8 research outputs found

    A smart power electronic multiconverter for the residential sector

    Get PDF
    El futuro de la red incluye la generación distribuida y las tecnologías de red inteligente. Los sistemas de gestión del lado de la demanda (DSM) también serán esenciales para lograr un alto nivel de confiabilidad y robustez en los sistemas de energía. Para hacer eso, es necesario expandir la Infraestructura de medición avanzada (AMI) y los Sistemas de gestión de energía (EMS). La dirección de la tendencia es hacia la creación de centros de recursos energéticos, como el concepto de comunidad inteligente. Este documento presenta un sistema multiconvertidor inteligente para el sector residencial / vivienda con un Sistema de Almacenamiento de Energía Híbrido (HESS) que consta de supercapacitador y batería, y con integración de fuente de energía fotovoltaica (PV) local. El dispositivo funciona como una unidad de energía distribuida ubicada en cada casa de la comunidad, recibiendo puntos de ajuste de energía activos proporcionados por una comunidad inteligente EMS. Este SGA central es responsable de administrar los flujos de energía activa entre la red eléctrica, las fuentes de energía renovables, los equipos de almacenamiento y las cargas existentes en la comunidad. El multiconvertidor propuesto es responsable de cumplir con los puntos de referencia de potencia activa de referencia con la calidad de potencia adecuada; garantizando que los módulos fotovoltaicos locales funcionen con un algoritmo de seguimiento del punto de máxima potencia (MPPT); y prolongando la vida útil de la batería gracias a un funcionamiento cooperativo del HESS. Se ha desarrollado un modelo de simulación para mostrar el funcionamiento detallado del sistema. Finalmente, se implementó un prototipo de la plataforma de multiconversores y se realizaron algunas pruebas experimentales para validarlo.The future of the grid includes distributed generation and smart grid technologies. Demand Side Management (DSM) systems will also be essential to achieve a high level of reliability and robustness in power systems. To do that, expanding the Advanced Metering Infrastructure (AMI) and Energy Management Systems (EMS) are necessary. The trend direction is towards the creation of energy resource hubs, such as the smart community concept. This paper presents a smart multiconverter system for residential/housing sector with a Hybrid Energy Storage System (HESS) consisting of supercapacitor and battery, and with local photovoltaic (PV) energy source integration. The device works as a distributed energy unit located in each house of the community, receiving active power set-points provided by a smart community EMS. This central EMS is responsible for managing the active energy flows between the electricity grid, renewable energy sources, storage equipment and loads existing in the community. The proposed multiconverter is responsible for complying with the reference active power set-points with proper power quality; guaranteeing that the local PV modules operate with a Maximum Power Point Tracking (MPPT) algorithm; and extending the lifetime of the battery thanks to a cooperative operation of the HESS. A simulation model has been developed in order to show the detailed operation of the system. Finally, a prototype of the multiconverter platform has been implemented and some experimental tests have been carried out to validate it.Ministerio de Economía y Competitividad (España) y Fondos FEDER: Proyecto TEC2013-47316-C3-3-PpeerReviewe

    Distributed Real-Time Electricity Allocation Mechanism for Large Residential Microgrid

    No full text

    Efficient double auction mechanisms in the energy grid with connected and islanded microgrids

    Get PDF
    Doctor of PhilosophyDepartment of Electrical and Computer EngineeringSanjoy DasThe future energy grid is expected to operate in a decentralized fashion as a network of autonomous microgrids that are coordinated by a Distribution System Operator (DSO), which should allocate energy to them in an efficient manner. Each microgrid operating in either islanded or grid-connected mode may be considered to manage its own resources. This can take place through auctions with individual units of the microgrid as the agents. This research proposes efficient auction mechanisms for the energy grid, with is-landed and connected microgrids. The microgrid level auction is carried out by means of an intermediate agent called an aggregator. The individual consumer and producer units are modeled as selfish agents. With the microgrid in islanded mode, two aggregator-level auction classes are analyzed: (i) price-heterogeneous, and (ii) price homogeneous. Under the price heterogeneity paradigm, this research extends earlier work on the well-known, single-sided Kelly mechanism to double auctions. As in Kelly auctions, the proposed algorithm implements the bidding without using any agent level private infor-mation (i.e. generation capacity and utility functions). The proposed auction is shown to be an efficient mechanism that maximizes the social welfare, i.e. the sum of the utilities of all the agents. Furthermore, the research considers the situation where a subset of agents act as a coalition to redistribute the allocated energy and price using any other specific fairness criterion. The price homogeneous double auction algorithm proposed in this research ad-dresses the problem of price-anticipation, where each agent tries to influence the equilibri-um price of energy by placing strategic bids. As a result of this behavior, the auction’s efficiency is lowered. This research proposes a novel approach that is implemented by the aggregator, called virtual bidding, where the efficiency can be asymptotically maximized, even in the presence of price anticipatory bidders. Next, an auction mechanism for the energy grid, with multiple connected mi-crogrids is considered. A globally efficient bi-level auction algorithm is proposed. At the upper-level, the algorithm takes into account physical grid constraints in allocating energy to the microgrids. It is implemented by the DSO as a linear objective quadratic constraint problem that allows price heterogeneity across the aggregators. In parallel, each aggrega-tor implements its own lower-level price homogeneous auction with virtual bidding. The research concludes with a preliminary study on extending the DSO level auc-tion to multi-period day-ahead scheduling. It takes into account storage units and conven-tional generators that are present in the grid by formulating the auction as a mixed inte-ger linear programming problem

    Intelligent Decision Support System for Energy Management in Demand Response Programs and Residential and Industrial Sectors of the Smart Grid

    Get PDF
    This PhD thesis addresses the complexity of the energy efficiency control problem in residential and industrial customers of Smart electrical Grid, and examines the main factors that affect energy demand, and proposes an intelligent decision support system for applications of demand response. A multi criteria decision making algorithm is combined with a combinatorial optimization technique to assist energy managers to decide whether to participate in demand response programs or obtain energy from distributed energy resources

    Adaptive model predictive control of renewable energy-based micro-grid.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Energy sector is facing a shift from a fossil-fuel energy system to a modern energy system focused on renewable energy and electric transport systems. New control algorithms are required to deal with the intermittent, stochastic, and distributed nature of the generation and with the new patterns of consumption. Firstly, this study proposes an adaptive model-based receding horizon control technique to address the issues associated with the energy management system (EMS) in micro-grid operations. The essential objective of the EMS is to balance power generation and demand through energy storage for optimal operation of the renewable energy-based micro-grid. At each sampling point, the proposed control system compares the expected power produced by the renewable generators with the expected load demand and determines the scheduling of the different energy storage devices and generators for the next few hours. The control technique solves the optimization problem in order to minimize or determines the minimum running cost of the overall micro-grid operations, while satisfying the demand and taking into account technical and physical constraints. Micro-grid, as any other systems are subject to disturbances during their normal operation. Hence, the power generated by the renewable energy sources (RESs) and the demanded power are the main disturbances acting on the micro-grid. As renewable sources are used for the generation, their time-varying nature, their difficulty in predicting, and their lack of ability to manipulate make them a problem for the control system to solve. In view of this, the study investigates the impacts of considering the prediction of disturbances on the performance of the energy management system (EMS) based on the adaptive model predictive control (AMPC) algorithm in order to improve the operating costs of the micro-grid with hybrid-energy storage systems. Furthermore, adequate management of loads and electric vehicle (EV) charging can help enhance the micro-grid operation. This study also introduced the concept of demand-side management (DSM), which allows the customers to make decisions regarding their energy consumption and also help to reduce the peak load demand and to reshape the load profile so as to improve the efficiency of the system, environmental impacts, and reduction in the overall operational costs. More so, the intermittent nature of renewable energy and consumer random behavior introduces a stochastic component to the problem of control. Therefore, in order to solve this problem, this study utilizes an AMPC control technique, which provides some robustness to the control of systems with uncertainties. Lastly, the performances of the micro-grids used as a case study are evaluated through simulation modeling, implemented in MATLAB/Simulink environment, and the simulation results show the accuracy and efficiency of the proposed control technique. More so, the results also show how the AMPC can adapt to various generation scenarios, providing an optimal solution to power-sharing among the distributed energy resources (DERs) and taking into consideration both the physical and operational constraints and similarly, the optimization of the imposed operational criteria
    corecore