444 research outputs found

    A Scalable and Adaptive Network on Chip for Many-Core Architectures

    Get PDF
    In this work, a scalable network on chip (NoC) for future many-core architectures is proposed and investigated. It supports different QoS mechanisms to ensure predictable communication. Self-optimization is introduced to adapt the energy footprint and the performance of the network to the communication requirements. A fault tolerance concept allows to deal with permanent errors. Moreover, a template-based automated evaluation and design methodology and a synthesis flow for NoCs is introduced

    Reliable networks design and modeling (foreword)

    Get PDF

    Design and evaluation of protocols for wireless networks taking into account the interaction between transport and network layers.

    Get PDF
    We recognized two important shortcomings of the current TCP protocol: misinterpretation of delayed acknowledgments and competition among different TCP flows. In this dissertation, we propose to address these two issues by a use of novel protocol that uses immediate and delayed acknowledgment schemes and provides a coordination mechanism among independent TCP flows. We also address certain important issues that are related to the implementation of our proposed protocol: can we maintain the end-to-end semantics of TCP? Are there additional benefits that can be harvested if intermediate nodes with TCP protocol can be used? (Abstract shortened by UMI.)The Transmission Control Protocol (TCP) provides end-to-end data reliability and is the primary transport layer protocol for many applications such as email, web access, and file transfer. There has been a plethora of research activity that aims to improve the performance of TCP both in wired and wireless networks. Protocols for the computer networks have been very structured and layered to allow for easier upgrades and maintenance. The network layer protocol (e.g. IP) is independent and below the transport layer protocol (e.g. TCP). Our main goal in this dissertation is to examine the interaction and dynamics between the network layer protocols and TCP in the wireless environment.Towards this goal, we examined the network layer protocols in one-hop wireless (e.g. cellular networks) and multi-hop wireless, e.g. distributed Wi-Fi (Wireless Fidelity) networks. For each of these networks we, for the first time, propose transport layer protocols that take into account the interaction between the network layer and transport layer. For the one-hop wireless networks we have investigated analytical methods to determine the buffer requirements at base stations and estimate disruption time which is the time between two packet arrivals at the mobile host. We will show that the estimation of buffer requirements and disruption time is not only dependent on the wireless TCP scheme used, but also its interaction with the underlying network protocol. We also propose a comprehensive study of the effectiveness of wireless TCP and network protocols taking into account different networking environments that is decided on many factors such as mobility of senders and receivers, simplex and duplex communication among communicating peers, connection oriented and connection less communication at the network layer, rerouting schemes used after movement, and with and without hint handoff schemes

    Segment Routing: a Comprehensive Survey of Research Activities, Standardization Efforts and Implementation Results

    Full text link
    Fixed and mobile telecom operators, enterprise network operators and cloud providers strive to face the challenging demands coming from the evolution of IP networks (e.g. huge bandwidth requirements, integration of billions of devices and millions of services in the cloud). Proposed in the early 2010s, Segment Routing (SR) architecture helps face these challenging demands, and it is currently being adopted and deployed. SR architecture is based on the concept of source routing and has interesting scalability properties, as it dramatically reduces the amount of state information to be configured in the core nodes to support complex services. SR architecture was first implemented with the MPLS dataplane and then, quite recently, with the IPv6 dataplane (SRv6). IPv6 SR architecture (SRv6) has been extended from the simple steering of packets across nodes to a general network programming approach, making it very suitable for use cases such as Service Function Chaining and Network Function Virtualization. In this paper we present a tutorial and a comprehensive survey on SR technology, analyzing standardization efforts, patents, research activities and implementation results. We start with an introduction on the motivations for Segment Routing and an overview of its evolution and standardization. Then, we provide a tutorial on Segment Routing technology, with a focus on the novel SRv6 solution. We discuss the standardization efforts and the patents providing details on the most important documents and mentioning other ongoing activities. We then thoroughly analyze research activities according to a taxonomy. We have identified 8 main categories during our analysis of the current state of play: Monitoring, Traffic Engineering, Failure Recovery, Centrally Controlled Architectures, Path Encoding, Network Programming, Performance Evaluation and Miscellaneous...Comment: SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIAL

    A fault recovery mechanism for a QoS-guaranteed multicast routing protocol

    Get PDF
    Master'sMASTER OF SCIENC

    Efficient Protection of Many-to-One Communications

    Get PDF
    International audienceThe dependability of a network is its ability to cope with failures , i.e., to maintain established connections even in case of failures. IP routing protocols (such as OSPF and RIP) do not fit the dependability objectives of today applications. Moreover, forwarding techniques based on destination address (like IP) induce many-to-one connections. If a dependable connection is needed, all primary paths and protections having the same destination must be established in a coordinated way. In this paper, we propose a fault recovery for many-to-one connections based on a cold (preplanned) protection. The main advantage of our approach is that the recovery in case of failures is achieved within a short delay. Additionally, with respect to other approaches, the dependability of the routing scheme is increased in the way that it statistically copes with many failures. The algorithm we propose computes an efficient backup for an arbitrary primary tree using an improved multi-tree algorithm

    Supporting Quality-Of-Service of Mobile Commerce Transactions

    Get PDF
    With the deployment of 3G and 4G mobile networks, a sizable proportion of e-commerce traffic is expected to move to these networks. These transactions are likely to be diverse. Mobile transactions can include unique requirements such as atomicity (all or none steps), push or pull, security, and privacy. Because users are mobile, unpredictable link characteristics, and other problems associated with wireless networks, some mobile commerce transactions may not be completed causing significant annoyance to the users affected. Therefore, the probability of completing mobile transactions is an important parameter for measuring quality-of-service of a network supporting mobile commerce. The transaction completion probability measures the ability of networks to support completion of transactions. This research focuses on improving the support of mobile commerce transactions by the underlying wireless networks. Mobile commerce traffic is classified as messaging, information connectivity, and transactions in order to provide efficient quality-of-service to various applications. This paper introduces the use of priority, sociability and delegation to improve the transaction completion in wireless networks
    corecore