Proportional Fair RAT Aggregation in HetNets

Abstract

Heterogeneity in wireless network architectures (i.e., the coexistence of 3G, LTE, 5G, WiFi, etc.) has become a key component of current and future generation cellular networks. Simultaneous aggregation of each client's traffic across multiple such radio access technologies (RATs) / base stations (BSs) can significantly increase the system throughput, and has become an important feature of cellular standards on multi-RAT integration. Distributed algorithms that can realize the full potential of this aggregation are thus of great importance to operators. In this paper, we study the problem of resource allocation for multi-RAT traffic aggregation in HetNets (heterogeneous networks). Our goal is to ensure that the resources at each BS are allocated so that the aggregate throughput achieved by each client across its RATs satisfies a proportional fairness (PF) criterion. In particular, we provide a simple distributed algorithm for resource allocation at each BS that extends the PF allocation algorithm for a single BS. Despite its simplicity and lack of coordination across the BSs, we show that our algorithm converges to the desired PF solution and provide (tight) bounds on its convergence speed. We also study the characteristics of the optimal solution and use its properties to prove the optimality of our algorithm's outcomes.Comment: Extended version of the 31st International Teletraffic Congress (ITC 2019) conference pape

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 10/08/2021