p

L/NL
23 (x)× f

L/NL
2 (x),

FL
3 (x) = pL21(x)× pL22(x)× pL23(x)×

(
pL1 (x) + pNL

1 (x)
)× fL

2 (x), and

FNL
3 (x) = pNL

21 (x)× pNL
22 (x)× pNL

23 (x)×
(
pL2 (x) + pNL

2 (x)
)× fNL

2 (x).

(3.3.5)

In addition, Pr

[
S
L/NL
1 (x)h

Iagg+σ2 > τ

]
, Pr

[
S
L/NL
2 (x)h

Iagg1,2+σ2 > τ

]
, and Pr

[
S
L/NL
3 (x)h

Iagg+σ2 > τ

]
are re-

spectively computed by

Pr

[
S
L/NL
1 (x)h

Iagg + σ2
> τ

]
= exp

(
− σ2τ

S
L/NL
1 (x)

)
× L

I
L/NL
1

(
τ

S
L/NL
1 (x)

),

Pr

[
S
L/NL
2 (x)h

Iagg1 + σ2
> τ

]
= exp

(
− σ2τ

S
L/NL
2 (x)

)
× L

I
L/NL
21

(
τ

S
L/NL
2 (x)

),

Pr

[
S
L/NL
2 (x)h

Iagg2 + σ2
> τ

]
= exp

(
− σ2τ

S
L/NL
2 (x)

)
× L

I
L/NL
22

(
τ

S
L/NL
2 (x)

), and

Pr

[
S
L/NL
3 (x)h

Iagg + σ2
> τ

]
= exp

(
− σ2τ

S
L/NL
2 (x)

)
× L

I
L/NL
3

(
τ

S
L/NL
2 (x)

).

(3.3.6)

Proof. See Appendix A.3.

In Theorem 3.3.1, LI(s) in Eq. (3.3.6) are the Laplace transform of Iagg evaluated
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at s for LoS or NLoS transmissions in each BS tier, respectively. For clarity, they are

presented in the following Lemmas.

Lemma 3.3.1. In Theorem 1, L
I
L/NL
1

(s) are given by

LIL1
(s) = exp

⎛⎝−2πλ̃1

∫ ∞

x

PrL1 (u)
u

1 +
SL
1 (x)

τSL
1 (u)

du

⎞⎠×

exp

⎛⎝−2πλ̃1

∫ ∞

ΔL
11(x)

PrNL
1 (u)

u

1 +
SL
1 (x)

τSNL
1 (u)

du

⎞⎠×

exp

⎛⎝−2πλ̃2

∫ ∞

ΔL
12(x)

PrL2 (u)
u

1 +
SL
1 (x)

τSL
2 (u)

du

⎞⎠×

exp

⎛⎝−2πλ̃2

∫ ∞

ΔL
13(x)

PrNL
2 (u)

u

1 +
SL
1 (x)

τSNL
2 (u)

du

⎞⎠ ,

(3.3.7)

and

LINL
1
(s) = exp

⎛⎝−2πλ̃1

∫ ∞

x

PrNL
1 (u)

u

1 +
SNL
1 (x)

τSNL
1 (u)

du

⎞⎠×

exp

⎛⎝−2πλ̃1

∫ ∞

ΔNL
11 (x)

PrL1 (u)
u

1 +
SNL
1 (x)

τSL
1 (u)

du

⎞⎠×

exp

⎛⎝−2πλ̃2

∫ ∞

ΔNL
12 (x)

PrL2 (u)
u

1 +
SNL
1 (x)

τSL
2 (u)

du

⎞⎠×

exp

⎛⎝−2πλ̃2

∫ ∞

ΔNL
13 (x)

PrNL
2 (u)

u

1 +
SNL
1 (x)

τSNL
2 (u)

du

⎞⎠ .

(3.3.8)

In Lemma 3.3.1, the interference from a LoS/NLoS channel for a UE u ∈ U1 is

represented by Eq. (3.3.7) and Eq. (3.3.8), respectively. Moreover, the interference

for LIL1
is composed of four parts, which are from other LoS MBSs, NLoS MBSs,

LoS SBSs, and NLoS SBSs as shown in Eq. (3.3.7), and LINL
1

is shown as the similar

components.



Chapter 3. Performance Analysis of the Idle Mode Capability . . . 41

Lemma 3.3.2. In Theorem 3.3.1, L
I
L/NL
21

(s) and L
I
L/NL
22

(s) are given by

LIL21
(s) = exp

⎛⎝−2πλ̃1

∫ ∞

ΔL’
21(x)

PrL1 (u)
u

1 +
SL
2 (x)

τSL
1 (u)

du

⎞⎠×

exp

⎛⎝−2πλ̃1

∫ ∞

ΔL’
22(x)

PrNL
1 (u)

u

1 +
SL
2 (x)

τSNL
1 (u)

du

⎞⎠×

exp

⎛⎝−2πλ̃2

∫ ∞

x

PrL2 (u)
u

1 +
SL
2 (x)

τSL
2 (u)

du

⎞⎠×

exp

⎛⎝−2πλ̃2

∫ ∞

ΔL
23(x)

PrNL
2 (u)

u

1 +
SL
2 (x)

τSNL
2 (u)

du

⎞⎠ ,

(3.3.9)

LIL22
(s) = exp

⎛⎝−2πλ̃2

∫ ∞

x

PrL2 (u)
u

1 +
SL
2 (x)

τSL
2 (u)

du

⎞⎠×

exp

⎛⎝−2πλ̃2

∫ ∞

ΔL
23(x)

PrNL
2 (u)

u

1 +
SL
2 (x)

τSNL
2 (u)

du

⎞⎠ ;

(3.3.10)

and

LINL
21
(s) = exp

⎛⎝−2πλ̃1

∫ ∞

ΔNL′
21 (x)

PrL1 (u)
u

1 +
SNL
2 (x)

τSL
1 (u)

du

⎞⎠×

exp

⎛⎝−2πλ̃1

∫ ∞

ΔNL′
22 (x)

PrNL
1 (u)

u

1 +
SNL
2 (x)

τSNL
1 (u)

du

⎞⎠×

exp

⎛⎝−2πλ̃2

∫ ∞

ΔNL
23 (x)

PrL2 (u)
u

1 +
SNL
2 (x)

τSL
2 (u)

du

⎞⎠×

exp

⎛⎝−2πλ̃2

∫ ∞

x

PrNL
2 (u)

u

1 +
SNL
2 (x)

τSNL
2 (u)

du

⎞⎠ ,

(3.3.11)
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LINL
22
(s) = exp

⎛⎝−2πλ̃2

∫ ∞

ΔNL
23 (x)

PrL2 (u)
u

1 +
SNL
2 (x)

τSL
2 (u)

du

⎞⎠×

exp

⎛⎝−2πλ̃2

∫ ∞

x

PrNL
2 (u)

u

1 +
SNL
2 (x)

τSNL
2 (u)

du

⎞⎠ .

(3.3.12)

In Lemma 3.3.2, the interference from a LoS/NLoS channel for a UE u ∈ U2 is

represented in Eq. (3.3.9)-Eq. (3.3.12), respectively. Moreover, from Eq. (3.3.10) I

can find that when the ABS is working, only the interference from the other SBSs

is valid. This is because all the MBSs are not transmitting in the ABS, and this

brings about two parts of interference in Eq. (3.3.10). Similar components are shown

in Eq. (3.3.11) and Eq. (3.3.12).

Lemma 3.3.3. In Theorem 1, L
I
L/NL
3

(s) are given by

LIL3
(s) = exp

⎛⎝−2πλ̃2

∫ ∞

x

PrL2 (u)
u

1 +
SL
2 (x)

τSL
2 (u)

du

⎞⎠×

exp

⎛⎝−2πλ̃2

∫ ∞

ΔL
23(x)

PrNL
2 (u)

u

1 +
SL
2 (x)

τSNL
2 (u)

du

⎞⎠ ,

(3.3.13)

and

LINL
3
(s) = exp

⎛⎝−2πλ̃2

∫ ∞

ΔNL
23 (x)

PrL2 (u)
u

1 +
SNL
2 (x)

τSL
2 (u)

du

⎞⎠×

exp

⎛⎝−2πλ̃2

∫ ∞

x

PrNL
2 (u)

u

1 +
SNL
2 (x)

τSNL
2 (u)

du

⎞⎠ .

(3.3.14)

In Lemma 3.3.3, the interference from a LoS/NLoS channel for a UE u ∈ U3 is

represented in Eq. (3.3.13) and Eq. (3.3.14), respectively. Similar to Eq. (3.3.10) and

Eq. (3.3.12), the components of them are two pars, as the interference only comes

from SBSs.
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It is important to note that the impact of the tier and BS selection on the coverage

probability is measured in Eq. (3.3.5), the expressions of which are based on λ1 and

λ2. This is because all the BSs can be chosen by the UEs. Moreover, the impact

of the interference on the coverage probability is measured in Lemma 3.3.1, 3.3.2,

and 3.3.3. Note that instead of λ1 and λ2, I use λ̃1 and λ̃2. This is because the IMC is

applied, and thus only the activated BSs emit effective interference into the network.

3.3.2 Area Spectral Efficiency

In this subsection, I investigate the network capacity performance in terms of the

area spectral efficiency (ASE) in bps/HZ/km2, which is defined as

R =
∑

k∈1,2,3
1(u ∈ Uk)ηkRk, (3.3.15)

where 1(A) is the indicator of the event A, η1 = 1− η, η3 = η, and η2 = 1− η when

ABS is engaged, while η2 = η when ABS is not engaged.

Then, the per tier Rk is defined by

Rk � λuEx {ESINRk
[log2(1 + SINRk(x))]} . (3.3.16)

It is important to note that the average is taken over both the spatial PPP and

the channel fading distribution. The ASE is first averaged on the condition that the

typical UE is at a distance x from its serving BS in the kth tier. Then it is averaged

by calculating the expectation over the distance x. The following Theorem 3.3.2 gives

the ASE over the entire network.

Theorem 3.3.2. (Area Spectral Efficiency) For a typical user in the setup, the ASE
is computed by

R = RL
1 +RNL

1 +RL
2 +RNL

2 +RL
3 +RNL

3 , (3.3.17)

where the conditional rate coverage Rk is given by the following equations:

RL
1 = (1− η)λu

∫ ∞

x=0

∫ ∞

ρ0

exp

(
−σ2t(ρ)

SL
1 (x)

)
× LIL1

(
t(ρ)

SL
1 (x)

)dρFL
1 (x)dx; (3.3.18)
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RNL
1 = (1− η)λu

∫ ∞

x=0

∫ ∞

ρ0

exp

(
−σ2t(ρ)

SL
2 (x)

)
× LINL

1
(

t(ρ)

SNL
1 (x)

)dρFL
2 (x)dx; (3.3.19)

RL
2 =(1− η)λu

∫ ∞

x=0

∫ ∞

ρ0

exp

(
−σ2t(ρ)

SL
2 (x)

)
× LIL21

(
t(ρ)

SL
2 (x)

)dρFL
2 (x)dx

+ ηλu

∫ ∞

x=0

∫ ∞

ρ0

exp

(
−σ2t(ρ)

SL
2 (x)

)
× LIL22

(
t(ρ)

SL
2 (x)

)dρFL
2 (x)dx;

(3.3.20)

RNL
2 =(1− η)λu

∫ ∞

x=0

∫ ∞

ρ0

exp

(
− σ2t(ρ)

SNL
2 (x)

)
× LINL

21
(

t(ρ)

SNL
2 (x)

)dρFNL
2 (x)dx;

+ ηλu

∫ ∞

x=0

∫ ∞

ρ0

exp

(
− σ2t(ρ)

SNL
2 (x)

)
× LINL

22
(

t(ρ)

SNL
2 (x)

)dρFNL
2 (x)dx

(3.3.21)

RL
3 = ηλu

∫ ∞

x=0

∫ ∞

ρ0

exp

(
−σ2t(ρ)

SL
2 (x)

)
× LIL3

(
t(ρ)

SL
2 (x)

)dρFL
3 (x)dx; (3.3.22)

RNL
3 = ηλu

∫ ∞

x=0

∫ ∞

ρ0

exp

(
− σ2t(ρ)

SNL
2 (x)

)
× LINL

3
(

t(ρ)

SNL
2 (x)

)dρFNL
3 (x)dx, (3.3.23)

where ρ0 = log2(τ + 1), defining the minimum working SINR, and t(ρ) = 2ρ − 1 and
the PDFs in each equation are given in Theorem 3.3.2.

Proof. See Appendix A.4.

Although the results for the coverage probability and ASE are not in closed-form,

they can be numerically evaluated in a simple form. Moreover, they can be presented

in closed-form expressions in several cases, for example, the 3GPP Case 1 mentioned

in [52].

3.3.3 Special Case for ASE

In this subsection, a special case is used to show the analysis results for the ASE,

and obtain insights from it.

I consider a very dense network where λ2 → +∞, then the signal coming from the

NLoS BSs can be neglected, and all UEs can be assumed to connect with BSs in a

LoS channel. Thus, the ASE for the considered very dense network does not actually
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depend on the LoS and NLoS propagation, and it can be described as the following

Lemma.

Lemma 3.3.4. In a very dense network where λ2 → +∞, the ASE can be shown as

R = RL
1 +RL

2 +RL
3

= (1− η)λu(Θ1 +Θ21) + ηλu(Θ22 +Θ3),
(3.3.24)

where

Θ1 =

∫ ∞

x=0

∫ ∞

ρ0

exp

(
−σ2t(ρ)

SL
1 (x)

)
× LIL1

(
t(ρ)

SL
1 (x)

)dρFL
1 (x)dx, (3.3.25)

Θ21 =

∫ ∞

x=0

∫ ∞

ρ0

exp

(
−σ2t(ρ)

SL
2 (x)

)
× LIL21

(
t(ρ)

SL
2 (x)

)dρFL
2 (x)dx, (3.3.26)

Θ22 =

∫ ∞

x=0

∫ ∞

ρ0

exp

(
−σ2t(ρ)

SL
2 (x)

)
× LIL22

(
t(ρ)

SL
2 (x)

)dρFL
2 (x)dx, (3.3.27)

and

Θ3 =

∫ ∞

x=0

∫ ∞

ρ0

exp

(
−σ2t(ρ)

SL
2 (x)

)
× LIL3

(
t(ρ)

SL
2 (x)

)dρFL
3 (x)dx. (3.3.28)

Besides, to compute the interference power for different tiers, LIL1
( t(ρ)

SL
1 (x)

),LIL21
( t(ρ)

SL
2 (x)

),

LIL22
( t(ρ)

SL
2 (x)

), and LIL3
( t(ρ)

SL
2 (x)

), Lemma 3.3.5 is proposed.

Lemma 3.3.5. The interference power for different tiers can be calculated by

LIL1
(
t(ρ)

SL
1 (x)

) = exp
(
−2πλ̃1 × ρ

(
αL
1 , 1, t(ρ)

−1x−αL
1 , x
))

× exp

(
−2πλ̃2 × ρ

(
αL
2 , 1,

P1A
L
1

P2AL
2

t(ρ)−1x−αL
1 ,ΔL.

12(x)

))
,

(3.3.29)

LIL21
(
t(ρ)

SL
2 (x)

) = exp

(
−2πλ̃1 × ρ

(
αL
1 , 1,

P2A
L
2

P1AL
1

t(ρ)−1x−αL
2 ,ΔL.′

21 (x)

))
× exp

(
−2πλ̃2 × ρ

(
αL
2 , 1, t(ρ)

−1x−αL
2 , x
))

,

(3.3.30)

and

LIL22
(
t(ρ)

SL
2 (x)

) = LIL3
(
t(ρ)

SL
2 (x)

) = exp
(
−2πλ̃2 × ρ

(
αL
2 , 1, t(ρ)

−1x−αL
2 , x
))

, (3.3.31)

where

ρ(α, β, t, d) =

[
d−(α−β−1)

t(α− β − 1)

]
2F1

[
1, 1− β + 1

α
; 2− β + 1

α
;− 1

tdα

]
,

(α > β + 1) ,

(3.3.32)

where 2F1[·, ·; ·; ·] is the hyper-geometric function [82].
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Proof. See Appendix A.5.

From Lemma 3.3.4 and 3.3.5, the expression of the special case can be obtained,

where the expressions of the interference power are much simpler than in the general

case. To get more insights, I provide Lemma 3.3.6 to show that the ASE achieves the

maximum value when the ABS factor is set to one.

Lemma 3.3.6. In a very dense network, ASE achieves the maximum value when the
ABS factor is set to one.

Proof. Take the derivative of R with respect to η, then I get ΔR
Δη

= Θ22+Θ3−Θ1−Θ21.
As the λ2 → +∞, for the UE associated with a MBS, the interference power is
increasing while the source power keeps stable. For the UE associated with a SBS,
the UE can get stronger signal from a closer SBS. So intuitively speaking, Θ22 +Θ3,
which represents the UE connecting the SBS and receiving interference only from
SBSs, should be larger than Θ1 + Θ21, which suffers interferences from all BSs. As
a result, ΔR

Δη
> 0 and the optimal ABS factor should be one to get the maximum

ASE.

3.4 Simulation and Discussion

In this section, I use numerical results to establish the accuracy of the analysis,

and further study the performance of dense HCNs.

3.4.1 Validation and Discussion on the Active BS Probability

I consider the 2-tier HCN, following the 3GPP definitions [83], to show the ac-

curacy of our analysis. Table 3.1 summarizes the most important assumptions and

parameter values.

In Fig. 3.3, I plot Pon
i versus λ2, where λ2 ∈ [10, 1000] BSs/km2. As can be

observed from this figure, the analytical results match well with the simulation results.

Moreover, they also show that, within the 5 dB power bias allocation to the small cell
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Table 3.1: Parameter values Summary
Parameter Values

Macro BS transmit power P1 46 dBm
Micro BS transmit power P2 24 dBm

Macro BS density λ1 10 BSs/km2

User density λu 300 UEs/km2
AL

1 10−10.34

αL
1 2.42

ANL
1 10−13.11

αNL
1 4.28
AL

2 10−10.38

αL
2 2.09

ANL
2 10−14.54

αNL
2 3.75

Power bias allocation D 5 dB
Noise Power σ2 -95 dBm

q = b 4.18 [10]
Resource partitioning fraction η 0.4
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BSs, i) the probability of a BS being active in the small cell BS tier decreases with

λ2, when λu is a finite value, and that ii) the BSs with a lower transmit power have

lower activation probability. For example, more than 60% of the BSs in the small cell

BS tier are idle when λ2 > 300 BSs/km2. This means that a large number of UEs are

associated with the BSs in the macrocell tier, as they can provide stronger signals to

these UEs.

3.4.2 Validation and Discussion on the Coverage Probability

In this subsection, I first validate the accuracy of Theorem 3.3.1. As in the

previous subsection, the network consists of 2 tiers of BSs, represented by U1 and

U2, respectively, and U3 is defined by the small cell tier, contributed by the range

expanded (RE) UEs. All the simulation results are represented by the solid line.

In Fig. 3.4, I show the results of S with respect to λ2. As can be seen from the

figure, there are some small misalignments between the simulation and analytical

results in each tier. For example, there is about 1.5% inaccuracy when λ2 is about

16 BSs/km2 as shown in Fig. 3.4. With the increasing number of BSs in the small

cell tier, the error becomes negligible. The reason of such an error is that the spatial

correlation in the UE association process is not considered in the analysis. More

specially, when performing simulations, nearby UEs have a high probability of being

covered and served by the same BS. However, for tractability, I consider the BS

association of different UEs as independent process in Eq. (3.2.9) in the analysis,

which underestimates the active BS density, as their no channel correlation. Because

the accuracy of S is good enough, about 1.5%, I will only use analytical results of S
for the figures in the sequel.

Fig. 3.4 also shows that with the increasing number of BSs in the small cell tier,
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the coverage probability of U1 decreases while that of U2 increases. The coverage

probability of U3 first increases to a peak point and then decreases afterwards. As

a result, the overall coverage probability first increases, then decreases, and finally

increases again. The reason behind this phenomenon is that:

• The overall coverage probability first increases because UEs can connect to the

stronger BSs.

• Then, the overall coverage probability decreases since the interference power

grows faster than the signal power as many interfering paths transit from NLoS

to LoS.

• Finally, the overall coverage probability performance continuously increases as

the network densifies. The intuition is that the interference power will remain
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Figure 3.5: The results of ASE with respect to the small cell BS density λ2

constant when the BS density is large enough (larger than the UE density),

thanks to the IMC2, while the signal power will continuously grow due to the

closer proximity of the serving BSs, as well as the larger pool of BSs to select

from.

3.4.3 Validation and Discussion on the ASE

In this subsection, I first validate the accuracy of Theorem 3.3.2, and then discuss

the optimal ABS factor in different BS density regions.

In Fig. 3.5, I can observe that the analytical results on the per tier ASE match

well with the simulation results. Moreover, the results show that with an increasing

2The interference power will become constant eventually when there are a large number of BSs.
This is because of the IMC, which makes the number of active BSs at most equal to the number
of UEs. Thus, from the viewpoint of the typical UE, the interference from other active BSs can be
regarded as the aggregate interference generated by BSs on an HPPP plane with the same intensity
as the UE intensity. Such aggregate interference is bounded and statistically stable [5].
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number of BSs in the small cell tier, the ASE of U1 decreases, while ASE of U2

increases. The ASE performance decrease of U1 is because the interference power

grows, as the BSs in the small cell tier get closer and transition to LoS, while the

signal power remains constant. There is no densification in the macrocell tier. The

ASE performance increase of U2 is because the signal power grows, as the UE is served

by a stronger link in the small cell tier, while the interference power remains constant.

This is because the BS density is larger than the UE density due to the IMC in the

small cell tier. In contrast, the offloaded UE in U3 will first benefit from the network

densification, but later they get a more severe interference from the increasing number

of BSs in the small cell tier, whereas they do not have a large serving BS pool to select

from.

In Fig. 3.6, the ASE is shown as a function of the BS density in the small cell

tier for four different ABS fractions η. Note that λu = 300 UEs/km2. I can draw the

following conclusions from Fig. 3.6:

• The ASE almost monotonically grows as the network densifies. In more detail,

the system throughput first increases quickly when λ2 goes from 10 BSs/km2

to 100 BSs/km2. Then, the ASE suffers from a slow growth or even a decrease

when λ2 ∈ [100, 900] BSs/km2.

Finally, the ASE monotonically grows again when λ2 > 900 BSs/km2.

• Different ABS factors should be applied in different BS density regions. In the

region of λ2 < 900 BSs/km2, most users are associated with the MBSs and the

less the number of ABSs, i.e., smaller η, the larger the ASE. However, when

λ2 ≥ 900 BSs/km2, the more the number of ABSs, i.e., lager η, the larger the

ASE, since there are more users associated with the SBSs. The demarcation
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Figure 3.6: The system throughput with respect to the SBS density λ2

point, 900 BSs/km2, should be strongly related to the REB, which in this case

is 5 dB.

In Fig. 3.7, I verify the observations from Fig. 3.7 by comparing the system

throughput as a function of the ABS fraction for four different BS densities in the

small cell tier λ2. Note that λu = 300 UEs/km2. Four SBS densities are considered

in this figure to show the various trends of the ABS fraction. As can be found from

the figure, more channel resource should be allocated to the BSs in the macrocell tier

when the network is sparse, e.g., λ2 = 100 BSs/km2 and λ2 = 300 BSs/km2. When

the network is denser, although the service to the macrocell UEs will get affected,

for the benefit of the whole system, a larger η should be applied. It is important to

note that MBSs should give up all resources and all subframes are ABSs, when the

small cell networks go ultra-dense. The intuition is that most UEs are associated with
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Figure 3.7: The system throughput with respect to the ABS factor η

small cell BSs at close proximity in UDNs, and the density of small cell BSs is very

large. As a result, the cost of activating a MBS is high, since it will severely interfere

with a large number of small cell BSs. Therefore, using a higher η, i.e., macrocell

BSs giving up more subframe resources, is helpful to achieve a better overall system

throughput. This reveals an important conclusion: to maximize network capacity,

ultra-dense small cell networks should operate in a different frequency spectrum from

the macrocell ones. In other words, the orthogonal deployment is superior to the co-

channel deployment for ultra-dense small cell networks in future wireless networks.

The intuition is that the additional spatial reuse of spectrum in the co-channel de-

ployment is over-shadowed by the large interference emitted from the macrocell tier

to the ultra-dense small cell tier.

In Fig. 3.8, I compare the current results with the bounded path loss model in
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[84] as follows,

ζ ′k(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ζL’k (r) = AL
k (1 + r)−αL

k ,

LoS: PrLk (r);

ζNL’
k (r) = ANL

k (1 + r)−αNL
k ,

NLoS: PrNL
k (r) = 1− PrLk (r).

(3.4.1)

From Fig. 3.8, I can find that there are two main differences from previous results.

The first one is the crossing point, which is about 1000 BSs/km2, is a little bigger than

that in Fig. 3.6. This is because of the application of the bounded path loss model,

which makes the receive power smaller than the previous one, especially for the SBS

UEs. Thus, more resources should be allocated in the MBSs when the density of small

cell BSs is not very large, and the crossing point shifts right. The second difference is

that the ASE will first increase and then decrease with the density of the SBS, and

should finally keep constant [85]. The intuition is that the received signal from BSs is
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bounded while the interference power keeps increasing, so the ASE will decay for the

denser BSs. When the network goes into ultra-dense, because of the limited number

of UEs and the IMC of the BSs, the user signal power and the interference power

are both bounded, so the ASE will keep constant in the end. Similarly, the same

conclusion can be found from the results of the ASE performance: MBSs should give

up all resources when the small cell networks go ultra-dense.

3.5 Summary

In this chapter, the impact of the IMC, caused by the finite number of UEs, on

the network performance in a dense two-tier HCN with LoS and NLoS transmissions

has been studied. Moreover, to address the under-utilization of SBSs, CRE and

eICIC via ABSs are adopted in this work. The results show that as the BS density

in the second tier surpasses the UE density, for the considered path loss model,

the coverage probability and the ASE will continuously increase in this dense two-

tier HCN, addressing the issue caused by the NLoS to LoS transition of interfering

paths. Moreover, it is important to note that more ABSs are needed to enhance the

performance of range expanded UEs as the small cell BS density grows, indicating

that ultra-dense small cells should operate in a different frequency spectrum from the

macrocell ones. This conclusion enlightens the new design and deployment of dense

HCNs in 5G and beyond.



Chapter 4

Socially Aware Caching Strategy in
Device to Device Communication
Networks

In this chapter, the average performance of the D2D caching networks is studied,

and an enhanced learning algorithm is proposed to solve the optimal caching placement

problem in the socially aware D2D caching networks. To promote content dissemi-

nation in D2D communications, the concept of the social networks is introduced and

implemented in the design of the caching strategy. Theoretical results of the aver-

age caching performance are derived using stochastic geometry theory and the system

throughput gain is achieved by the proposed distribution caching algorithm.

4.1 System Model and Problem Formulation

4.1.1 Transmission Model

A content downloading scenario assisted by D2D overlaying communications is

considered, where dedicated radio resources are allocated to D2D users by the BS as

shown in Fig. 4.1, and thus there is no interference between the cellular and D2D

links. There are a total of N users in the network. Denote by N = {1, 2, · · ·, N}

56
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Table 4.1: Parameter and Symbols Summary
Meaning Symbol

Transmit power of IU m Pm

Distance between IU m and user n rm,n

Request probability of file f pf

Social trust distance A
The importance of IU m Im

Probability of caching file i pi
Reward estimation of caching file i at time t oi(t)

Resolution parameter δ
Physical influence of IU m and user n xm,n

Social influence of IU m and user n sm,n

The set of common neighbor of user m and n Nm,n

Figure 4.1: Illustration of the network deployment under consideration. Within the
transmission distance of the BS (RBS), User 1 can acquire content either from its
adjacent IU 1 with social connection or from the BS. This connection will suffer from
interference from other IUs.
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the set of mobile users and it is assumed that each user carries a mobile device with

D2D communication capability. Furthermore, denote by M = {1, 2, · · ·,M} the set

of important users (IUs), which is a subset of mobile users in this network. I assume

that the distribution of the IUs follows a homogeneous poisson point process1 (HPPP)

of density λ UEs/m2. The BS caches files into the memories of the IUs during the

off-peak time. Once the caching process is completed, the BS and IUs are ready to

act upon the downloading requests of users.

I assume that a dedicated frequency band with a bandwidth ofW Hz is allocated to

the downlink channels for file-dissemination via D2D communications. Furthermore,

I consider a ”D2D-first” scheme, where each user will try to download data from

its adjacent IUs first and only turn to the BS if no available D2D link exists or the

requested file is not available from its adjacent IUs.

I assume that the channel between an IU and a mobile user is a Rayleigh fading

channel. Furthermore, all downlink channels from the IUs to the users are assumed to

be independent and identically distributed (i.i.d.). I consider the fully-loaded network

scenario, where the IUs keep transmitting data to the users. This is because I intend

to investigate the performance in the worst case that each user is subject to the

interference imposed by all the other IUs in M. The channel capacity between the

mth IU and the nth user can be calculated based on the signal-to-interference-plus-

noise ratio (SINR) as

Cm,n=W log2

⎛⎜⎝1 + Pmhm,nr
−α
m,n∑

m′ �=m,m′∈M
Pm′hm′,nr

−α
m′,n + σ2

⎞⎟⎠ , (4.1.1)

where hm,n is modeled as an exponential random variable (RV) with the mean of

1I assume the UE number is a Poisson distributed random variable, and the UEs are uniformly
distributed on the plane. As the IUs are the subset of UEs, I thus have the distribution of the IUs
as a thinned HPPP.
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one due to Rayleigh fading, Pm is the transmit power of the mth IU, and σ2 is the

noise power. The path-loss between the mth IU and the nth user is modeled as r−α
m,n,

where rm,n is the physical distance between the mth IU and the nth user and α is the

path-loss exponent. Additionally, the channel capacity between the BS and the nth

user is denoted by C0,n.

The file library consists of F popular files, of which the popularity distribution

is represented by P = {p1, p2, · · ·, pF}. Users make independent requests of the fth

file, f ∈ {1, 2, · · ·, F}, with a probability of pf . I use the Zipf distribution, which is

commonly used in the caching literature, to model this probability. Specifically, for

the fth file, its file request probability pf can be written as

pf =

1
fω

F∑
i=1

1
iω

, (4.1.2)

where F is the file library size and ω is the discounted rate in the Zipf distribution

[19].

All these popular files are assumed to have the same size of L bits for simplicity.

Also, I assume that the BS has a sufficiently large memory and hence can store the

entire library of files, while the maximum storage of the IU is limited to G files, where

G < F . Denote by θm,f ∈ {0, 1} the event whether the mth IU has cached the fth file

or not. Specifically, θm,f = 1 if file f is cached by the mth IU; otherwise, θm,f = 0. A

D2D link can be established if the associated SINR of the link exceeds a predefined

threshold γ and these two users have a social relationship, i.e., ςm,n = 1.

4.1.2 Social Relationship Model

In this work, I investigate two social relationship models, termed as the physically

distance-dependent social model and the deterministic social model, respectively.
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The physically distance-dependent social model

It is reported in [86] that only one-third of the social friendships are independent

of geography. Experimental studies have verified this property in real social networks,

and theoretical models have since been proposed to capture this fact that the proba-

bility of befriending with a particular person is inversely proportional to the physical

distance between them [87], [88].

Considering the practical social relations among different users, I propose to model

the probability of two users having a social relationship with respect to their physical

distance r [86] as

PS(r) =

⎧⎨⎩1, when 0 < r ≤ A;

A2/r2, when r > A.
(4.1.3)

Eq. (4.1.3) indicates that if the distance r between the receiver and the IU is

smaller than a predefined distance A, the two users are surely to have a stable social

relationship; otherwise, this probability is dependent on their physical distance.

Remark 4.1.1. The physically distance-dependent social model will be used to analyze
the average performance of the D2D caching networks in Chapter 4.2.

The deterministic social model

The deterministic social model is widely adopted in open literature, e.g., [23],

[89], and [90]. In this model, social characters (such as the social connections and the

relationship closeness) are assumed to be known as a prior information. As such, the

average successful transmission probability of the deterministic network scenario can

be obtained by substituting known parameters into the analytical expression derived

in Chapter 4.2.
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Remark 4.1.2. The deterministic social model will be used to design a distributed
caching algorithm in Chapter 4.3.

4.1.3 Problem Formulation

Given that the storage capacity of each IU is limited, it is imperative to design an

effective caching strategy to optimize the QoE (defined as the average delay required

to download a file) of all users in the networks.

First, given the channel coefficients, the specific location, and the nearby infor-

mation of each user, the delay of downloading a file f in F by the nth user can be

calculated as

Dn,f =

⎧⎨⎩min{ L
Cm,n

}, ∃ςm,n × θm,f �= 0 and SINRm,n ≥ γ,

L
C0,n

, otherwise.
(4.1.4)

Mentioned here, the delay should be zero if the request file is cached locally by

the user itself, which is not considered in the delay calculation.

To analyze the average downloading delay performance, I rewrite (4.1.4) as

D = ptrans × κ× L

CD2D

+ (1− ptrans × κ)× L

C0

, (4.1.5)

where ptrans is the average transmission probability, κ is the average hitting rate used

by the chosen caching strategy, CD2D is the average transmission capacity of the D2D

link, which is captured by the average of the Cm,n, and C0 is the average transmission

capacity of the cellular link.

In order to reduce the downloading delay, it is important to analyze the baseline

network performance first. Based on the average performance, the corresponding

caching solutions can be evaluated. In the subsequent two sections, I first derive the

successful transmission probability and the average downloading performance. Under

the deterministic network scenario, I then focus on the cache placement optimization
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at IUs by designing a socially aware distributed caching strategy, which decreases the

downloading delay.

4.2 Stochastic Geometry Based Performance Anal-

ysis

In this section, I first adopt the physical distance-dependent social model in the

D2D caching network and apply the stochastic geometry theory to derive the an-

alytical expression for the average D2D transmission probability and the average

downloading delay performance under different caching strategies.

4.2.1 Average D2D Transmission Probability

Recall that I use the following user association strategy (UAS). Each D2D receiver

should be associated with the IU with the highest SINR. Also, each D2D link can

be established under two conditions: (1) the IU and the receiver have a social rela-

tionship; (2) the SINR of this link is above the threshold γ. Using the property of

the HPPP, I study the performance of the proposed socially aware D2D networks by

considering the performance of a typical receiver located at the origin o. Under these

assumptions, I first investigate the average transmission probability that a typical re-

ceiver can communicate with its associated IU. The average transmission probability

is defined as

ptrans(λ, γ) = Pr[SINR > γ], (4.2.1)

where the SINR is computed by

SINR =
Phr−α

Id + σ2
, (4.2.2)
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where the path-loss of the channel from an IU to a receiver is simplified to r−α, and

each IU is assumed to have the same transmission power P . Furthermore, Id is the

cumulative interference given by

Id =
∑

i:bi∈Φ\b0
Phir

−α
i , (4.2.3)

where b0 denotes the IU serving the typical receiver and located at distance r from

the typical receiver. Besides, for notation simplicity, I rewrite the rest parameters in

Eq. (4.1.1): bi and ri denote the ith interfering IU and the distance between bi and

the receiver, respectively.

Given the definition of the average transmission probability presented in Eq. (4.2.1),

in the following, I will analyze the performance measures for the considered UAS. Base

on the proposed social relationship model in Eq. (4.1.3), I present the main result of

ptrans(λ, γ) in Theorem 4.2.1.

Theorem 4.2.1. Considering the proposed social relationship model in Eq. (4.1.3),
ptrans(λ, γ) can be derived as

ptrans(λ, γ) =

∫ A

0

Pr

[
Phr−α

Id + σ2
> γ

]
fR1(r)dr

+

∫ ∞

A

Pr

[
Phr−α

Id + σ2
> γ

]
fR2(r)dr,

(4.2.4)

where fR1(r) and fR2(r) are the piece-wise PDFs of the random variable (RV) R1 and
R2, and R1 and R2 are the distance that the typical receiver has a nearest IU with a
social relationship, and they represent different distance intervals. Moreover, fR1(r)
and fR2(r) are represented by

fR1(r) = exp(−πλr2)2πλr, (0 < r ≤ A), (4.2.5)

and
fR2(r) = exp[−(πλA2 + 2πλA2(ln r − lnA)]

× 2πλA21

r
, (r > A).

(4.2.6)

Furthermore, Pr
[
Phr−α

Id+σ2 > γ
]
is computed by

Pr

[
Phr−α

Id + σ2
> γ

]
= exp

(
−γrασ2

P

)
LId

(
γrα

P

)
, (4.2.7)
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where LId(s) is the Laplace transform of RV Id evaluated at s.

Proof. See Appendix B.1.

Because the physically distance-dependent social model in Eq. (4.1.3) takes the

form of a piece-wise functions, I need to evaluate the interference LId(s) for two

regions of r, i.e., 0 < r ≤ A and r > A.

To compute LId1(s) in Eq. (4.2.4) for the range of 0 < r ≤ A, I attain Lemma

4.2.1.

Lemma 4.2.1. LId1(s) in the range of 0 < r ≤ A can be calculated by

LId1(s) = exp

(−2πλr2γ

α− 2
×∇1(α, γ)

)
, (0 < r ≤ A), (4.2.8)

where ∇1(α, γ) = 2F1

[
1, 1− 2

α
; 2− 2

α
;−γ

]
, 2F1[·, ·; ·; ·] is the hyper-geometric function

[91], and α > 2.

Proof. See Appendix B.2.

Same as before, I have the following Lemma Eq. 4.2.2 to compute LId2(s) in (4.2.4)

for the range of r > A.

Lemma 4.2.2. LId2(s) in the range of r > A can be calculated by

LId2(s) = exp

(
−2πλγ2 1

α

(
ln

(
1 +

1

γ

)
− ln

(
1

γ

)))
× exp

(−2πλA2−αrαγ

α− 2
×∇2(α,A, r, γ)

)
× exp

(
2πλA2

α

[
ln(1 +

Aαr−α

γ
)− ln(

Aαr−α

γ
)

])
,

(r > A)

(4.2.9)

where ∇2(α,A, r, γ) = 2F1

[
1, 1− 2

α
; 2− 2

α
;−A−αrαγ

]
, 2F1[·, ·; ·; ·] is the hyper-geometric

function [91], and α > 2.

Proof. See Appendix B.3.

Substituting Eqs. (4.2.5)-(4.2.9) into Eq. (4.2.4), ptrans(λ, γ) for the proposed mod-

el can be obtained.
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Remark 4.2.1. The results shown in Theorem 4.2.1 reveal an interesting finding.
Specifically, the successful transmission probability becomes stable when the den-
sity of users is large enough. More discussions are relegated to Sec. V-A. In order to
reduce the downloading delay from Eq. (4.1.5), the following approach is to optimize
the caching content in IU, which will increase the hitting rate.

4.2.2 Average Downloading Delay Performance

I first introduce two popular caching strategies to estimate the average download-

ing delay performance.

Random Caching (RC)

The random caching is realized by randomly picking files from the file library to

cache into IUs, and I denote this hitting rate by κran, and κran = G/F .

Deterministic Caching (DC)

The deterministic caching is realized by caching the most popular files according

to the file request probability. Then I denote the hitting rate used in the deterministic

caching strategy by κdet, and κdet =
∑G

1 p
f , where pf is the file request probability

and defined in Eq. (4.1.2).

Substituting different hitting rates into Eq. (4.1.5), I can get the average down-

loading delay performances. Note that such an average delay performance can be

achieved by simple caching schemes such as the RC and DC schemes, where every

IU caches same files and it provides a theoretical understanding of the D2D caching

network. With various numbers and locations of users, the trends regarding the user

density or the file request probability are obtained. In practice, more sophisticated

content caching algorithms can be devised and implemented when more information

is available, such as social relationship and physical distance. In this case, each IU
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may cache files according to its local feedback that in turn increases the hitting rate.

In the following section, I will explore new implementation algorithms based on

the decentralized learning technique to optimize the caching content in IUs.

4.3 Socially Aware Distributed Caching Algorith-

m

In the previous section, I adopt the physically distance-dependent social mod-

el in the D2D caching network and study the performance under different caching

strategies. Such analysis provides us a theoretical understanding of the network per-

formance for the considered D2D caching network with various numbers and locations

of users. As to be shown in the section on simulations and discussions, the analysis is

useful to qualitatively predict the performance trend of D2D caching in 5G. However,

it still remains unclear how to implement the 5G D2D caching in practice. And more

importantly, can we even do better than the derived analytical results by means of

more advanced algorithms? If yes, how much better? Note that in the theoretical

analysis conducted in the previous section, only simple D2D caching strategies such

as RC and DC, have been analyzed, where each IU caches the same files. In practice,

it is desirable and might be feasible to optimize the D2D content placement on the fly,

and popular content can be specifically placed in particular devices to achieve high

performance gains in particular areas. Therefore, in this section, I consider a deter-

ministic D2D caching scenario with fixed number and locations of users, and devise

a distributed algorithm to enable each IU to optimize its content placement. To take

fully advantage of the social characters as well as the content request probability, a

class of reinforcement learning algorithm is proposed. In each iteration, the exact
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content requested by the user is generated using simulation, and a reward/penalty

will be imposed after this action. The IU will know which content should be exactly

cached after the entire learning process.

To this end, I develop a distributed learning automation that enables each IU to

optimize the cache placement according to its local demands. The proposed algorithm

is inspired by the DGPA [92]. In the following, by adopting the deterministic social

network model, in which the successful transmission probability among IUs and users

is invariant, I first introduce a scheme to select the IUs in the considered network,

then provide some preliminaries of DGPA before formally presenting the proposed

algorithm. Furthermore, I also design a scheme to characterize the mutual impacts

of content placement in different IUs, which enables the proposed algorithm to be

implemented in large-scale networks.

4.3.1 Selection of The Important Users

The important users (IUs) in the proposed network will pre-cache files from the

BS during the off-peak hours and transmit these files to other users. I first determine

the number of the IUs in the network.

Throughout the paper, a user is called a neighbor of another user if there is a social

relationship between them. According to [93], in social networks, the distribution of

the node degree, i.e., the number of neighbors of a node, decays according to a power

law distribution given by

p(k) = ck × k−ϕ, (4.3.1)

where
∞∑
k=0

ckk
−ϕ = 1, and p(k) is the probability that a randomly chosen node has

k neighbors, and ϕ is the decaying coefficient. Let Mk be the number of nodes that
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have at least k neighbors in a network with total N nodes. Using the aforementioned

power law degree distribution, Mk can be calculated as

Mk = �N ×
N−1∑
i=k

p(i)�, (4.3.2)

where �x� is the floor function, retrieving the largest integer that is equal or smaller

than x. In the following, I ignore the subscript of Mk, and rewrite as M for notational

convenience. I assume that these M users can download contents directly from BSs

and they are regarded as the important users (IUs).

Next, I present a scheme to sort theseM IUs. In the process of sorting the IUs, the

betweenness centrality B and the available storage capacity G are used to characterize

the importance, which is denoted by I. For the mth IU, the importance is defined as

Im = μ×Bm + ν×Gm, (4.3.3)

where μ and ν are tunable parameters satisfying μ+ν = 1 [94]. Betweenness centrality

B measures the social importance of one user. According to [95], the betweenness

centrality of the mth user can be calculated as

Bm =
N∑
j=1

∑
j<k

gjk(m)

Gjk

, (4.3.4)

where Gjk is the number of shortest links between user j and user k, and gjk(m) is

the number of those shortest links between user j and user k that include or pass

user m.

After collecting each user equipment’s available storage capacity Gi, the BS can

get a list of the importance, which is denoted by I = {I1, I2, ..., Im}. Then these M

IUs are sorted by the list I in descending order.
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4.3.2 Discrete Generalized Pursuit Algorithm

The goal of the DGPA is to determine an optimal action out of a set of allowable ac-

tions F = [1, 2, ..., F ]. The DGPA has a probability vectorP(t) = [p1(t), p2(t), ..., pF (t)],

where pi(t) is the probability that the automaton will select the action i at iteration

t with
F∑
i=1

pi(t) = 1. The update of the probability vector is performed based on the

reward estimation o(t) = [o1(t), o2(t), ..., oF (t)] and each reward estimation is deter-

mined by the environment feedback [92]. In the considered D2D caching system, at

each learning process, an action of each IU is to choose one file from the file library

to cache. This action is performed according to the file request probability. A certain

action will get a positive reward from the aggregate environment feedback if it is

beneficial to the system.

The DGPA generalizes the concepts of the pursuit algorithm by “pursuing” all

the actions that have higher reward estimates than the current chosen action. In the

algorithm, the action probability vector P(t) is recursively updated by the following

equation:

P(t+ 1) = P(t) +
Δ

K(t)
× e(t)− Δ

F −K(t)
× [u− e(t)], (4.3.5)

where u is a vector in which ui = 1, i = 1, 2, ..., F , and e is a direction vector given

by:

ei(t) =

⎧⎨⎩1, if oi(t) = max{oj(t)} j ∈ 1, ...F ;

0, otherwise.

ej(t) =

⎧⎨⎩0, if oj(t) ≤ oi(t);

1, if oj(t) > oi(t).

(4.3.6)

According to Eq. (4.3.5), the probabilities of the chosen action i and other action j
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are updated as following:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
pj(t+ 1) = min{pj(t) + Δ

K(t)
, 1}, if oj(t) > oi(t);

pj(t+ 1) = max{pj(t)− Δ
F−K(t)

, 0}, if oj(t) < oi(t);

pi(t+ 1) = 1−∑
j �=i

pj(t+ 1).

(4.3.7)

At each iteration of the DGPA, the number of actions which has a higher reward

estimation o(t) than the current chosen one is counted, denoted by K(t). At the end

of an iteration, the probability of all actions with a higher reward estimation o(t) will

increase by an amount of Δ/K(t), and the probability of all the other actions except

the chosen one will decrease by an amount of Δ/(F −K(t)), where F is the action

library size. Besides, Δ = 1/Fδ and it is a resolution step and δ is the resolution

parameter.

In order to update the probability of each action, the reward estimation o(t) should

be estimated at first. The update equations of reward estimation o(t) for the chosen

action i are as follows: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Zi(t+ 1) = Zi(t) + 1;

Wi(t+ 1) = Wi(t) + β(t);

oi(t+ 1) = Wi(t+1)
Zi(t+1)

,

(4.3.8)

where Zi(t) represents the number of times that action i has been chosen, and Wi(t)

represents the number of times that action i has been rewarded. β(t) ∈ {0, 1} is a

binary factor reflecting the positive or negative feedback. If the feedback is positive

(i.e., β = 1), then this action i is rewarded.

In the next subsection, based on the above preliminaries of DGPA, I will design

the functions of the aggregate environment feedback in the proposed socially aware

D2D networks.
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4.3.3 Environment Feedback

In this model, the BS can acquire the position of every user, thus BSs will provide

each IU with its relevant downloaders’ information (e.g., the file request probability)

and each IU can broadcast the cached files to its relevant downloaders. In this sense,

different cached files (actions) at a certain IU would lead to different influences on its

neighbors and other IUs. In the process of learning, when the mth IU caches the file f

according to its downloading neighbor n’s request, I define the aggregate environment

reward Rf
m,n as a weighted sum of the request probability (pfn) of file f , the physical

influence (xm,n) between IU m and its neighbor n, and the social influence (sm,n)

between them, which can be expressed by:

Rf
m,n = τ1 × pfn + τ2 × xm,n + τ3 × sm,n, (4.3.9)

where τ1, τ2, and τ3 are tunable parameters and satisfy τ1 + τ2 + τ3 = 1. I provide

detailed explanation of each term in Eq. (4.3.9) as follows.

The request probability pfn

The BS will record the request files of each user, and provide this probability to

the IUs. According to Eq. (4.1.2), for the fth file, its file request probability pf by

user n can be written as

pfn =

1
fω

Fn∑
i=1

1
iω

, (4.3.10)

where Fn is the file library size of user n.

The physical influence xm,n

Intuitively speaking, there will be significant influence if the distance between the

mth IU and user n is small [96]. In order to provide the shortest download time, the
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request file by the nearest user n, for example, should be cached by the IU m. In this

sense, the physical influence is modeled as

xm,n =
1

1 + rm,n

, (4.3.11)

where rm,n
2 represents the distance between the mth IU and the user n.

The social influence sm,n

The degree of similarity among users has an important effect in information dis-

semination [97]. Particularly, when the degree of similarity between two users is lower,

more time would be needed for transmitting the same length of information because

they may not have the required content. As a result, I use the degree of similarity to

characterize the social influence sm,n.

The degree of similarity can be measured by the ratio of common neighbors be-

tween individuals. According to [97], I assume that the mth IU is connected to user

n. Let V (m), V (n) denote the set of neighbors of users m and n, respectively. Let z

be one of the common neighbors of them and let V (z) denote the number of user z′s

neighbor. I can then define the similarity between IU m and its neighbor n as:

qm,n =
∑

z∈V (m)∩V (n)

1

V (z)
. (4.3.12)

If m and n have no common neighbors, then qm,n = 0. In order to make the three

factors of the environment feedback comparable, I normalize the similarity sm,n as

follows:

sm,n =
qm,n∑

m∈M
qm,n

. (4.3.13)

Now, I am ready to calculate the environment feedback using the reward functions.

2Cm,n can be the considered parameter instead of rm,n if the channel condition and other inter-
ference signals are known, and it will provide more sense than the distance between users.
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Denote by Nm the neighbor set of the mth IU. At each learning iteration, IU m will

choose a file f to cache, and its neighboring users will also ask a file to download

according to their own file request probabilities. If themth IU and one of its neighbors

n choose the same file, such as the file f , I define this action as a positive one, which

brings a positive reward (ΨP ). If not, this action will be determined as a negative

action (ΨN). Mathematically, the reward functions are defined as:

⎧⎨⎩ ΨP = Rf
m,n, if m and n choose the same file;

ΨN = −Rf
m,n, if m and n choose different files.

(4.3.14)

Thus, for the mth IU, the aggregate environment feedback function of choosing

the file f can be expressed as:

�
f
m =

Nm∑
n=1

(ΨP +ΨN). (4.3.15)

If �f
m > 0, then β = 1 and this action that the mth IU caches the file f will get a

positive feedback from the environment. The estimation vector o(t) is updated by

Eq. (4.3.8).

According to the aggregate environment feedback, the mth IU will keep learning

and acquiring the request files from BSs until its available storage is full.

Remark 4.3.1. From Eq. (4.3.9) I can see that the design of environment feedback is
important and different feedback functions will lead to different learning results.

4.3.4 The Mutual Impact of Nearby IUs

The decision of content placement for the mth IU will affect its nearby IUs, which

have common neighbors with the mth IU. If there are two IUs in the nearby area,

the content placement of these two IUs should be made different as much as possible

to serve different requests of their common neighbors. In this case, the BS should
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update the file request probability of the common neighbors according to the former

IUs who have already cached contents.

IUs start learning in the order determined by the list I. To update the file request

probability of the common neighbors, all the IUs should report the cached files to the

BS after learning. This update should consider both the cached files and the physical

distance. For example, if two previous IUs m and m′ have already cached files f and

f ′, respectively, then for the next IU n, it should first estimate which IU has a larger

physical influence (a shorter distance) to IU n. If IU m has a larger physical influence

than IU m′, i.e., rn,m < rn,m′ , then file f cached by IU m should be considered when

updating the file request probability of their common neighbors. Let Nm,n denote

the set of the common neighbor of the mth IU and the nth IU, then the request

probability (Y
Nm,n

f ) of file f for the common neighbor (Nm,n) can be updated as

Y
Nm,n

f = Y
Nm,n

f × 1

1 + rn,m
, (4.3.16)

where rn,m represents the physical distance between the nth IU and the mth IU and

α is the path loss exponent.

After updating the probability of every cached file by the mth IU, the file proba-

bilities Y Nm,n of the common neighbors between the mth IU and the nth IU will be

normalized, and the nth IU can start its learning process.

To sum up, the proposed algorithm has been formally presented in Algorithm 1

by using the variable definitions presented in the previous subsections.

4.3.5 Convergence

I now analyze the convergence of the proposed algorithm. If the algorithm con-

verges, then the result would give the optimal cached file decided by the environment
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Algorithm 1 Distributed and Socially Aware D2D Caching Algorithm for the mth
IU
Start
Initialization for the mth IU.
1: Choose one IU m′ in I, which has the biggest physical influence to m, and update
the file request probability of m in (4.3.16).
2: Normalize the file request probability of m and set it as P (0).
3: Randomly choose files according to P (0), and record the aggregate environment
feedback β, until each file is selected at least Z(0) times.
4: Record the rewarded times of each file (Wi(0)).

5: Initializes of (0), where of (0) =
Wf (0)

Zf (0)
.

Learning Process for the mth IU. Do:
1: At time t choose file f according to P (t). Let α(t) = αf .
2: Update P (t) according to Eq. (4.3.7).
3: Update o(t) according to Eq. (4.3.8).
Until: maxPf (t) > δ, where δ is a convergence threshold.

Repeat Initialization and Learning until the storage of the mth IU is full.

Until: every IU finishes learning.
End
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feedback. According to [92], if the algorithm possesses the moderation and mono-

tonicity properties, the algorithm is ε-optimal in all random environments and it will

converge. Therefore, I show the proof of convergence in the following lemma.

Lemma 4.3.1. The proposed algorithm possesses the moderation and monotone prop-
erties.

Proof. Please refer to Appendix B.4.

Because the proposed algorithm possesses the moderation and monotony proper-

ties, the convergence is guaranteed [92]. Thus, after learning, each IU will cache the

content according to the learning results. To calculate the hitting rate of the proposed

algorithm, the learning result will be compared with the target in the algorithm, and

subsequently, the downloading performance in the considered social model can be

obtained from the hitting rate.

4.4 Performance Evaluation

In this section, I first focus on the proposed network with IUs distributed following

an HPPP, where I investigate the average transmission probability and the average

performance of the two caching strategies, i.e., DC3 and RC. Then I consider the

network with a fixed number of IUs. Using the average transmission probability, I

investigate the delay performance of the proposed caching algorithm and compare it

to the benchmarks, including DC and a simple reward function which also uses the

DGPA learning algorithm proposed in [11]. Note that the physical layer parameters

in the simulations, such as the path-loss exponent, the noise power, and the transmit

power of the IUs and the BS, are chosen to be practical and in line with the values

3Before caching, the macro BS will broadcast the most request files of the past 24 hours to the
IUs first. Then the IUs can cache the most popular files according to this information.
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Figure 4.2: The transmission probability ptrans(λ, γ) vs. density of the IU λ with
various SINR thresholds γ and different social trust distance A

set by 3GPP standards. For instance, the coverage of the BS is 25 km2, and the

transmission power of IUs is 25 dBm. Unless specified otherwise, I set the path loss

exponent α = 3, and the noise to σ2 = −95 dBm. All the simulations are executed

using MATLAB.

4.4.1 Average Transmission Probability of D2D Link

I first compare the simulation and analytical results in the proposed network

with different transmitter densities, different social trust distances, and various SINR

thresholds. As can be observed from Fig. 4.2, the analytical results perfectly match

the simulation results. Due to the significant accuracy of ptrans(λ, γ), I will only use

analytical results of ptrans(λ, γ) in the discussion later. From Fig. 4.2 I can observe

that the transmission probability first increases with the transmitters density because
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more transmitters provide better coverage in noise-limited networks. Then, when λ is

large enough (λ > 10−1 users/m2), the transmission probability becomes independent

of λ because the network is pushed into the interference-limited region. From this

finding, in order to reduce the downloading delay, I should optimize the caching

content in each IU. Another two observations are that when the smallest social trust

distance A is the same, the transmission probabilities of different SINR thresholds

show similar trends as they converge at same λ, and when the SINR threshold γ is the

same, the transmission probabilities of different small social trust distances saturate

to the same level at different λ.

4.4.2 Average Delay of Downloading Performance for the
Physical Distance-dependent Social Model

I evaluate the average delay of downloading performance for the RC and the DC

strategy in Fig. 4.3. I also simulate the non-D2D caching scenario for comparison.

For the simulation results of this subsection, I assume a SINR threshold of γ = 0 dB,

a file size of L = 109 bits, an IU density of λ = 10−2 users/m2, and a smallest social

trust distance of A = 10 m.

Fig. 4.3 illustrates the average downloading delay associated with different ω val-

ues. I can see that DC always outperforms RC, and the performance gap between

these two strategies becomes larger with an increasing ω, while the non-D2D caching

scheme behaves the worst.
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Figure 4.3: Average downloading delay D vs. the Zipf parameter ω under different
scenarios

4.4.3 Convergence of the Socially Aware Distributed Caching
Algorithm

After presenting the system performance of the physical distance-dependent social

model, let us now focus on the socially aware distributed caching algorithm which

applies the deterministic social model in the following subsections. I first test and

verify the convergence of the proposed algorithm. A small-scale mobile network is

considered, which consists of 3 IUs and each of them has 6 neighboring downloaders.

The algorithm is considered to converge when the probability of taking one action

(caching one file) is greater than 0.999. I recorded the number of the executed it-

erations, and each point in the figures is obtained by averaging the results over 50

independent run of the proposed algorithm.

Fig. 4.4.(a) shows the executed iterations of different δ, in which more complex
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Table 4.2: Reward times after repeating 50 times of learning when the file library size
is 10

IU1 IU2 IU3 Reward probability
δ = 0.5 20 17 16 0.353

δ = 0.5 in [11] 15 16 15 0.307
δ = 1 25 22 20 0.446

δ = 1 in [11] 20 19 20 0.393
δ = 2 29 26 25 0.514

δ = 2 in [11] 23 23 22 0.453

algorithm will cost more iterations to converge, and more time to finish the learning

process. As the file library size grows, the average number of iterations increas-

es. Moreover, different resolution parameters δ show different increasing trends, and

require different numbers of iterations to converge. For example, when δ = 0.5, the

average number of iterations is nearly half (49.2%) of that when δ = 1. I also compare

the proposed algorithm with the work [11]. As can be observed from Fig. 4.4.(a), the

algorithm presented in the work [11] requires fewer iterations on average compared

with the proposed algorithm in this paper. This is because the algorithm in [11]

was based on a simple environment feedback function, in which the physical distance

influences were not considered.

As can be observed from Table 4.2, I present the reward times of different δ when

the file library size is 10. Using the reward times, the average reward probability can

be calculated for different file library size. Fig. 4.4.(b) depicts the average reward

probability of different resolution parameters δ. It is shown that with the increasing

size of the file library, the average reward probability decreases. Also the proposed

algorithm can get a higher reward probability than the algorithm in [11]. Considering

both Fig. 4.4.(a) and Fig. 4.4.(b), although a larger resolution parameter δ implies

more time to converge, it can achieve a higher reward probability. Moreover, for the
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proposed algorithm, although it takes more time to converge compared with [11] with

the same δ, the reward probability is much better. Finally, it can be observed that

the proposed algorithm strikes a fine balance between performance and complexity

compared with the algorithm presented in [11]. This is because the proposed algo-

rithm requires fewer iterations than the algorithm in [11] to achieve a similar reward

probability performance. For example, the proposed algorithm only needs about 92

iterations to converge while the algorithm in [11] needs about 124 iterations to get a

similar reward probability when there are totally 20 files.

4.4.4 Delay Performance of the Socially Aware Distributed
Caching Algorithm

In this subsection, I first investigate the parameters in the environment feedback.

Different combinations of the proportions of the request probability (pf ), the physical

influence (x), and the social influence of (s) will lead to diverse optimized caching

content.

As shown in the Fig. 4.5, different environment feedbacks are considered when the

density of IU is 10−2 users/m2. In this network scenario, the average transmission

probability is around 0.56. I consider 3 cases in this figure: Case 1 gives the equal

weights to all three components, while the physical influence is not considered in Case

2 and the social influence is not considered in Case 3.

I can see from Fig. 4.5 that the proposed algorithm can reduce the downloading

delay when it allocates more weights on the physical influence, as shown by the

comparison between Case 2 and Case 3. Moreover, with the increasing value of ω,

the gap between these two cases is enlarged. This is because the physical influence

shows a more important effect when I set a larger value of ω. In more detail, users tend
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Figure 4.5: Average downloading delay D vs. the Zipf parameter ω under different
environment feedbacks

to download the same files when I set a lager value of ω, then the delay among IUs and

users mainly depends on the physical distance. So if I allocate more weights on the

physical influence, the learning results will show a better downloading performance.

In the following, I study the delay performance of the socially aware distributed

caching algorithm. The proposed algorithm is compared with the work in [11]. The

DC scheme in the physically distance-dependent social model is used as the bench-

mark. Same with the previous subsection, I assume a file size of L = 109 bits, a IU

which at least has 5 neighbors (k = 5), and equal environment feedback composition.

In the process of sorting IUs, I collect each IU’s social importance and available s-

torage capacity, and treat them in descending order according to the importance list.

As a result, the density of IU is around 10−2 users/m2 and each IU can store 3 files

at last. Fig. 4.6 shows the simulation results of the delay performance. From this
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Figure 4.6: Average downloading delay D vs. the Zipf parameter ω under various
caching schemes

figure, I can see that the average delay decreases as the value of ω increases, and the

benchmark (i.e., DC scheme applied in the physically distance-dependent social mod-

el) shows the worst performance. This figure also demonstrates that the analytical

results can qualitatively predict and assess the performance. However, using more

advanced algorithms can achieve a better performance in the practical 5G settings.

In addition, the proposed algorithm always performs better than the algorithm in

[11]. For example, in comparison with the counterparts, the average delay of the

proposed algorithm is reduced by 7.8%. Furthermore, the performance improvement

between the proposed algorithm and the algorithm in [11] is obvious. This is because

in [11] no mutual impact is considered, thus, nearby IUs may cache similar contents,

and cannot provide downloading service for other popular contents. In contrast, the

proposed algorithm encourages the IUs to cache different contents in order to achieve
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caching diversity.

Moreover, I provide an average downloading delay performance using the optimal

caching (OC) scheme in Fig. 4.6. The OC scheme is obtained by the non-causal

algorithm [98], in which I remove the limit on the storage of each IU so that IUs have

the knowledge of the entire network. From the figure, I can find that the gap between

the proposed algorithm and the OC scheme is relatively large when ω is small, but

it becomes small as ω increases. This is because the proposed algorithm considers a

more practical situation than OC. In the OC scheme, it only sets the downloading

delay as an optimization target regardless of other practical factors, such as the

social relationship among users. In the proposed algorithm, a complex environment

feedback consisting of multiple factors is incorporated, which not only considers the

average delay performance, but also considers the feasibility in a practical situation.

For example, when ω is small, the popular files are sparse and the proposed algorithm

cannot satisfy all the demands. With the decreasing number of popular files, such as

a large ω, the outcome of the proposed algorithm will gradually satisfy the demands.

To make a fair comparison between these two schemes, I also record the average

number of files cached in each IU for OC in Table 4.3, whereas the IUs can only

cache 3 files in the proposed algorithm. In this sense, the proposed algorithm can

achieve a performance close to that of OC, while economizing the storage space. For

example, compared with the optimal caching scheme, the proposed algorithm has a

similar delay (1025s v.s. 1018s), but requires less caching storage (3 v.s. 4.1) when

ω = 0.9.
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Table 4.3: The average number of files cached in each IU
ω 0.3 0.4 0.5 0.6 0.7 0.8 0.9 average
OC 6.7 6.2 5.6 4.8 4.5 4.2 4.1 5.08

4.5 Summary

In this chapter, I conducted performance analysis using stochastic geometry to

have a basic understanding of the average network performance under varying num-

bers and locations of the users. Specifically, I adopted a social relationship model

considering the physical distance between users, and developed an analytical result of

downloading delay. To achieve a better performance under practical 5G settings, I de-

veloped a distributed and socially aware framework based on a learning automaton to

solve the optimum cache placement problem in D2D overlaying networks. Specifical-

ly, in order to promote content dissemination in D2D communications, I updated the

algorithm with the aggregate environment feedback including the social relationship

between users. Also the mutual user impacts were considered in this scheme to en-

able its application in the large-scale networks. The average performance obtained by

stochastic geometry analysis agreed well with the simulations results. Furthermore,

the proposed algorithm has a fast convergence speed and can achieve significant sys-

tem throughput gains when compared with the existing caching strategies.



Chapter 5

Performance Analysis for Practical
Unmanned Aerial Vehicle
Networks with LoS/NLoS
Transmissions

In this chapter, a performance analysis for practical unmanned aerial vehicle

(UAV)-enabled networks is provided. By considering both line-of-sight (LoS) and

non-line-of-sight (NLoS) transmissions between aerial base stations (BSs) and ground

users, the coverage probability and the area spectral efficiency (ASE) are derived.

Considering that there is no consensus on the path loss model for studying UAVs in

the literature, in this chapter, three path loss models, i.e., high-altitude model, low-

altitude model, and ultra-low-altitude model, are investigated and compared. From

the analytical and simulation results for a practical UAV height of 50 meters, the

network performances of the high-altitude model and the low-altitude model exhibit

similar trends, while that of the ultra-low-altitude model deviates significantly from

the above two models. In addition, the optimal density of UAVs to maximize the

coverage probability performance is also investigated.

87
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5.1 System Model

A UAV network, where UAV aerial base stations follow a 3D-PPP distribution

with a density λ in an infinite 3D space V and the UAV height is set to h, that is

V = {(x, y, z) : x, y ∈ R, z = h}, is considered. Here, I consider practical values for

h around 50∼100 meters. Such a medium-altitude deployment of UAVs is because

UAVs should not fly too high (e.g., higher than 100 meters) due to the recently

discovered network capacity crash [27], and UAVs should not fly too low (e.g., lower

than 10 meters) due to obvious safety reasons. User equipments (UEs) are Poisson

distributed in the considered network with a density of λUE. Here, λUE is assumed

to be sufficiently larger than λ so that each UAV has at least one associated UE in

its coverage area. The 3D distance between an arbitrary UAV and an arbitrary UE

is denoted by r in km.

Considering practical LoS and NLoS transmissions, I propose to model the path

loss associated with distance r as a path loss function ζ(r). Such ζ(r) is segmented

into 2 pieces, where ζL(r) is the path loss function for LoS transmission, ζNL(r) is the

path loss function for NLoS transmission, and PrL(r) is the LoS probability function.

In more detail,

• ζ(r) is modeled as

ζ(r) =

{
ζL(r) = ALr−αL

, for LoS

ζNL(r) = ANLr−αNL
, for NLoS

, (5.1.1)

with AL and ANL being the path losses at a reference distance r = 1, and αL

and αNL being the path loss exponents for the LoS and the NLoS cases in ζ(r),

respectively. In practice, AL, ANL, αL, and αNL are constants obtained from

field tests [52].
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• PrL(r) is the probability function that a transmitter and a receiver have LoS

connections. Also, the probability of NLoS is PrNL(r) = 1− PrL(r).

As a common practice in the field, each UE is assumed to be associated with the

UAV that provides the strongest signal strength, and the multi-path fading between

an arbitrary UAV-BS and an arbitrary UE is modeled as independently identical

distributed (i.i.d.) Rayleigh fading. Thus, the channel gain denoted by g can be

modeled as an i.i.d. exponential random variable (RV). The transmit power of each

UAV and the additive white Gaussian noise (AWGN) power at each UE are denoted

by P and σ2, respectively.

5.2 Discussion and Analysis of path loss models

Because there is no consensus on proper path loss model for UAV-enabled network-

s, I choose three widely adopted path loss models and apply them to the considered

UAV networks.

5.2.1 High-altitude model

The high-altitude model based on the elevation angle has been widely used in the

satellite communication model, e.g., thousands of meters. The probability function

that a transmitter and a receiver have a LoS connection at an elevation angle of θ

can be expressed as PrL(θ) [69]:

PrL(θ) =
1

1 + C exp (−B[θ − C])
, (5.2.1)

where B and C are constant values that depend on the environment (rural, urban,

dense urban, etc.). Furthermore, the elevation angle θ can be written as θ = 180
π

arcsin
(
h
r

)
,

so the LoS probability function for this high-altitude model can be reformulated as a
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new function with respect to r:

PrLhigh(r) =
1

1 + C exp
(−B[180

π
arcsin

(
h
r

)− C]
) . (5.2.2)

5.2.2 Low-altitude model

Provided that the practical height of UAV-BSs is usually limited to a medium

altitude, like 50m and 100m and such height is comparable to the antenna height of

terrestrial base stations, I further analyze the path loss model proposed for 3GPP

terrestrial communications and apply it to the considered UAV networks.

In particular, the 3GPP macrocell-to-UE path loss model has been proposed for

connection between a UE and its associated macrocell BS. Considering that the height

of a macrocell base station is usually around 32m, which is slightly lower than the

considered altitude of UAV around 50∼100m, it is reasonable to use this model to

study the UAV network. In this case, the LoS probability function for this low-altitude

model can be expressed as [99]

PrLlow(r) =min (0.018/r, 1)× (1− exp (−r/0.063))

+ exp (−r/0.063) .
(5.2.3)

5.2.3 Ultra-low-altitude model

To obtain a comprehensive insight of the proper path loss model for UAVs, I also

introduce the 3GPP picocell-to-UE model as the ultra-low-altitude model, because

the typical height of a picocell base station is about 10m. In this case, the LoS

probability function is defined as [99]

PrLultra(r) =0.5−min (0.5, 5 exp (−0.156/r))

+ min (0.5, 5 exp (−r/0.03)) .
(5.2.4)
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Figure 5.1: Comparison of LoS probability function

5.2.4 The Comparison of the Three Path Loss Models

Fig. 5.1 compares the LoS probability functions for different path loss models. It

can be seen from this figure that the LoS probability for the ultra-low-altitude model

drops very quickly with respect to the distance, followed by the low-altitude model.

Moreover, it should be noted that the high-altitude model generates different LoS

probability functions for different altitudes.

5.3 Analysis for the Proposed UAV Networks

To analyze the performance of UAV-BSs based on the interested path loss models,

I investigate the coverage probability and the ASE of the network in this section.

The coverage probability represents the probability that the typical user is covered
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by the associated UAV-BS and is defined as the probability that the received signal-

to-interference-noise-ratio (SINR) is larger than a pre-set threshold γ, which can be

expressed as

pcov = Pr(SINR > γ), (5.3.1)

where SINR is expressed as

SINR =
Pgζ(r)

Ir +N0

, (5.3.2)

where P and N0 denote the transmission power of the UAV-BS and the AWGN power,

respectively. Moreover, Ir is the sum of interference from other UAV-BSs, and g is

the channel gain of Rayleigh fading and can be modeled as a RV which follows an

exponential distribution with the mean value of one. It can be further written as

Ir =
∑

i:bi∈Φ\bo
Pβigi. (5.3.3)

Obviously, when UAV-BSs are HPPP distributed and randomly hovering in the net-

work, the network performance reaches a lower bound because the mobility of UAVs

is completed ignored. Such lower-bound performance is characterized in the following

Theorem 5.3.1.

Theorem 5.3.1. Considering the path loss of the LoS and the NLoS connections, the
lower bound of the coverage probability pcov(λ, γ) can be expressed as

pcovlower(λ, γ) = T L + TNL, (5.3.4)

where T L =
∫∞
h

Pr
[
PζL(r)g
Ir+N0

> γ
]
fL(r)dr and TNL =

∫∞
h

Pr
[
PζNL(r)g
Ir+N0

> γ
]
fNL(r)dr.

The fL(r) and fNL(r) are expressed as

fL(r) = exp

(
−
∫ r1

h

(
1− PrL (u)

)
2πuλdu

)
× exp

(
−
∫ r

h

PrL (u) 2πuλdu

)
× PrL (r)× 2πrλ,

(5.3.5)
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and

fNL(r) = exp

(
−
∫ r2

h

PrL (u) 2πuλdu

)
× exp

(
−
∫ r

h

(
1− PrL (u)

)
2πuλdu

)
× (1− PrL (r)

)× 2πrλ,

(5.3.6)

where r1 and r2 are the solutions of ζ
NL(r1) = ζL(r) and ζL(r2) = ζNL(r), respectively.

Moreover, Pr
[
PζL(r)g
Ir+N0

> γ
]
and Pr

[
PζNL(r)g
Ir+N0

> γ
]
are expressed by

Pr

[
PζL(r)g

Ir +N0

> γ

]
= exp

(
− γN0

PζL (r)

)
LIr

(
γ

PζL (r)

)
, (5.3.7)

and

Pr

[
PζNL(r)g

Ir +N0

> γ

]
= exp

(
− γN0

PζNL (r)

)
LIr

(
γ

PζNL (r)

)
, (5.3.8)

where LIr is the Laplace transform of Ir in the computation of interference.

Proof. See Appendix C.1.

In Theorem 5.3.1, I assume that UAVs are randomly hovering in the network. On

the other hand, if the mobility of UAVs is considered, the system performance can

surely be improved. However, the analysis of such mobile UAVs is difficult because

I need to further consider UAV mobility control management. Fortunately, I can

instead consider a UAV teleportation model, where UAVs can instantaneously move

to the positions directly overhead the users to show the upper-bound performance of

a UAV network. In this case, each user will be associated with its UAV-BS overhead.

Such upper-bound performance is characterized in the following lemma, which is

derived from Theorem 5.3.1.

Lemma 5.3.1. The coverage probability of teleporting UAVs can be expressed as

pcovupper(λ, γ) =Pr

[
PζL(h)g

Ir +N0

> γ

]
+ Pr

[
PζNL(h)g

Ir +N0

> γ

]
=exp

(
− γN0

PζL (h)

)
LIr

(
γ

PζL (h)

)
+ exp

(
− γN0

PζNL (h)

)
LIr

(
γ

PζNL (h)

)
.

(5.3.9)
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In this case, the associated UAV is set at the positions overhead the users, so the

space distance from users to their associated UAVs is h rather than r. In comparison

with the case of HPPP distributed UAVs, the case of teleporting UAVs can provide

the user with the strongest received signal power due to the minimized distance

between them and the highest probability of having a LoS connection. As a result,

this teleporting model gives the upper bound of network performance.

According to [100], the ASE can be expressed as

AASE (λ, γ0) =
λ

ln 2

∫ +∞

γ0

pcov(λ, γ)

1 + γ
dγ

+ λlog2 (1 + γ0) p
cov(λ, γ0),

(5.3.10)

where γ0 is the minimum SINR threshold for UE to work normally.

5.4 Simulation Results

To find the appropriate path loss model when UAVs fly at a medium altitude, I

use simulation results to demonstrate the coverage probability and the ASE of three

LoS probability models and make a comparison. Parameters adopted in simulation

are: P = 24 dBm, N0 = −95 dBm [99], γ0 = 0 dB, C = 11.95, B = 0.136 [69].

To obtain the numerical results at the medium height, I choose to analyze UAVs

at the height of 50m and 100m, which are the most practical cases in reality. For

the high-altitude model, the relative parameters are: AL = 10.38, ANL = 14.54,

αL = 2.09, αNL = 3.75 [25] [101]. For the low-altitude model, path loss parameters

are: AL = 10.34, ANL = 13.11, αL = 2.42, αNL = 4.28 [99]. For the ultra-low-altitude

model, path loss parameters are: AL = 10.38, ANL = 14.54, αL = 2.09, αNL = 3.75

[99].
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Table 5.1: Simulation Parameters
Parameters Value

P 24 dBm [99]
N0 -95 dBm [99]
γ0 0 dB
C 11.95 [69]
B 0.136 [69]
h 50m, 100m
High-altitude model [101] and ultra-low-altitude model [99]
AL 10.38
ANL 14.54
αL 2.09
αNL 3.75

Low-altitude model [99]
AL 10.34
ANL 13.11
αL 2.42
αNL 4.28

5.4.1 The coverage probability for hovering UAVs

Fig. 5.2 and Fig. 5.3 show the comparison of the coverage probability for UAVs

hovering at 50m and 100m based on the investigated three models of path loss, i.e.,

the high-altitude model, the low-altitude model, and the ultra-low-altitude model.

It can be seen from Fig. 5.2 that with the increase of the UAV density, the coverage

probability of the high-altitude model first rises to the peak and then decreases. The

optimal UAV density for this model is about 10 BSs/km2. As for the low-altitude

model, the performance trend is similar to that of the high-altitude one, with a slightly

different optimal density around 6 BSs/km2. The explanations of these phenomena

are:

• For a sparse UAV-BSs density, the distance from associated UAV-BS to UE

decreases with the increasing UAV-BS density and the associated UAV-BS is
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Figure 5.2: Comparison of the coverage probability for hovering UAVs (h=50m)

more likely to have a LoS transmission with UE, so the coverage probability

grows as the UAV-BS density increases.

• For a dense UAV-BSs density, although the associated UAV has a higher prob-

ability to transmit data via a LoS channel, other UAVs also produce strong

interference through LoS paths, thus, the coverage probability decreases after

reaching the highest point.

For the ultra-low-altitude model, the performance is significantly different from

the other two models. The reason is that the ultra-low-altitude model is designed for

a scenario where UAVs fly at a relatively low altitude and the transmission distance

is quite limited. Furthermore, even when the UAV is hovering over user’s location,

the probability of having a LoS connection is still low because the minimum distance

from UAV-BS to UE is the height of UAV. As a result, the ultra-low-altitude model
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Figure 5.3: Comparison of the coverage probability for hovering UAVs (h=100m)

is not suitable for the practical UAV scenario with a height around 50∼100 meters.

In Fig. 5.3, I can see that the performance of the low-altitude model and high-

altitude model is very similar when the UAV-BS density is less than 2 BSs/km2.

When the density is between 2 BSs/km2 and 20 BSs/km2, the coverage probability

of the high-altitude model is higher than that of the low-altitude model, but the

low-altitude model performs better than the high-altitude model when the density is

beyond 20 BSs/km2.

5.4.2 The ASE for hovering UAVs

Fig. 5.4 shows the ASE performance of different path loss models for a height of

50m. As can be seen from this figure, the ASE of the high-altitude model and the

low-altitude model keeps growing due to the increasing coverage probability, but the

growing rate slows down when the density of UAVs is more than 10 BSs/km2. This
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Figure 5.4: Comparison of the ASE for hovering UAVs (h=50m)

is because the declining coverage probability shown in Fig. 5.2 and Fig. 5.3 outweighs

the increase of the UAV density. In Fig. 5.4 I can also find that the ASE for the ultra-

low-altitude model differs from the other two. As a result, when the height of UAV is

around 50m, the high-altitude model and the low-altitude model are equally good for

the performance analysis of the UAV-based network. Fig. 5.5 shows the comparison

of the ASE in different models when the height of UAV is 100m. When the UAV-BS

density is lower than 20 BSs/km2, the ASE of the high-altitude model and that of

the low-altitude model leave the similar trail. However, after reaching the density of

10 BSs/km2, their ASE performance diverges. The drop of the ASE for the high-

altitude model indicates that the deceasing coverage dominates the ASE performance

compared with the growing UAV density. Considering that the low-altitude model

was developed for a height around 32 meters, it might not be suitable for the UAVs

flying at 100 meters studied here. Hence, the high-altitude model might be more
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Figure 5.5: Comparison of the ASE for hovering UAVs (h=100m)

appropriate here. However, it may need to conduct real-life channel measurement to

confirm this conjecture.

5.4.3 The performance for Teleporting UAVs

It can be seen from the previous simulation that when UAVs fly at the height of

50m, the coverage probability and the ASE performance of the high-altitude model

and the low-altitude model are very similar. However, when the height of UAV

is at 100m, the performance of these two models deviates in dense networks. To

verify whether these two models are still equally good for teleporting UAVs at 50m,

I investigate and compare their coverage probability and ASE performance in this

subsection.

From Fig. 5.6 and Fig. 5.7, it can be seen that the high-altitude model and the low-

altitude model generate similar results. In Fig. 5.6, It can be found that the optimal
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Figure 5.6: Comparison of the coverage probability for teleporting UAVs (h=50m)
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Figure 5.7: Comparison of the ASE for teleporting UAVs (h=50m)
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UAV density for these two models can be found at around 6 BSs/km2. Fig. 5.7 shows

that the ASE of both models increases linearly at first, and then grows slowly.

5.4.4 Comparison of the Upper and Lower bounds of Perfor-
mance

From Fig. 5.2 and Fig. 5.4, it can found that the high-altitude model and the low-

altitude model are equally good for network performance analysis. Hence, I choose

the high-altitude model to show the difference between the upper bound of ASE and

the lower bound of ASE when the UAVs fly at the height of 50m. Such comparison is

displayed in Fig. 5.8. It can be seen that when the density is lower than 10 BSs/km2,

the gap between the upper bound and the lower bound is large, which shows great

promise for optimization of UAV mobility in UAV-enabled networks. However, as the

UAV density increases, the ASE gain due to the UAV mobility becomes marginal,

e.g., at a UAV density of 100 UAV-BSs/km2.

5.5 Summary

In this chapter, I studied the performance of UAV-enabled wireless networks. In

order to identify the proper path loss models for UAVs flying at practical heights, such

as 50m and 100m, I first analyzed the performance when adopting the conventional

high-altitude model based on the elevation angle. Then I further investigated the

coverage probability and the ASE by using path loss models which have been widely

applied to terrestrial communications, including the low-altitude model and the ultra-

low-altitude model. From simulation results, it can be found that performance for

networks with the high-altitude model and the low-altitude model are equally good
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Figure 5.8: Upper bound and lower bound of the ASE for the high-altitude model
when h=50m

when UAVs fly at the height of 50m, while the performance trend of the ultra-low-

altitude model is quite different. I also found that the number of the UAVs should

be optimized for the benefits of the networks, which sheds new light on the design of

the future UAV-enabled networks.



Chapter 6

Conclusions and Future Works

This thesis focuses on the performance analysis and resource allocation in the 5G

wireless network. Specifically, the performance of the dense HetNets, D2D caching,

and UAV-enabled networks are investigated and discussed. In this chapter, I conclude

the thesis by summarizing the contributions and listing some interesting directions for

future work.

6.1 Conclusions

In Chapter 3, to consider a more practical system model, the impact of the IMC,

caused by the finite number of UEs, was introduced in a dense two-tier HetNets. By

applying the stochastic geometry, the performance of this network was studied with

the LoS/NLoS transmission. Moreover, to address the under-utilization of SBSs, CRE

and eICIC via ABSs were adopted in this work. The results show that the coverage

probability and the ASE will continuously increase in the dense network, when the

density of BS is larger than the UE one. Additional, it is important to note that

more bandwidth or frequency resources should be allocated to the small cell BSs,

which implies that the ultra-dense small cells should operate in a different frequency

103
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spectrum from the macrocell ones.

In Chapter 4, to investigate the performance of the D2D caching networks, I

conducted the analysis using stochastic geometry. Specifically, a social relationship

model considering the physical distance between users was provided to develop the

basic downloading performance. To achieve a better performance under practical

5G settings, I proposed a distributed and socially aware caching algorithm based

on the reinforce learning to solve the optimum caching resources, i.e., contents, in

D2D overlaying networks. Moreover, the mutual user impacts were considered to

enable its application in the large scale networks. The analysis results provided a

basic understanding of the D2D caching networks, and the proposed algorithm were

proven to have a faster convergence speed than other conventional algorithms, and

can achieve significant system throughput gains.

In Chapter 5, to understand the performance of the UAV-enabled networks in

terms of the LoS/NLoS transmissions, I studied the analysis when the UAVs are fly-

ing at practical heights. Three path loss models are provided in this chapter, which

depend on the altitudes on the UAVs. Moreover, I derived the analytical results for

the upper and lower bound of the network performance, in which UAVs can instan-

taneously move to positions directly overhead ground users or hovering randomly.

From the results it can be found that the performance for high and low altitudes are

equally good when the height of UAVs is around 50m, while the performance of the

ultra-low-altitude model is relatively different. Moreover, the number of the UAVs

should also be optimized in the network to achieve a better performance, which sheds

new light on the design of future UAV-enabled networks.
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6.2 Future Work

In this section, several interesting research directions are listed.

• With the dense and dense deployment of SBSs available in 5G HetNets, it is

interesting and challenging to conduct a more practical system analysis. Com-

pared with the current analysis works, the impact of the shadow fading lacks in

most of the system models, which will be a key issue in the ultra-dense networks.

This new direction can bring a deeper understanding of 5G dense networks.

• The D2D caching analysis in Chapter 4 considers Zipf-based file popularity.

Compared with this basic file popularity model, the time-varying file popularity

may bring a brand new view. Besides, by analysing the big data, the content

popularity may be estimated by the machine learning algorithm, which can

provide an accurate file popularity model. These topics can shed new light on

the design of the future caching networks.

• With the development of the UAV-enabled networks, the mobility control of

these UAVs are increasingly important. As of the analysis in Chapter 5, it is

not that useful in improving the system performance if the number of UAVs

keeps increasing. So, how to design the optimal positions and the movement

track for the UAV-enabled network is a very challenging issue. In addition, in

the 3GPP study, the accurate path loss model of UAV uplink channel has been

proposed, and some relevant research can be conducted.



Appendix A

Proofs of Chapter 3

A.1 Proof of Lemma 3.2.1

In this proof I first derive the conditions that the UE is associated with a LoS

MBS, which the LoS MBS provides stronger power than other BSs.

• UE is associated with a LoS MBS with no NLoS MBS inside:

pL11(r) = Pr
(
P1 × AL

1r
−αL

1 > P1 × ANL
1 r

−αNL
1

1

)
= Pr

(
r1 >

(
ANL

1

AL
1

) 1

αNL
1 × r

αL
1

αNL
1

)
(a)
= Pr(No NLoS MBS closer than ΔL

11)

= exp

(
−
∫ ΔL

11(r)

0

(1− PrL1 (u))× 2πuλ1du

)
,

(A.1.1)

where step (a) is given by ΔL
11(r) = (

ANL
1

AL
1
)

1

αNL
1 × r

αL
1

αNL
1 .
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• UE is associated with a LoS MBS with no LoS SBS inside:

pL12(r) = Pr
(
P1 × AL

1r
−αL

1 > P2 × AL
2r

−αL
2

2 ×D
)

= Pr

(
r2 >

(
AL

2

AL
1

) 1

αL
2 ×D

1

αL
2 ×

(
P2

P1

) 1

αL
2 × r

αL
1

αL
2

)
(b)
= Pr(No LoS SBS closer than ΔL

12)

= exp

(
−
∫ ΔL

12(r)

0

PrL2 (u)× 2πuλ2du

)
,

(A.1.2)

where step (b) is given by ΔL
12(r) =

(
AL

2

AL
1

) 1

αL
2 ×D

1

αL
2 ×

(
P2

P1

) 1

αL
2 × r

αL
1

αL
2 .

• UE is associated with a LoS MBS with no NLoS SBS inside:

pL13(r) = Pr
(
P1 × AL

1r
−αL

1 > P2 × ANL
2 r

−αNL
2

2 ×D
)

= Pr

(
r2 >

(
ANL

2

AL
1

) 1

αNL
2 ×D

1

αNL
2 ×

(
P2

P1

) 1

αNL
2 × r

αL
1

αNL
2

)
(c)
= Pr(No NLoS SBS closer than ΔL

13)

= exp

(
−
∫ ΔL

13(r)

0

(
1− PrL2 (u)

)× 2πuλ2du

)
,

(A.1.3)

where step (c) is given by ΔL
13(r) =

(
ANL

2

AL
1

) 1

αNL
2 ×D

1

αNL
2 ×

(
P2

P1

) 1

αNL
2 × r

αL
1

αNL
2 .

According to [5], the CCDF of r (the distance that the nearest BS with a LoS path

to the UE) is written as F̄ L
R(r) = exp(− ∫ r

0
PrL(u)2πuλdu). Taking the derivative of

(1-F̄ L
R(r)) with regard to r, I can get the PDF of r as:

fL
1 (r) = exp

{
−
∫ r

0

PrL1 (u)2πλ1udu

}
× PrL1 (r)2πλ1r. (A.1.4)

So the probability that the UE is associated with a LoS MBS can be written as

P
L
1 =

∫ ∞

0

pL11(r)× pL12(r)× pL13(r)× fL
1 (r)dr. (A.1.5)
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A.2 Proof of Lemma 3.2.2

Following the same logic as Lemma 1, the conditions that the UE is associated

with a MBS with the NLoS path can be derived as:

• UE is associated with a NLoS MBS with no LoS MBS inside:

pNL
11 (r) = exp

(
−
∫ ΔNL

11 (r)

0

PrL1 (u)× 2πuλ1du

)
, (A.2.1)

where ΔNL
11 (r) = (

AL
1

ANL
1
)

1

αL
1 × r

αNL
1
αL
1 .

• UE is associated with a NLoS MBS with no LoS SBS inside:

pNL
12 (r) = exp

(
−
∫ ΔNL

12 (r)

0

PrL2 (u)× 2πuλ2du

)
, (A.2.2)

where ΔNL
12 (r) =

(
AL

2

ANL
1

) 1

αL
2 ×D

1

αL
2 ×

(
P2

P1

) 1

αL
2 × r

αNL
1
αL
2 .

• UE is associated with a NLoS MBS with no NLoS SBS inside:

pNL
13 (r) = exp

(
−
∫ ΔNL

13 (r)

0

(
1− PrNL

2 (u)
)× 2πuλ2du

)
, (A.2.3)

where ΔNL
13 (r) =

(
ANL

2

ANL
1

) 1

αNL
2 ×D

1

αNL
2 ×

(
P2

P1

) 1

αNL
2 × r

αNL
1

αNL
2 .

So the probability that the UE is associated with a NLoS MBS can be written as

P
NL
1 =

∫ ∞

0

pNL
11 (r)× pNL

12 (r)× pNL
13 (r)× fNL

1 (r)dr, (A.2.4)

where fNL
1 (r) is the PDF that the UE is associated with the NLoS MBS and can be

written as

fNL
1 (r) = exp

{
−
∫ r

0

(
1− PrL1 (u)

)
2πλ1udu

}
× (1− PrL1 (r)

)
2πλ1r.

(A.2.5)
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A.3 Proof of Theorem 3.3.1

In this proof I first analyze the case that u ∈ {U1,U2}, where the derivation process

follows the same approach. I first derive the distribution of the distance between the

typical user u and the tagged BS. Let Xl denote this distance, then

P(Xl > x) = P(Xl > x|u ∈ Ul) =
Pr(Xl > x|u ∈ Ul)

Pr(u ∈ Ul)
. (A.3.1)

Based on Sec. II-B and [77], the corresponding PDFs are

FL
1 (x) = pL11(x)× pL12(x)× pL13(x)× fL

1 (x);

FNL
1 (x) = pNL

11 (x)× pNL
12 (x)× pNL

13 (x)× fNL
1 (x);

FL
2 (x) = pL’21(x)× pL’22(x)× pL23(x)× fL

2 (x);

FNL
2 (x) = pNL’

21 (x)× pNL’
22 (x)× pNL

23 (x)× fNL
2 (x),

(A.3.2)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

pL’21(x) = exp(− ∫ ΔL’
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0
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P2
)

1

αL
1 × (
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1

AL
2
)

1

αL
1 × x

αL
2

αL
1 ;
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0
PrNL

1 (u)2πuλ1du),
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22(x) = (P1

P2
)

1
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1 × (
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1
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2
)

1

αNL
1 × x

αL
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αNL
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(A.3.3)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

pNL’
21 (x) = exp(− ∫ ΔNL’

21 (x)

0
PrL1 (u)2πuλ1du),
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1
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ANL
1
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1

αNL
1 × x

αNL
2

αNL
1 ,

(A.3.4)

respectively.

Then I focus on the derivation of the SINR. Take the case of u ∈ UL
1 for example,
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for the typical user u, the coverage probability of the LoS MBS is given as

SL
1 (τ) = Ex

{
P[SINRL

1 (x) > τ ]
}

=

∫ ∞

0

P[SINRL
1 (x) > τ ]FL

1 (x)dx.
(A.3.5)

The SINR of UE in Eq. (A.3.5) is rewritten as γ(x) =
SL
1 (x)h1,0

Iagg+σ2 , where SL
1 (x) =

P1A
L
1x

−αL
1 and Iagg denotes the aggregative interference, which comes from the other

active MBSs and SBSs. So the CCDF of the typical user SINR at distance x from its

associated LoS MBS is given as

P[γ(x) > τ ] =P

{
h1,0 >

(Ix + σ2)τ

SL
1 (x)

}
= exp(

−σ2τ

SL
1 (x)

)LIL1
(

τ

SL
1 (x)

),

(A.3.6)

and the Laplace transform of Ix is shown as follows:
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1 (x)

)
(a)
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(A.3.7)

where step (a) states that the closest interferer from each type of BSs.
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The results from other cases that u ∈ {UNL
1 } can be obtained by a similar ap-

proach. For the case that u ∈ {UL
2 ,UNL

2 }, the SINR constitutes 2 parts. The first

part follows the same logic with that u ∈ {U1} and constitutes a θ proportion of the

whole unit, while the second part does not consider the mutual interference from the

MBSs.

In the following, I turn to the case that u ∈ U3. Following the same approach, I

first show how to compute the PDF F L
3 (x) in Eq. (3.3.5). To this end, I define two

events as follow.

• Event Biased-SBL: The nearest biased small BS with a LoS path to the UE

is located at distance XL with no other BSs outperforming the associated BS.

According to the proof of Lemma 1, the PDF of XL is written as

fL
X(x) = pL21(x)× pL22(x)× pL23(x)× fL

2 (x). (A.3.8)

• Event MB conditioned on the value of XL: Given that XL = x, the UE is

associated with a biased LoS small BS with distance XL, which is offloaded

from a macro BS with a LoS path at distance yL1 (Event MBL) or a macro BS

with a NLoS path at distance yNL
1 (Event MBNL).

– Event MBL conditioned on the value of XL: To make sure that the UE was

associated with the LoS MB with distance yL1 before the power biasing

process, there should be no other BSs having stronger signals than the

associated one. Such a conditional probability of MBL on condition of

XL = x is

pL1 (x)=

∫ yL1

0

pL11(y
L
1 )× pL12(y

L
1 )× pL13(y

L
1 )× fL

1 (y
L
1 )dx, (A.3.9)

where yL1 satisfies yL1 = arg{SL
2 (y

L
1 )×D = SL

1 (x)}.
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– Event MB NL conditioned on the value of XL: Similar to the event MBL,

the conditional probability is

pNL
1 (x) =∫ yNL

1

0

pNL
11 (y

NL
1 )× pNL

12 (y
NL
1 )× pNL

13 (y
NL
1 )× fNL

1 (yNL
1 )dx,

(A.3.10)

where yNL
1 satisfies yNL

1 = arg{SL
2 (y

NL
1 )×D = SNL

1 (x)}.

Thus, the expression of FL
3 (x) can be written as

FL
3 (x) = pL21(x)× pL22(x)× pL23(x)×

(
pL1 (x) + pNL

1 (x)
)× fL

2 (x). (A.3.11)

Similarly, the expression of FNL
3 (x) is written as

FNL
3 (x)= pNL

21 (x)× pNL
22 (x)× pNL

23 (x)×
(
pL2 (x)+p

NL
2 (x)

)× fNL
2 (x), (A.3.12)

where pL2 (x) =
∫ yL2
0

pL11(y
L
2 ) × pL12(y

L
2 ) × pL13(y

L
2 ) × fL

1 (y
L
2 )dx, and yL2 satisfies yL2 =

arg{SNL
2 (yL2 ) × D = SL

1 (x)}, and pNL
2 (x) =

∫ yNL
2

0
pNL
11 (y

NL
2 ) × pNL

12 (y
NL
2 ) × pNL

13 (y
NL
2 ) ×

fNL
1 (yNL

2 )dx, and yNL
2 satisfies yNL

2 = arg{SNL
2 (yNL

2 )×D = SNL
1 (x)}.

The calculation of SINR for u ∈ U3 is similar to other cases and it only considers

the interference from the SBSs, thus the rest proof is omitted. Therefore, the overall

SINR coverage of a typical user can then be obtained using the law of total probability

to get S(τ) =∑l Sl(τ).

A.4 Proof of Theorem 3.3.2

From Eq. (3.3.16), the ASE of the k-th tier is

Rk =

∫ ∞

0

{ESINRk
[log2(1 + SINRk(x))]}Fk(x)dx, (A.4.1)
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where Fk(x) is given in Theorem 1. Because E[R] =
∫∞
0

P[X > x]dx for X > 0, I can

obtain

ESINRk
[log2(1 + SINRk(x))]

=

∫ ∞

0

P {log2[1 + SINRk(x)] > ρ} dρ

=

∫ ∞

log2(τ+1)

P (SINRk(x) > 2ρ − 1) dρ.

(A.4.2)

The rest proof is similar to Appendix A.3, and the result is obtained from plugging

τ = 2ρ − 1, conditioned on the SINRk(x) > τ .

For the users belonging to U2, because of the resource partitioning, they can be

served in all time-slots. Thus, the calculation of their ergodic rate is composed of two

parts. When the macro BS schedules ABSs, the users in U2 would not get interference

from tier 1 BSs and they share the η fraction of channel resource with range expanded

UEs, whereas the mutual interference would be considered when the macro BSs are

working, in which the 1 − η fraction of resource is allocated to the users in U1 and

U2.

A.5 Proof of Lemma 3.3.5

As λ2 → +∞, all the UEs are assumed to be connected to BSs with a LoS channel,

so the path loss ζ(r) can be rewritten as

ζk(r) = ζLk (r) = AL
kr

−αL
k ,LoS: PrLk (r)=1. (A.5.1)
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Thus, the components of the NLoS part in R, which are RNL
1 , RNL

2 , and RNL
3 , can be

neglected. Furthermore, the interference power LIL1
( t(ρ)

SL
1 (x)

) can be written as

LIL1
(s) = exp

⎛⎝−2πλ̃1

⎛⎝∫ ∞

x

1× u

1 +
SL
1 (x)

τSL
1 (u)

du

⎞⎠⎞⎠
× exp

⎛⎝−2πλ̃2

⎛⎝∫ ∞

ΔL
12(x)

1× u

1 +
SL
1 (x)

τSL
2 (u)

du

⎞⎠⎞⎠
= exp

(
−2πλ̃1

(∫ ∞

x

1× u

1 +
(
τ−1x−αL

1

)
uαL

1

du

))

× exp

⎛⎜⎜⎝−2πλ̃2

⎛⎜⎜⎝∫ ∞

x

1× u

1 +

(
P1AL

1

P2AL
2 τx

αL
1

)
uαL

2

du

⎞⎟⎟⎠
⎞⎟⎟⎠ .

(A.5.2)

In order to evaluate Eq. (A.5.2), I define the following integral functions according to

[82]:

ρ(α, β, t, d) =

∫ ∞

d

uβ

1 + tuα
du

=

[
d−(α−β−1)

t(α− β − 1)

]
F1

[
1, 1− β + 1

α
; 2− β + 1

α
;− 1

tdα

]
,

(α > β + 1) ,

(A.5.3)

where 2F1[·, ·; ·; ·] is the hyper-geometric function [82]. The proof is completed by

plugging Eq. (A.5.3) into Eq. (A.5.2), and the calculations of LIL21
( t(ρ)

SL
2 (x)

), LIL22
( t(ρ)

SL
2 (x)

),

and LIL3
( t(ρ)

SL
2 (x)

) are following a similar procedure, which is omitted here.
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Proofs of Chapter 4

B.1 Proof of Theorem 4.2.1

For clarity, I first summarize the ideas to prove Theorem 4.2.1. In order to evaluate

ptrans(λ, γ), the first key step is to calculate the distance probability density function

(PDF) for the event that the typical receiver is associated with a nearest transmitter

which also have a social relationship with it, so that the integral of Pr[SINR > γ] can

be performed over the distance r. The second key step is to calculate Pr[SINR > γ]

for the typical case conditioned on the distance r.

From Eq. (4.1.3) and Eq. (4.2.1), I can derive ptrans(λ, γ) in a straightforward way
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as

ptrans(λ, γ) =

∫
r>0

Pr [SINR > γ|r] fR(r)dr

=

∫
r>0

Pr

[
Phr−α

Id + σ2
> γ

]
fR(r)dr

=

∫ A

0

Pr

[
Phr−α

Id + σ2
> γ

]
fR1(r)dr

+

∫ ∞

A

Pr

[
Phr−α

Id + σ2
> γ

]
fR2(r)dr,

(B.1.1)

where fR1(r) and fR2(r) are the different PDFs of the RV R1 and R2, and R1 and

R2 are in the different intervals with respect to r.

According to the offline social relation model, when 0 < R1 ≤ A, the PDF of

R1 can be represented as following. According to [102] and [5], the complementary

cumulative distribution function (CCDF) of R1 can be written as

F S
R1(r) = exp

(
−
∫ r

0

PS(μ)2πμλdμ

)
= exp

(−πλr2
)
. (B.1.2)

Taking the derivative of (1− F S
R1(r)) with regard to r, I can get the PDF of R1 as

fR1(r) = exp(−πλr2)× 2πλr. (B.1.3)

When R2 > A, the PDF of R2 can be expressed as following. Same as Eq. (B.1.2),

the CCDF of R2 can be written as

F S
R2(r) = exp

(
−
∫ r

0

PS(μ)× 2πμλdμ

)
= exp

(− (πλA2 + 2πλA2(ln r − lnA)
))

.

(B.1.4)

So taking the derivative of (1− F S
R2(r)) with regard to r, I can get the PDF as

fR2(r)=exp[−(πλA2 + 2πλA2(ln r − lnA)]×2πλA2×1

r
. (B.1.5)

Having obtained fR1(r) and fR2(r), I move on to evaluate Pr
[
Phr−α

Id+σ2 > γ
]
in (B.1.1)
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as

Pr

[
Phr−α

Id +N0

> γ

]
= EId

{
Pr

[
h >

γrα(Id + σ2)

P

]}
= EId

{
exp

(
−γrα(Id + σ2)

P

)}
= exp

(
−γrα × σ2

P

)
LId

(
γrα

P

)
,

(B.1.6)

where LId is the Laplace transform of RV Id evaluated at s.

The proof of Theorem 1 is completed by plugging Eq. (B.1.3), Eq. (B.1.5), and

Eq. (B.1.6) into Eq. (4.2.4).

B.2 Proof of Lemma 4.2.1

Based on the considered UAS, it is straightforward to derive LId1 as

LId1(s) = E[Φ,{hi}]

⎧⎨⎩exp

⎛⎝−s
∑

i∈Φ/b0

Phid
−α

⎞⎠⎫⎬⎭
(a)
= exp

(
−2πλ

∫ ∞

r

(1− E[h]{exp(−sPhu−α)})udu
)

(b)
= exp

(
−2πλ

∫ ∞

r

(1− E[h]{exp(−rαγhu−α)})udu
)
,

(B.2.1)

where the step (a) is obtained from [5] and the step (b) is plugging s = rαγP−1 into

Eq. (B.2.1).

The part in Eq. (B.2.1)
(
E[h] {exp(−r−αγhu−α)}) considers interferences from

both social and non-social paths, thus, LId(s) should be further derived as

LId1(s) =

exp

(
−2πλ

∫ ∞

r

PS(u)

{
1− E[h]

{
exp(

−γh

rαuα
)

}}
udu

)
×

exp

(
−2πλ

∫ ∞

r

PNS(u)

{
1− E[h]

{
exp(

−γh

rαuα
)

}}
udu

)
,

(B.2.2)
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where PNS(u) = 1− PS(u). Plugging Eq. (4.1.3) into Eq. (B.2.2), I can get

LId1(s) =

exp

(
−2πλ

∫ ∞

r

{
1− E[h]

{
exp(

−γh

rαuα
)

}}
udu

)
= exp

(
−2πλ×

∫ ∞

r

{
1− 1

1 + rαγu−α

}
udu

)
= exp

(−2πλr2γ

α− 2
2F1

[
1, 1− 2

α
; 2− 2

α
;−γ

])
,

(B.2.3)

where 2F1[·, ·; ·; ·] is the hyper-geometric function [91] and α > 2.

B.3 Proof of Lemma 4.2.2

From Appendix B.2, the second part of Eq. (B.1.1) can be expressed as∫ ∞

A

Pr

[
Phr−α

Id + σ2
> γ

]
fR2(r)dr

=

∫ ∞

A

exp

(
−γ × rα × σ2

P

)
LId2

(
γ × rα

P

)
,

(B.3.1)

where LId2(s) also needs to consider the interferences from both social and non-social

paths.
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Thus LId2(s) can be expressed as

LId2(s) =

exp

(
−2πλ

∫ ∞

r

(1− E[h]{exp(−rαγhu−α)})udu
)

=exp

(
−2πλ

∫ ∞

r

A2

u2

{
1− E[h]{exp(−γh

rαuα
)

}
udu

)
×

exp

(
−2πλ

∫ ∞

A

u2 − A2

u2

{
1− E[h]{exp(−γh

rαuα
)

}
udu

)
= exp

(
−2πλγ2 1

α

(
ln

(
1 +

1

γ

)
− ln

(
1

γ

)))
× exp

(−2πλA2−αrαγ

α− 2
×∇2(α,A, r, γ)

)
×

exp

(
2πλA2 1

α

(
ln(1 +

Aαr−α

γ
)− ln(

Aαr−α

γ
)

))
,

(r > A),

(B.3.2)

where∇2(α,A, r, γ) = 2F1

[
1, 1− 2

α
; 2− 2

α
;−A−αrαγ

]
, 2F1[·, ·; ·; ·] is the hyper-geometric

function [91] and α > 2.

B.4 Proof of Lemma 4.3.1

In this appendix, I first prove that the proposed algorithm possesses the mod-

eration property. That is, the magnitude of decrement of any action probability is

bounded by a certain value.

From Eq. (4.3.7), the amount that a probability decrease is computed by

pj(t)− pj(t+ 1) =
Δ

F −K(t)
=

1

Fδ
× 1

F −K(t)
<

1

Fδ
, (B.4.1)

so the magnitude of decrement is bounded by the value 1/Fδ and the proposed

algorithm possesses the moderation property.

Then I prove that the proposed algorithm possesses the monotony property. That
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is, if there exists an index i and a time instant t′ < ∞, such that

di(t) > dj(t), for j �= i and t > t′, (B.4.2)

then there exists an integer F0 such that for all F > F0, pi(t) → 1 with probability

one as t → ∞. Consider

Δpi(t) = E[pi(t+ 1)− pi(t)|o(t)], (B.4.3)

where o(t) is the estimator vector.

From Eq. (4.3.7), pi(t+ 1) can be expressed as:

pi(t+ 1) = pi(t) +
Δ

K(t)
,

if αj is chosen and di > dj.

pi(t+ 1) = 1−
∑
j �=i

(pj(t)− Δ

F
)

= pi(t) +
Δ(F − 1)

F
,

if αi is chosen and di is max.

(B.4.4)

Hence, for all t > t′ and F > K(t) ≥ 1, Δpi(t) can be expressed by:

Δpi(t)

=
∑
j �=i

Δ

K(t)
× pj(t) + Δ× (F − 1)

F
× pi(t)

=
Δ

K(t)
(1− pi(t)) + Δ× (F − 1)

F
× pi(t)

>
Δ

K(t)
+ Δ× pi(t)× (

K(t)2 −K(t)−K(t)

FK(t)
)

≥ Δ−Δ
Pi(t)

F
= Δ× (1− Pi(t)

F
) > 0.

(B.4.5)

Therefore, pi(t) is a submartingale and according to the submartingale convergence

theorem [92], pi(t) will converge to one with probability one. Therefore, the monotony

property of the algorithm is proved.
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Proofs of Chapter 5

C.1 Proof of Theorem 5.3.1

When transmission between UAV-BS and UE is LoS, two conditions should be

satisfied: 1) The distance between UE and UAV-BS is r, and there is no UAV-BS of

LoS path within r. 2) There is no UAV-BS of NLoS path within r1. Based on these

conditions, fL(r) is computed as [52]

fL(r) = exp

(
−
∫ r1

0

(
1− PrL (u)

)
2πuλdu

)
× exp

(
−
∫ r

0

PrL (u) 2πuλdu

)
× PrL (r)× 2πrλ.

(C.1.1)

When transmission between UAV-BS and UE is NLoS, two conditions should be

satisfied: 1) The distance between UE and UAV-BS is r, and there is no UAV-BS of

NLoS path within r. 2) There is no UAV-BS of LoS path within r2. So fNL(r) can
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be derived as

fNL(r) = exp

(
−
∫ r2

0

PrL (u) 2πuλdu

)
× exp

(
−
∫ r

0

(
1− PrL (u)

)
2πuλdu

)
× (1− PrL (r)

)× 2πrλ.

(C.1.2)

the CDF of associated UAV-BS located at r from UE is 1−exp
(−∫ r

0
PrL(u)2πuλdu

)
,

and PDF is

fL(r) = exp

(
−
∫ r

0

PrL(u)2πuλdu

)
PrL(r)2πrλ. (C.1.3)

Considering the probability of event CNL conditioned on associated UAV-BS lo-

cated at r km from UE, it can be derived as

Pr
[
CNL

∣∣RL = r
]
= exp

(
−
∫ r1

0

(
1− PrL(u)

)
2πuλdu

)
. (C.1.4)

Pr [SINR > γ |r ] conditioned on r can be expressed as

Pr

[
PζL(r)g

Ir +N0

> γ

]
=E[Ir]

{
g >

γ (Ir +N0)

PζL(r)

}
=E[Ir]

{
F̄G

(
γ (Ir +N0)

PζL(r)

)}
,

(C.1.5)

where F̄G is the CCDF of g which has an exponential distribution. So F̄G = exp(−g)

and Pr [SINR > γ |r ] can be further expressed as

Pr

[
PζL(r)g

Ir +N0

> γ

]
= E[Ir]

{
exp

(
−γ (Ir +N0)

PζL(r)

)}
=exp

(
− γN0

PζL(r)

)
E[Ir]

{
exp

(
− γIr
PζL(r)

)}
=exp

(
− γN0

PζL(r)

)
LIr

(
γ

PζL(r)

)
.

(C.1.6)

Then Pr
[
PζNL(r)g
Ir+N0

> γ
]
can be derived in a similar way:
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Pr

[
PζNL(r)g

Ir +N0

> γ

]
=exp

(
− γN0

PζNL(r)

)
E[Ir]

{
exp

(
− γIr
PζNL(r)

)}
=exp

(
− γN0

PζNL(r)

)
LIr

(
γ

PζNL(r)

)
.

(C.1.7)
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