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ABSTRACT 

Energy sector is facing a shift from a fossil-fuel energy system to a modern energy system focused on 

renewable energy and electric transport systems. New control algorithms are required to deal with the 

intermittent, stochastic, and distributed nature of the generation and with the new patterns of consumption. 

Firstly, this study proposes an adaptive model-based receding horizon control technique to address the 

issues associated with the energy management system (EMS) in micro-grid operations. The essential 

objective of the EMS is to balance power generation and demand through energy storage for optimal 

operation of the renewable energy-based micro-grid. At each sampling point, the proposed control system 

compares the expected power produced by the renewable generators with the expected load demand and 

determines the scheduling of the different energy storage devices and generators for the next few hours. 

The control technique solves the optimization problem in order to minimize or determines the minimum 

running cost of the overall micro-grid operations, while satisfying the demand and taking into account 

technical and physical constraints. Micro-grid, as any other systems are subject to disturbances during their 

normal operation. Hence, the power generated by the renewable energy sources (RESs) and the demanded 

power are the main disturbances acting on the micro-grid. As renewable sources are used for the generation, 

their time-varying nature, their difficulty in predicting, and their lack of ability to manipulate make them a 

problem for the control system to solve. In view of this, the study investigates the impacts of considering 

the prediction of disturbances on the performance of the energy management system (EMS) based on the 

adaptive model predictive control (AMPC) algorithm in order to improve the operating costs of the micro-

grid with hybrid-energy storage systems. Furthermore, adequate management of loads and electric vehicle 

(EV) charging can help enhance the micro-grid operation. This study also introduced the concept of 

demand-side management (DSM), which allows the customers to make decisions regarding their energy 

consumption and also help to reduce the peak load demand and to reshape the load profile so as to improve 

the efficiency of the system, environmental impacts, and reduction in the overall operational costs. More 

so, the intermittent nature of renewable energy and consumer random behavior introduces a stochastic 

component to the problem of control. Therefore, in order to solve this problem, this study utilizes an AMPC 

control technique, which provides some robustness to the control of systems with uncertainties. Lastly, the 

performances of the micro-grids used as a case study are evaluated through simulation modeling, 

implemented in MATLAB/Simulink environment, and the simulation results show the accuracy and 

efficiency of the proposed control technique. More so, the results also show how the AMPC can adapt to 

various generation scenarios, providing an optimal solution to power-sharing among the distributed energy 

resources (DERs) and taking into consideration both the physical and operational constraints and similarly, 

the optimization of the imposed operational criteria.   
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CHAPTER ONE 

INTRODUCTION 

1.1   General Background 

The aim of reducing greenhouse gas emissions is to focus more on environmentally friendly and renewable 

energy sources. Renewable energy technology now plays a significant role in a society that is becoming 

highly energy-intensive while still becoming more conscious of environmental issues. In reality, the 

penetration of renewable energy sources (RESs) into the electrical network poses many challenges arising 

from their inherent intermittent nature and the need to satisfy unpredictable consumer demand [1]. More 

so, several uncertainties have been imposed on the modern operation of the distribution network by 

integrating large-scale distributed renewable energy. It is necessary to determine the economic and reliable 

control strategies against fluctuating generation outputs and unpredictable weather conditions. In addition, 

the stochastic characteristics of the load profiles are exacerbated by increasingly complicated end-users [2], 

[3]. Conversely, while the traditional, source-controllable method of generating energy enables generation 

to balance the demand, incorporating new renewable-based technology with an unpredictable and variable 

profile makes it imperative to provide unique solutions to the problems that have not previously emerged. 

It is essential to realize that the energy imbalances in the grid, associated with the issues of reliability, 

stability, and power quality, result from the high penetration of the RESs in the electrical network. The 

inclusion of energy storage systems (ESSs) such as hydrogen, batteries, flywheels, ultracapacitors, etc., is 

a one-way approach to addressing these issues [4]. Meanwhile, due to its inherent predictive difficulties 

and variability, consideration of renewable sources, such as the un-dispatchable unit, can be avoided with 

the help of the ESS buffering capability. Therefore, the discontinuous nature of renewable generation and 

the randomness of the consumer's behavior are compensated by the stored energy in these units [5]. The 

outlined problems can be solved by redesigning the grid into smaller, more functional components. In 

addition, the imbalances introduced by the fluctuation of the RESs in the grid are compensated by the use 

of energy storage technologies, thus ensuring the appropriate quality of the power supplied to the local 

loads. However, storage concerns are a technical solution for energy management in the electrical network 

and a way of effectively using sustainable resources by averting the shedding of generation amid 

overproduction and, similarly, shedding of loads in the event of generation deficit. Meanwhile, the design 

and implementation of an advanced control system are vital for the convenient operation of hybrid ESSs. 

More so, the control technique will manipulate the characteristics of the individual ESS, taking into account 

degradation problems and operational constraints; thus, it appears as a technical solution to improve 

flexibility, performance, and lifespan [6], [7]. The development of micro-grids comes as a necessity for 
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integrating renewable energy sources into remote communities and as an intermediate milestone towards 

the realization of the Smart Grid. The microgrid system, which has its own control, allows for the scalable 

integration of local generation and loads in existing electrical networks, allowing for greater penetration of 

DG and RESs. The design, operation, and control of microgrids pose significant technical challenges, which 

must be addressed by appropriate advanced control techniques [8]. The design and implementation of 

appropriate advanced control strategies is a key factor for the effective integration of micro-grids into the 

electrical network. 

1.1.1 Wavelength-Based Thermo-Electrical Model of a Photovoltaic (PV) Module 

Solar energy is one of the most essential sustainable energy sources in the universe, and as such, it is 

increasingly becoming more efficient to produce electricity using photovoltaic effect, which can be 

obtained, by photovoltaic (PV) cells [9], [10]. As it stands, in terms of environmental impact and 

performance, photovoltaic energy appears to be a potential source of renewable energy, especially in the 

context of conventional power generation schemes. The PV module temperature, in particular, is a 

noteworthy factor that has a negative impact on PV module performance. Therefore, the more the PV 

module temperature increases, the lesser the PV module efficiency. Consequently, in order to enhance the 

design, development, and optimization of the photovoltaic module, it is essential to have a good 

comprehension of the factors that influence the PV modules' performance. Recently, thermal models have 

been introduced to predict the module's temperatures, and likewise, the thermo-electrical models to 

investigate the interaction of electrical and thermal module characteristics. Therefore, in the bid to fully 

understand how MPC is designed and implemented in an electrical network, the MPC controller is used in 

a wavelength-based thermo-electrical model of a photovoltaic module [11], [12]. 

The essence of this model is mainly to predict the impact of each module wavelength on both the 

temperature and the output power of the PV module. More so, since the output power is affected by the 

module temperature, it is expedient to design a controller that locates the optimal cut-off spectral 

wavelength to lessen the module temperature, therefore, getting the most out of the output power over a 

period of time. In this vein, a model predictive controller whose objective is to maximize the output power 

by simply controlling the input power through filtering the spectrum wavelength is designed for a 

photovoltaic system. The main objective of this case study is to improve the PV module efficiency by using 

an optimal control scheme to design an active filtering process that enhances the output power through 

controlling the input power [13], [14]. The design and simulation of the plant model and the MPC controller 

were carried-out on MATLAB/Simulink environment in chapter 4 of this thesis. 
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1.1.2 Energy Management System in Microgrids 

The energy management system (EMS) is responsible for the most efficient means of maintaining the 

energy balance in the micro-grid. Hence, the primary objective is to ensure a reliable supply of electrical 

power to its local load consumers. This could involve simply handling the surplus/shortage of energy or 

considering certain functionalities based on economic or operational parameters. EMS objective is located 

at the tertiary level and, if necessary, must balance power generation and demand through energy storage, 

dispatch-able generators, and demand management. The EMS can also maximize system efficiency and 

reduce running costs. The power generated by the renewable energy sources and the power demanded are 

the two major disturbances (sources of uncertainty) that operate on a micro-grid that could positively impact 

its EMS and economic performances [15], [16]. The challenges emerge from the inherent intermittent 

nature of renewable energy sources and the criteria for satisfying the variable demand for energy. While 

renewable sources are used for the generation, the control system makes them a problem due to their time-

varying nature, difficulty in predicting, and lack of manipulative capability. The EMS controls the surplus 

or shortfall of energy from renewable sources; where possible, electricity from renewable sources is 

supplied directly to loads. Any surplus power is transferred to storage units or grids and, if power is not 

available from renewable sources, it must be provided by storage units or grids. The EMS's primary goal is 

to balance power in the micro-grid efficiently, but depending on the control algorithm, the EMS can also 

attempt to maximize output against predetermined goals. The required amount of energy to be exchanged 

between generators, storage units, loads, and external grids will be determined by the control policy used, 

which can vary from basic heuristic principles to complex optimization algorithms [4], [17]. 

1.1.3 Management of Hybrid Energy Storage Systems in micro-grids 

The use of ESSs provides an ability to choose the appropriate micro-grid operating approach for both 

islanded and grid-connected modes and control the appropriate means of exchanging energy between 

microgrid components and the external network. There are several energy storage technologies, such as 

batteries, ultracapacitor, hydrogen, etc. Storage problems in micro-grids can be solved by combining 

various types of ESSs in one hybrid structure. Each energy storage system has its benefits and drawbacks, 

taking into account energy and power rating, economic cost, autonomy, time response, lifespan, and 

degradation issues. The use of hybrid energy storage systems (HESSs), i.e., incorporating several storage 

technologies, emerges as a way to mitigate the drawbacks of these technologies. Therefore, to minimize the 

overall costs, the control technique must have the ability to determine which ESS can be used at any 

moment. In recent years, the hybridization of energy storage systems has created considerable interest. The 

efficient management of multiple technologies in a single ESS necessitates an optimized algorithm for 

distributing power, reducing total cost, and handling various timescales. When multiple ESSs are combined 
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to form a hybrid scheme, the issue of power-sharing must be addressed. Several studies have addressed the 

importance of power-sharing in hybrid ESSs, taking advantage of each technology's transient response and 

autonomy and respecting degradation causes [18], [19]. Adequate use of the hybrid ESS demands the 

implementation of a controller that considers all the constraints, limitations, degradation issues, and 

economic costs of each ESS. A large number of constraints and variables to be optimized complicates the 

control problem, necessitating the use of advanced control algorithms. A large number of constraints and 

variables to be optimized increases the difficulty of the related control problem, making conventional 

heuristic approaches difficult to find an optimal solution. Hence, the use of the multi-objective cost function 

in MPC also enables the controller to measure the ESS operating costs according to their number of life 

cycles or hours, taking into account their degradation mechanisms [4]. 

1.1.4 The Concept of Demand Side Management and Demand Response Techniques in Micro-grids 

Demand-side management (DSM) is an essential feature in electrical networks that helps consumers to 

make decisions on their energy usage while also assisting operators in reducing peak load demand and 

reshaping the load profile. DSM covers everything that concerns the demand side of the energy system. It 

consists of measures introduced by power utilities to regulate electricity use at the consumer level and are 

used to allow optimal use of the existing energy without the need for additional facilities [20]. The adoption 

of the DSM technique has a range of advantages, including improved system performance, reduced overall 

operational costs, supply protection, and decreased environmental effects. Demand response (DR) refers to 

consumers' actions using information (mainly prices) to adjust their loads in the DSM context. This type of 

scheme can be used to avoid unwanted peaks in the demand curve that arise at certain times throughout the 

day, culminating in a more beneficial rearrangement, in addition to saving money on energy bills [4], [20]. 

The primary aim of the DR strategies mentioned in the literature is to lower system peak load demand and 

running costs. The demand-side management module gives the EMS and the micro-grid more flexibility, 

particularly when operating in a stand-alone mode [21]. Loads may be manipulated to a certain extent in a 

microgrid. There are certain critical loads that must be met at all times. These uncontrollable loads must be 

operated at a certain power and cannot be deferred at a certain time. Conversely, controllable loads with 

total consumption or duration of time can be modified, such as heating ventilating and air conditioning 

(HVAC) and electric vehicles (EV). Any loads can then be decreased, shed, or deferred during supply 

shortages or emergency conditions or simply to maximize the micro-grid output [22]. 

1.1.5 Electric Vehicle Integration in Micro-grids 

Electric vehicles will increasingly be connected to the grid in the immediate future. Consequently, the 

development of an energy management system for managing the use of electric vehicle batteries is a core 
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area of research. Electric vehicle charging may be used in DSM strategies (since EVs are microgrid loads), 

but because of their storage capacity, EVs can still supply energy to the grid when required, making them 

prosumers. Vehicle-to-grid (V2G) systems use the batteries in electric vehicles to store energy for an 

electrical network when they are not in use. Therefore, it is reported that a vehicle is only in motion for 4% 

of the time [23], leaving the majority of the time for it to function as an electrical energy storage facility. 

Furthermore, in regular operation, the batteries are recharged overnight (during times of low electricity 

demand) and parked in the workplace during high electricity demand, allowing the generated energy to be 

used to satisfy peak demand. The incorporation of V2G networks can be a crucial component of microgrid 

reliability, ensuring that demand and generation variations are mitigated [4]. 

1.1.6 Load Frequency Control Model with Renewable Energy Sources 

One of the power system utility goals is to maintain continuity of electrical supply with its desired quality 

[24]. The power system assumes continuous equilibrium as long as there is a balance between the generation 

and demand for electrical energy. In an interconnected power system, the main objective of automatic 

generation control (AGC) is to reduce the deviation in the transient response in the area frequency, tie-line 

power interchange. AGC has been developed to compensate for the steady-state error caused by primary 

frequency control. Frequency is a significant stability criterion for large-scale stability in multi-area power 

systems [25]. Load frequency control (LFC) problem of a multi-area interconnected power system with a 

stand-alone micro-grid is more challenging as the penetration level of renewable distribution generations 

with the major issues of variability and uncertainty continue to increase. Therefore, to ensure stand-alone 

micro-grid stability, the frequency controller should be appropriately designed with due importance [26]. 

More importantly, the load frequency control for micro-grid operations in the distribution network requires 

more attention, particularly off-grid remote micro-grid operation. Consequently, significant challenges 

emerge due to low inertia, converter-based, and intermittent generation of renewable and distributed energy 

resources common to micro-grid. Therefore, it calls for advanced control techniques to ensure a consistent 

supply of loads and further reduce the system's frequency deviation [27]. Frequency and voltage regulation 

within specified nominal values in autonomous micro-grid operation is essential for reliable system 

operation and has received sufficient considerations. The battery energy storage system (BESS) used in the 

stand-alone micro-grid system with a secondary frequency control function enhances the frequency control 

performance. As renewable distributed generations such as wind turbine generators and photovoltaic 

stations have increased penetration levels, these renewable generations have a huge impact on the LFC 

problem of the multi-area power system with a stand-alone micro-grid [26]. 
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1.1.7 The Model Predictive Control Concept 

The microgrid control system is capable of dealing with a wide variety of problems. The model predictive 

control offers an intuitive approach to the optimal control of systems subject to constraints. This factor 

demonstrates why MPC is the most widely used advanced control technique in the industry. The term model 

predictive control does not apply to a specific control technique but rather to a group of control methods 

that use a system model to measure the control signal by minimizing a cost function [28]. The first input of 

this sequence is applied to the system using the receding horizon principle, and the scheme is replicated at 

the next sampling time as new state information becomes available. MPC addresses a constrained 

hierarchical optimal control problem by repeatedly optimizing the open-loop problem online rather than 

relying on time-consuming offline control law computation. MPC has several characteristics that make it a 

viable microgrid control technique. Aside from its intuitive formulation, the approach is simple to 

comprehend, and it can handle multivariable and distributed cases when taking into account constraints and 

nonlinearities. The main differences between the MPC algorithms are the model used to represent the 

system, the cost function to be minimized, and how the optimization is carried out. The MPC-based control 

scheme’s advantages over other control schemes are not limited to the following criteria [29]. It focuses on 

the future behavior and predictions of the system and is therefore extremely appealing to systems that are 

inherently dependent on forecasting energy demand and the production of renewable energy, and offers a 

feedback mechanism that makes the system more sensitive to uncertainty and disturbance [1], [30]. 

Moreover, this control strategy can address complex system constraints, integrate generation and demand 

projections, and finally, manage physical and operational constraints such as storage capacity or generator 

slew-rate power limits [31]. 

1.2   Research Motivation and Problem Statement 

Our sector is facing a shift from a fossil-fuel energy system to a modern energy system focused on 

renewable energy and electric transport systems. New control algorithms are required to deal with the 

intermittent, stochastic, and distributed nature of the generation and new consumption patterns. The 

transition from a fossil-fuel-based electricity infrastructure to one with a significant proportion of clean 

energy and electric transportation systems poses new problems in the electrical grid's design, control, and 

management. This scenario necessitates new schemes for future power grids that allow for the easy 

integration of distributed generation, demand response, and energy storage systems. Microgrids are 

attracting a lot of attention in the scientific community because they can play a significant role in this 

transition. Microgrid energy management poses significant problems which need to be solved by advanced 

control techniques. This study provides a current and broad view of the key issues that arise when managing 

microgrids and how adaptive model predictive control (AMPC) can provide effective solutions. Despite the 
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fact that there are several methods for controlling microgrids, MPC is one of the most interesting 

technologies to use in this context because it can provide solutions at all levels. More so, frequency control 

as a key feature of automatic generation control is one of the main control problems in the design and 

operation of electrical power systems and is becoming increasingly relevant today due to the growing scale, 

evolving configuration, developing new uncertainties, environmental limitations, and complexity of power 

systems. There are a number of issues that are currently prevalent and need to be addressed with appropriate 

research and establish the methodologies that are capable of handling and sorting out, if possible, all of 

them. Model predictive control is a powerful tool compared to other conventional control applied for 

various purposes in power systems applications. The application of predictive model control can be 

furthered to adaptive mode would possibly bring a lot of solutions to the control of micro-grid following 

IEEE standard 1547.4 through the dynamic model of micro-grid components, controller strategies, optimal 

operation through mathematical modeling, including economic impacts. Moreover, several control 

techniques in micro-grid such as droop characteristics-based and communication-based offer excellent 

voltage and frequency regulation and adequate power-sharing among the DG inverters but with the 

drawback of prediction precision. MPC corrects this drawback, and to obtain reliable, flexible, stable, and 

better performance of the microgrid operation, the MPC is furthered to the adaptive MPC mode.  

1.3   Research Questions 

Micro-grids need a certain degree of coordination among various DERs to operate cost-effectively and 

reliably. This coordination is becoming more difficult in island micro-grids, where critical demand-supply 

balancing and generally higher component failure rates need a highly coupled problem to be resolved over 

the extended horizon, considering the volatility of parameters such as load profile and weather forecasting. 

The Micro-grid control mechanism must ensure the efficient and economical operation of the micro-grid 

while solving any control problems. The following research questions would be addressed in the subsequent 

chapters to achieve a reliable, efficient, scalable, and cost-effective operation of the micro-grid controller 

to harness the application of DERs using the AMPC algorithm completely: 

• How can the utilization rate of the integrated renewable and distribution energy resources for local 

use with a consequence of the consumers’ independence from the external grid be increased? 

• How can the optimal power reference tracking problem be solved, where the energy consumption 

from the diesel generator is minimized while maximizing the efficiency of the storage bank?  

• How can the AMPC optimization problem cost function, dynamic system constraints, and the 

control-oriented linear model used to solve the micro-grid energy management problem be 

formulated? 
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• How can the EMS-based energy optimization problem be solved in an optimal way using an AMPC 

algorithm in a renewable-based micro-grid? 

• What are the impacts of integrating disturbance predictions on the energy management system 

performance based on the proposed control technique? 

• What are the benefits of adopting the concept of demand response technique for EMS in micro-

grids? 

• How can the effectiveness of the AMPC strategy from other control strategies be demonstrated, 

with the help of a simulation-based model, in addressing economic dispatch problems for micro-

grids with a strong presence of intermittent resources (DGs)? 

• How can frequency deviation problems against variations in system parameters and load 

disturbance of a typical micro-grid system be solved with appropriate advanced control techniques? 

1.4   Research Aims and Objectives 

Microgrid control has advanced significantly in recent years. Microgrids, which are small-scale power 

systems with a cluster of loads, distributed generators, and storage units that work together, is the most 

innovative sector of the electric power field today, and as a result, new control problems are emerging. This 

study aims to use adaptive model predictive control (AMPC) to provide solutions for renewable energy-

based microgrids' operation. Although several approaches can be used to manage microgrids, AMPC offers 

a general method for addressing most problems using certain basic concepts in an organized manner. AMPC 

solves an optimization problem incorporating a feedback mechanism, which allows the system to face 

uncertainty and disturbances. It can handle physical constraints and incorporate the system's future 

behavior, which is vital for micro-grid. AMPC has been successfully applied in the industry, but in this 

context, it can add solutions to problems derived from the nature of the generation and demand and also to 

the need to operate with equipment from different nature such as geographically distributed energy 

resources. This research aims to develop an AMPC algorithm to regulate the power flow among the 

integrated DERs to maintain quality, reliable, and economic power supply. This work has a general 

objective to develop an AMPC algorithm to solve the energy management problem of hybrid energy 

systems based on the renewable energy sources. Therefore, to achieve this aim, the following objectives 

shall be accomplished, namely: 

• Dynamic modeling of the micro-grid components (hybrid energy system, integrating energy 

sources, i.e., solar and wind, hybrid storage unit (battery and hydrogen), and electric vehicles 

(V2G). 
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• Development of the mathematical model for the micro-grid optimal operation and subsequently 

formulate an optimization problem (cost or objective function and constraints) which are solved 

using the AMPC algorithm. 

• Investigation of the optimal control strategy that efficiently manages a stand-alone residential 

micro-grid comprising of renewable and non-renewable energy sources. The objective of the 

optimal control scheme is for the generation to meet the demand, minimize the use of fossil fuels 

and ensure the energy storage is always maintained around a nominal point such that it is not over-

depleted. 

• Investigation of the impact of integrating the disturbance prediction on the energy management 

system's performance (EMS) based on the adaptive model predictive control (AMPC) algorithm to 

improve the operating costs of the micro-grid with hybrid-energy storage systems. 

• Investigation of the benefits of adopting the concept of DR technique for energy management 

system in a stand-alone micro-grid with both critical and curtailable loads connected. 

• Investigation and solution to the problems of control and energy management in micro-grid with 

the incorporation of renewable energy generation, hybrid storage technologies, and integrating the 

EVs with V2G technology. 

• Development of load controllers’ strategies and management of the electric vehicle batteries usage 

as energy storage connected to micro-grid in the context of V2G systems. 

• The development of an adaptive model predictive control (AMPC) technique for load frequency 

control of a two-area interconnected power system with a stand-alone micro-grid. 

1.5   Main Findings and Contributions of the Thesis 

The main findings and contributions of the thesis are summarized as follows: 

• An advanced control strategy was proposed in this thesis, i.e., an adaptive model-based receding 

horizon control technique, mainly for the effective integration of micro-grids into the electrical 

network; permits the integration of the information on the disturbances prediction, improves the 

system flexibility and operational reliability and address issues related to the energy management 

system (EMS) in micro-grid operations. 

• The impact of considering the prediction of disturbances on the performance of the energy 

management system based on the adaptive model predictive control (AMPC) algorithm to improve 

the operating costs of the micro-grid with hybrid-energy storage systems was also investigated. 
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• The Effectiveness and superiority of the proposed AMPC technique in terms of control 

performance, optimization of the system efficiency, and minimization of the operational costs are 

investigated. 

• A comprehensive multi-objective formulation is developed, which weighs the usage of manipulated 

variables, penalizes the rate, and keeps the stored energy around an operating point. 

• Comprehensive case studies with single and hybrid storage systems are presented to provide 

insights on the significant effects of introducing more battery storage into the micro-grid on the 

system efficiency and cost function minimization. 

• An AMPC technique with an extended state vector is proposed for the optimal LFC problem of a 

multi-area interconnected power system with a standalone micro-grid. 

• Since the control performance of AMPC is dependent on the micro-grid system parameters, 

understanding the most sensitive parameters to the AMPC could be useful for the designing process 

to achieve better performance. Therefore, the effects of the system parameters on the control 

performance of the control techniques were evaluated. More so, a comparative study of AMPC and 

MPC control for frequency control is investigated to show the effectiveness of the AMPC based 

frequency control. 

1.6   Thesis Layout 

This research project describes “micro-grid and its operational aspects.” More specifically, it further 

explains the steady-state operations of a micro-grid consisting of various distributed energy resources 

(which provides a number of advantages on top of the existing grid, including dwindling primary resources, 

application of renewable energy resources such as sun, wind, and water together with storage concerns 

considering the intermittency of power available from such sources). This thesis is structured in nine 

chapters. A brief description of each chapter is arranged as follows: 

In the first chapter, an introduction to energy management in micro-grids, management of hybrid energy 

storage systems in micro-grid, the concept of demand-side management and demand techniques in micro-

grids, electric vehicle integration in micro-grids, load frequency control model with renewable energy 

sources, and model predictive control concept is explained. The chapter also presents the research 

motivation and problem statement, research questions, and research aim and objectives. 

A comprehensive state-of-the-art overview of energy management in microgrid systems with renewable 

energy generations is presented in the second chapter. It also reviews the main concepts and modules of 

the control structures of a generalized energy management system. This chapter also summarizes the most 

common optimization techniques, solution algorithms, software, and the mathematical formulations used 
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in the specialized literature to solve energy management problems. More so, recent studies on the 

integration of EVs in microgrids are summarized. 

The third chapter presents the various optimization techniques and solution approaches to solve the EMS-

based optimization problem in the micro-grid systems. It further focuses on the model and analysis of the 

micro-grid components. This chapter describes in detail the formulations of the proposed control algorithm 

(AMPC) used to solve the control and EMS problems in the micro-grid system throughout this thesis. 

The fourth chapter investigates an optimal control strategy that efficiently manages a stand-alone 

residential micro-grid comprising renewable and non-renewable energy sources. It also implemented an 

adaptive model predictive control (AMPC) algorithm for choosing an optimal mode and set of inputs for 

the system to track both a constant and load-varying power demand profile. The objective of the optimal 

control scheme is for the generation to meet the demand, minimize the use of fossil fuels and ensure the 

energy storage is always maintained around a nominal point such that it is not over-depleted. 

The fifth chapter investigates the impact of integrating the disturbance prediction on the performance of 

the energy management system (EMS) based on the adaptive model predictive control (AMPC) algorithm 

to improve the operating costs of the micro-grid with hybrid-energy storage systems. Additionally, this 

chapter studies the proposed controller's behavior under various external conditions, such as weather and 

demand changes. 

In the sixth chapter, the benefits of adopting the concept of DR technique for energy management system 

in a renewable energy-based stand-alone micro-grid with both critical and curtailable loads connected are 

investigated. The aim of the demand response technique in the energy management system is to use the 

diversity of the load consumption patterns and the energy available from the distributed energy resources, 

the demand response, and the energy storage system (ESS) to reduce the peak load demand and minimize 

the operating/electricity costs of the micro-grid system. 

The seventh chapter addresses the problems of control and energy management in micro-grid with the 

incorporation of renewable energy generation, hybrid storage technologies, and integrating the EVs with 

V2G technology. The AMPC technique is used to optimize the charge/discharge of the EVs in a receding 

horizon manner in order to reduce operational cost in a renewable energy-based micro-grid. 

The eighth chapter uses the adaptive model predictive control (AMPC) technique for load frequency 

control of a two-area interconnected power system with a stand-alone micro-grid. Hence, the effects of 

system parameters variation on the control performance of the AMPC technique for frequency control in a 

stand-alone micro-grid are investigated. The purpose of this chapter is to solve the problems of frequency 

deviation against variations in system parameters and load disturbance of a typical stand-alone micro-grid. 
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The final chapter of this thesis outlines the findings of the work under investigation. Conclusions have 

been based on these findings, and recommendations for further studies have also been proposed. 

1.7 Chapter Summary 

This chapter presents an introduction to energy management in micro-grids, management of hybrid energy 

storage systems in micro-grid, the concept of demand-side management and demand techniques in micro-

grids, electric vehicle integration in micro-grids, load frequency control model with renewable energy 

sources, and model predictive control concept. This section of the thesis also presents the research 

motivation and problem statement, research questions, research aim and objectives, research findings and 

the contributions of the thesis, and finally, the thesis outline. 
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CHAPTER TWO 

CONTEXT AND LITERATURE REVIEW 

2.1   Introduction 

The erratic nature of renewable energy resources (RERs) such as wind and photovoltaic generations, market 

(energy) prices, and the randomness of the load profile has contributed to difficulties in maintaining the 

power quality and generation-consumption balance. Hence, microgrids can be managed by an energy 

management system (EMS) to solve these issues, enabling the minimization of running costs, emissions, 

and peak loads while respecting the microgrids' technical and physical constraints [32]. Several issues are 

currently prevalent and need to be addressed with appropriate research and establish the methodologies that 

are capable of handling and sorting out, if possible, all of them. Microgrids' energy management system 

has been researched from numerous perspectives over the past few years and has recently gained significant 

interest from researchers. To this end, this chapter presents a comprehensive state-of-the-art overview of 

energy management in microgrid systems with renewable energy generations. It also reviews the main 

concepts and modules of the control structures of a generalized energy management system [32], [33]. 

Energy storage technologies are considered an attractive option for managing the fluctuant renewable 

energy generation profiles due to increased technological maturity, energy density, and the ability to 

provide grid services, such as frequency response. Hence, a survey on the main energy storage technologies, 

which is one way to get over the energy imbalance problem due to the high penetration of RERs, is 

presented [4]. Meanwhile, many researchers have solved these energy management problems using various 

optimization techniques and solution approaches to achieve the optimal microgrid operation. Therefore, 

this chapter further summarizes the most common optimization techniques, solution algorithms, software, 

and the mathematical formulations used in the specialized literature to solve energy management problems. 

More so, appropriate management of loads and electric vehicles (EVs) charging can help improve microgrid 

operation.  Therefore, this chapter presents an overview of the key concepts of demand side management 

(DSM) and demand response technique (DRT) for energy management in microgrid systems [17]. 

Incorporating the vehicle-to-grid system can be crucial in the microgrid's reliability to protect against load 

and generation variability. The development of an energy management system for managing the use of 

electric vehicle batteries is a core area of research, which has been reviewed in the literature. Hence, recent 

studies on the integration of EVs in microgrids are summarized. Lastly, the system's dynamics under various 

system disturbances, various control strategies, and techniques in the area of load frequency control (LFC) 

in micro-grids are also reviewed [26]. The essence of this chapter is to provide a basis for an in-depth study 

in the field of microgrid control approaches and structure, with particular emphasis on energy management 
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systems. In addition, to put some perspective on the need for predictive control for energy management in 

microgrids, different classifications of control techniques are reviewed [34], [35]. 

2.2   Energy Management System of Renewable Energy-Based Microgrids 

Microgrids composed of distributed energy resources (DERs), such as distributed generation systems 

(DGSs), energy storage systems (ESSs), and loads (controllable and uncontrollable loads), necessitate a 

management system capable of controlling, monitoring, and planning its operation while ensuring efficient, 

cost-effective and reliable performance [36], [37]. It is worth mentioning that the most important procedure 

in microgrids' operation is the energy management process [38]. An EMS can be described as a 

comprehensive automated and real-time system operating within an electrical distribution system (EDS) 

used for optimal scheduling and management of DERs and controllable loads. The EMS balances the power 

generation and demand through dispatchable generators, energy storage, demand management, etc. More 

so, the EMS improves the system performance and minimizes the operating costs [4]. The key objective of 

the energy management problem is to determine an optimal schedule to achieve a predefined goal for all 

dispatchable DGS, energy storage systems, and controllable loads. The optimization of the EDS's running 

costs, including the generation and operation of both DGS and ESS, is a more popular objective of the 

energy management problem [33], [4]. Moreover, the required amount of energy to be exchanged among 

generators, storage units, loads, and external grids will be determined by the control mechanism used, which 

can vary from basic heuristic principles to sophisticated optimization algorithms. Therefore, in this context, 

the key functions of an energy management system are as follows; It maximizes the use of renewable energy 

resources; It maximizes the energy purchased outside the micro-grid; It minimizes operational costs, energy 

losses, fuel consumption and gas emissions; It manages all the DGS, ESS and controllable loads in case of 

resynchronization with the main grid; It increases system reliability by simply maximizing each customer 

energy availability [39], [40]. Few examples of renewable energy technologies that are used in the literature 

for energy management operation of micro-grids are presented in Table 2-1. 

Table 2-1: Renewable energy technologies used for energy management operation of micro-grids 

Solar Wind Fuel cell Hydro Biomass Combined heat & power Tidal Ref. 

✓   ✓     ✓  [41] 

✓  ✓   ✓     [42] 

 ✓    ✓    [43] 

✓  ✓     ✓   [44] 

✓    ✓     [45] 
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✓  ✓     ✓   [46] 

✓   ✓     ✓  [47] 

 ✓  ✓      [48] 

✓  ✓     ✓   [49] 

✓  ✓  ✓    ✓   [50] 

 

The contributions of the existing review papers related to the energy management system of microgrids are 

summarized as follows. Ref [51] presented a comprehensive review on standalone renewable energy 

systems. The review topics were hybrid system configurations, sizing methodologies, storage options, and 

control strategies. Three types of control for the flow of energy management were addressed in this review: 

the centralized, the distributed, and the hybrid of centralized and distributed controls. Ref [52] presented an 

overview of various distributed generation technologies and reviewed sizing, energy flow management, 

and hybrid systems construction. The feasibility of various types of controllers was also discussed in this 

paper. The authors in [53] reviewed strategies and approaches used to implement energy management in 

stand-alone and grid-connected hybrid renewable energy systems. The authors in [54] presented a summary 

of recent research advances using optimization algorithms in microgrid planning and methodologies. Ref 

[55] presented an overview of current hybrid microgrids and optimization methods and applications. 

Additionally, the authors in [56] demonstrated an extensive review of energy management methodologies 

applied in microgrids. It reviews EMS for real-time electricity control and short-/long-term energy 

management. Ref [57] conducted a comprehensive review on energy management in micro-grids. The 

review topics are optimization objectives, constraints, algorithm types, and software tools. The authors in 

[58] briefly explained the modeling of RERs and ESSs. This review also discusses meta-heuristic 

optimization methods and software tools for energy management and control of hybrid RERs, sizing 

objectives, ESS management, power quality, and energy dispatch-related problems. 

More so, recent literature surveys regarding the implementation of hybrid systems are summarized in Table 

2-2. As illustrated in Table 2-2, the most widely used energy storage devices are batteries. 

Table 2-2: Recent literature reviews on energy management of hybrid micro-grid systems 
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✓   ✓  ✓      ✓    The authors presented the experimental 

investigations of the operation of a grid-

[59] 
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connected hybrid PV-wind system using a 

standalone inverter capable of operating in 

both standalone and grid-connection 

modes. 

✓  ✓  ✓  ✓      ✓    The authors presented a multi-objective 

optimization problem over a receding 

control horizon used for energy storage 

dispatch and sharing of renewable energy 

resources in a network of grid-connected 

micro-grid. The formulation of the multi-

objective optimization is implemented as a 

lexicographic program to ensure 

preferential treatment of multiple micro-

grids.  

[60] 

        ✓  ✓  ✓  A real-time EM control technique 

incorporating wavelet transformation, 

neural network, and fuzzy logic methods 

was proposed for the work. Experimental 

findings showed that the battery pack's 

power variance and peak strength were 

successfully suppressed. 

[58] 

    ✓     ✓  ✓  ✓  The authors developed an intelligent 

control strategy for a hybrid energy storage 

system composed of the battery, fuel cell, 

and supercapacitor. A multi-input/multi-

output state-space model is used to 

implement the system model in the study.  

[61] 

✓  ✓  ✓  ✓   ✓    ✓    The authors developed an economical 

linear programming model with a sliding-

time-window to assess the design and 

scheduling of biomass, combined heat, and 

power-based micro-grid systems.  

[62] 
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  ✓   ✓    ✓  ✓    The authors proposed a combined sizing 

and EM methodology and formulated it as 

a leader-follower problem. The leader 

problem focuses on sizing and aims at 

selecting the optimal size for the micro-

grid components. It is solved using a 

genetic algorithm.  

[63] 

 ✓  ✓   ✓   ✓  ✓     The authors used the crow search 

algorithm to optimize and size a hybrid 

system. The study considered two 

constraints to minimize the total net cost: 

Renewable energy portion and loss of 

power supply probability. 

[64] 

Furthermore, review papers in the literature on microgrid energy management systems from different 

aspects are summarized in Table 2-3. 

Table 2-3: Reviews of existing literature on energy management system of micro-grids 

Objective 

Function 

Constraints Flexible Resources Optimization  

Strategies 

Micro-grid Operational Mode Ref. 

DR ESS Islanded Grid-Connected 

✓  ✓    ✓  ✓   [65] 

  ✓   ✓  ✓   [66] 

✓  ✓   ✓  ✓  ✓   [57] 

✓    ✓  ✓  ✓  ✓  [55] 

    ✓  ✓  ✓  [56] 

   ✓   ✓  ✓  [67] 

   ✓  ✓  ✓  ✓  [54] 

✓  ✓   ✓  ✓  ✓  ✓  [17] 

✓  ✓   ✓  ✓   ✓  [68] 

 

Tables 2-2 and 2-3 presented several literature surveys that reviewed the energy management strategies 

used for special cases of hybrid systems. Moreover, the literature includes many papers that conducted 

reviews for various aspects related to hybrid renewable energy systems [69], [70]. 
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2.3   Control Architectures of Micro-grid Energy Management System 

Several authors in the literature have reviewed the various control structures for micro-grid EMS to control 

and intelligently co-ordinate the DERs. The three EMS control structures commonly used in practical 

application are as follows; Centralized, decentralized, and hierarchical control structures. These control 

structures of micro-grid EMS are briefly discussed in the following subsection [71]. 

2.3.1 Centralized EMS Control Structure 

In a centralized EMS control structure, the central controller gathers all the relevant information such as 

power generation of DERs, energy consumption pattern of each consumer, meteorological data, cost-

function, etc., as the information related to the operating point of the EDS. These data are used in 

conjunction with the renewable generation forecasting and the load consumption to schedule the operation 

of the DERs and determine the optimal energy scheduling of micro-grid and sends these decisions to all 

local controllers (LCs). The micro-grid central controller (MGCC) has the primary responsibility for the 

optimization procedure for microgrid energy management. Several research papers have developed and 

implemented centralized EM control approaches. For example, the authors of [72] proposed a centralized 

controller to optimize micro-grid operation by maximizing the production of distributed RESs generators 

while establishing back-and-forth energy transfer with the main utility grid. The efficiency of the proposed 

solution on a micro-grid system was investigated by considering a typical case network operating under 

various market policies and spot market prices. Additionally, ref [73] developed a centralized EM system 

for a standalone micro-grid system based on the model predictive control method to reduce computational 

loads. Hence, the studied problem was solved iteratively by nonlinear programming (NLP) and mixed-

integer linear programming (MILP) techniques. A typical structure of a centralized EMS is shown in Figure 

2-1. 

 

Figure 2-1: Centralized EMS control structure [58] 
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2.3.2 Decentralized EMS Control Structure 

In a decentralized EMS control structure, local controllers (LCs) are mainly responsible for maximizing 

their operations in a dynamic environment. More so, all decisions are made on a distributional basis until 

the DGS, the ESS, and the controllable loads have reached a shared agreement to operate the microgrid. In 

literature, the terms decentralized and distributed EMS controls are often used interchangeably [74], [75]. 

For distributed control, local controllers use local measurements and can send and receive the necessary 

information to other LCs [76]. Figure 2-2 depicts the Control structure for energy management in micro-

grid systems. Similarly, several literature papers have deployed decentralized EM control approaches. For 

instance, the authors of [15] used a robust optimization to analyze decentralized microgrid energy 

management, taking the uncertainties of wind power and solar power generations and energy consumption 

into consideration [77]. In addition, the authors of [62] proposed deterministic constrained optimization and 

stochastic optimization approaches to estimate the uncertainties in biomass-integrated micro-grid supplying 

both heat and electricity. The work developed an economical linear programming model with a sliding time 

window to assess the design, scheduling biomass-combined power, and heat-based micro-grid systems. A 

typical structure of this approach is shown in Figure 2-3. 

 

Figure 2-2: Control structure for energy management in micro-grid systems [78] 

 

Figure 2-3: Decentralized EMS control structure [58] 
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2.3.3 Hierarchical EMS Control Structure 

It is worth mentioning that the centralized control approach is challenging to implement due to the extended 

geographic areas of the systems and the extensive communication and computation requirements. Similarly, 

a higher degree of coordination, which decentralized control systems cannot accomplish, is needed for 

greater coupling between the various LCs. Nonetheless, a compromise between the fully centralized and 

decentralized control structures is accomplished by having hierarchical control structures [79], [80] on three 

layers of control: primary, secondary, and tertiary [81], [82]. The primary level operates on a fast timescale. 

It maintains the voltage and frequency stability generated from each source during changes in the generation 

or demand and after switching to islanded mode [58],[83]. Additionally, the primary control level detects 

the operating mode of micro-grid systems, offering the ability to operate in grid-connected and standalone 

modes [84]. During a load or generation adjustment, the secondary level is committed to ensuring that the 

voltage and frequency differences are restored to zero. It is responsible for mitigating any steady-state error 

introduced by the primary control, as well as synchronizing with the grid during the transition from islanded 

to grid-connected mode. This control level aims to ensure and enhance the power quality within the required 

standards values, allowing the synchronization between the micro-grid systems and the main electrical 

network [85]. The tertiary control level's main objective is to control the power flow between the microgrid 

and the main grid (or other microgrids) and for the optimal operation on large timescales (planning and 

scheduling). Hence, this level may include several optimization strategies, according to the timescales [86], 

[87]. The hierarchical control can be implemented in parallel in both centralized and distributed structure. 

The requirements at each hierarchical control level are shown in Figure 2-4. 

 
Figure 2-4: The requirements at each hierarchical control level 

The authors in [88] presented a hierarchical EMS control system to minimize the daily operating cost of a 

micro-grid and maximize the Implemented RES's self-consumption by selecting the best setting for a central 

battery storage system based on a defined cost function. Ghaffari et al. [64] developed a method to size an 
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off-grid PV/diesel/FC hybrid energy system to optimize the number of system components with respect to 

the installation's cost minimization. Table 2-4 shows the merits and demerits of each control structure. 

Table 2-4: Merits and demerits of the control architectures for hybrid systems [58] 

EM  Merits Demerits 

C
en

tr
al

iz
ed

 

▪ Suitable for small size micro-grid systems 

where the collected information is 

performed by low bandwidths 

communication [89] 

▪ A high level of connectivity is needed due 

to the direct interaction of each entity 

with the central. 

▪ Provides intense supervision and wide 

control of the whole system. 

▪ Heavy computation burden is a technical 

barrier for the deployment. 

▪ The optimal decision is guaranteed. ▪ Reliability is degraded for the whole 

system. 

▪ Strong controllability and real-time 

observability of the whole micro-grid 

system. 

▪ The failure of the centralized control 

affects the whole system operation. 

▪ Straightforward implementation, the 

centralized control allows economic 

implementation, and it is easy to maintain. 

▪ More prone to failures since only one unit 

regulates the voltage and reduces the life 

span of the battery bank stack [90]. 

D
ec

en
tr

al
iz

ed
 

▪ Easy realization of plug-and-play 

functionality. 

▪ Requires fast periodical reconfiguration. 

▪ Reduces computational burden and 

increases reliability and robustness. 

▪ Requires effective synchronization and 

strong communication to achieve 

synchronicity. 

▪ Higher reliability due to the redundancy of 

controllers and communication 

▪ Has high complexity of implementation 

compared to centralized and hierarchical 

control. 

▪ Peer-to-peer node communication, allowing 

greater flexibility of operation and avoiding 

single-point failure. 

▪ Incomplete information about the overall 

micro-grid status. 

▪ Droop control strategy is usually used to 

avoid circulating currents between the 

converters without using a digital 

communication link. 

▪ Local optimization in EMS cannot 

provide a global solution for operating 

cost minimization of the total micro-grid. 
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▪ More suitable for DC micro-grid systems. ▪ Fewer computation burdens. 

▪ The optimal decision is possible. ▪ There is no transfer of information and 

energy if there is a communication fault 

in the upper layer. 

▪ The voltage and the current are regulated 

locally by the source converters. 

▪ The distributed generators should 

participate in voltage regulation and 

frequency control. 

▪ Flexible regulation of the system voltage 

within acceptable intervals. 

▪ Adjacent layers coordination is required. 

▪ Improving the current mismatches among 

the controllers; 

▪ Some generators operate in limited power 

mode while supplying only the power 

planned by the electricity market. 

 

2.4   Energy Storage Technologies of Micro-grid Systems 

Energy management systems of micro-grid encounter difficulties in managing renewable energy sources 

such as wind and solar energy. This issue is due to the unpredictable existence of the renewable energy 

available, which is exacerbated by the disparity between real-time and forecasted power generation. 

Therefore, ESSs are solutions to resolve this problem [91], [92]. Energy storage technologies compensate 

for the imbalances between generation and consumption by storing power during low-cost or off-peak hours 

and discharging it during high-cost or peak hours induced by RESs fluctuations in the grid, ensuring that 

the power supplied to the end loads is of sufficient quality [93]. In addition, the optimum use of RES is 

possible by the use of ESSs across a wide variety of applications (i.e., from remote user level (stand-alone 

microgrids) to large-scale RES systems). The benefits resulting from the introduction of energy storage 

systems can be summarized as the possibility to minimize energy losses, to increase the reliability and 

quality of energy supply to consumers (since an additional power source is available), and to boost the 

operation of the power grid (e.g., operation of conventional units at an optimum point) [94]. There are 

several energy storage technologies. Each energy storage system has its benefits and drawbacks, taking into 

account energy and power rating, economic cost, autonomy, time response, lifespan, and degradation issues. 

The use of hybrid energy storage systems (HESSs), i.e., incorporating several storage technologies, emerges 

as a way to mitigate the drawbacks of these technologies. Therefore, to minimize the overall costs, the 

control technique must have the ability to determine which ESS can be used at any moment. In recent years, 

the hybridization of energy storage systems has created considerable interest [95], [96]. The integration of 

hydrogen storage along with electrochemical batteries and ultracapacitors, in particular, seems like an 
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effective combination for renewable generation [97]. Energy storage is a technological solution for network 

management and a way to allow effective renewable energy use by avoiding generation shedding in periods 

of overproduction and load shedding while generation is insufficient. For the convenient operation of hybrid 

ESSs, the design and implementation of an advanced control system are essential. Table 2-5 shows the 

comparison of technical features of different ESS technologies. According to this, various fields of 

application and implementation of the different energy storage systems can be seen. Systems with very low 

storage periods (seconds) and high specific power, such as ultracapacitors, are used for grid stability in 

power quality problems. On the other hand, there are ESSs with the ability to store large quantities of energy 

e.g., hydrogen systems. They can be used to compensate for the fluctuations in electricity generation from 

renewable sources and the smooth peaks in demand for energy. The other ESSs can be used to ensure 

uninterruptible power supply, black start and spinning reserve [98]. 

Table 2-5: Energy storage technologies and their applications  [99] 

Full 

power 

duration 

of 

storage 

Application of storage and possible 

replacement of conventional 

electricity system control 
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20 s Line or local faults, Voltage 

and frequency control 

✓      ✓  ✓  

3 min Spinning reserve, wind power 

smoothing of gusts 

✓  ✓    ✓   ✓  

20 min Spinning reserve, wind power 

smoothing, clouds on PV 

✓  ✓  ✓  ✓  ✓   ✓  

2 h Peak load looping, wind 

power smoothing etc. 

✓  ✓  ✓  ✓  ✓    

8 h Daily load cycle, PV, wind, 

transmission line repair 

✓  ✓  ✓  ✓  ✓    

3 days Weekly smoothing of loads 

and most weather variations  

 ✓  ✓  ✓  ✓    

4 Months Annual smoothing of loads, 

PV, wind, and small hydro 

 ✓   ✓     
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Several research studies have concentrated on the utilization of ESSs in microgrids [100]. Karavas et al. 

[101] have studied the microgrid EMS considering a battery as ESS and solved the optimization problem 

based on distributed intelligence and MAS. Alavi et al. [102] solved the microgrid energy management 

problem by considering a battery as a reserve energy source. The polymer electrolyte membrane (PEM) 

was used to cover wind and solar power uncertainties. Authors [97, 103] applied the MPC in their studies 

to control the load sharing of a hybrid ESS composed of a fuel cell and an ultracapacitor, including some 

degradation issues. However, these studies do not include connecting to the grid, or the startup/shut down 

degradation issues associated with the fuel cell. Arce et al. and Bordons et al. in [104], [105] have advanced 

similar developments in the hybridization of a fuel cell and a battery. 

2.5   Mathematical Formulations of Micro-grid Energy Management 

Microgrid energy management is an optimization problem aimed at efficiently scheduling the short-term 

operation of DGs, ESSs, and controllable loads with respect to different objective functions and constraints 

[32], [106]. A literature review of existing objective functions and constraints considered by the EMS has 

been developed in this section. More so, the classification of objective functions utilized by the EMSs along 

with their constraints are shown in Figure 2-5. 

 

Figure 2-5: Classification of EMS mathematical formulation and optimization techniques [32] 

2.5.1 Objective Functions of Energy Management Problem 

The energy management of a renewable-based micro-grid can have different objective functions. Thus, the 

micro-grid system can be managed by the EMS simply by solving various objective functions. Hence, these 

objective functions are based on the geographical area, user preferences, microgrid capacity, equipment 

installed in the microgrid, types of tariff, energy generation, energy storage, and government regulations. 

The capital or operational costs of the microgrid is an excellent example of objective functions. Therefore, 
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some examples of operational or capital costs are costs related to fuel, start-up and shut-down, maintenance, 

degradation, and procurement from the utility in case of power deficiency [107]. Some of the collection of 

utilized EMS objective functions in the literature are stipulated in Table 2-6. The objective functions are 

reviewed from being single objective and multi-objective perspectives, as shown in Table 2-6. 

Table 2-6: Collection of utilized EMS objective functions in the literature [57] 

Objective Function Equations Descriptions Single Multi Ref. 

F = CFt
OPR + CFt

EMI + CFt
RLB    (2-1) CFt

OPR, CFt
EMI and CFt

RLB represent 

the operation, emission, and reliability 

costs of micro-grid, respectively. 

✓   [102] 

F = CostOperating + CostEmission  

 CostOperating = ∑ (costDG(t) +T
t=1

STDG(t) + costs(t) + costGrid(t) +

costDR(t))                                  (2-2) 

 CostEmission =

∑ {emissionDG(t) +T
t=1

emissions(t) + emissionGrid(t)} 

The objective function is taken as the 

operating and emission cost. 

costDG(t), STDG(t), costs(t), 

costGrid(t), costDR(t) represent DG 

cost, start-up and shut-down costs, 

reserve cost, and cost of exchanging 

power with the grid. 

 

 ✓  [108] 

 F = FCost
start−up

+ FCost
generation

+

FCost
reserve + FCost

DR + FEmission      (2-3) 

The objective function is composed of 

overall cost and emission functions. 

✓  ✓  [109] 

 F = Ft
DEG + Ft

MT + Ft
OP + SCt   (2-4) The objective function is considered 

as the operation, maintenance, and 

start-up costs of the DEG. Ft
DEG, Ft

MT, 

Ft
OP, and SCt represent DEG, 

maintenance, operation, and start-up 

costs of the micro-grid, respectively. 

 ✓  [110] 

F = CINV + COP + CGRID
PUR +

CCARBTAX − CGRID 
SAL                       (2-5) 

CINV, COP, CGRID
PUR , CCARBTAX, CGRID

SAL  

represent investment cost, operating 

cost, purchase cost from the grid, 

penalty cost for carbon emissions, and 

sale cost to the main grid, 

respectively. 

 ✓  [111] 
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F = NPC + ∑ Pb(t)
8760
t=1 +

∑ PH2
(t)8760

t=1 + ∑ Pw(t)8760
t=1 + Pwt +

PH2T                                             (2-6) 

NPC, Pb(t), PH2
(t), Pw(t), Pwt, PH2T 

represent the net present cost for 20 

operating years, the battery, hydrogen, 

water, water tank, and metal hydride 

tank penalty, respectively. 

✓   [101] 

F = Cin
MG + Cop

MG                           (2-7) 

 Cop
MG = ∑ (CFi + COMi + CSi +

L
i=1

CEi) + ∑ COMj
ESS −M

j=1 CG
MG 

The EMS cost is taken as 

Cin
MG(investment cost) and Cop

MG 

(operation cost) 

✓   [112] 

 

2.5.2 Constraints in Energy Management Problem 

Various constraints in applications influence the optimum microgrid energy management system, i.e., 

various constraints can affect the microgrid's energy management. For example, maximum and minimum 

limits of power generation units must be fulfilled to ensure their stability and economic performance [78], 

[113]. It is worth noting that another necessity of the system is the balance between generation and 

consumption. Residential, commercial, and industrial loads consume electric power according to their 

operating limits, which is an example of load or consumption constraints. The charge and discharge rates 

of ESSs, such as the battery, hydrogen, ultra-capacitors, etc., are also constrained. Violation of the storage 

constraints can affect the lifetime and efficiency of the ESSs. Operational constraints are used for ramping 

limits, start-up and shut-down rates of generating units, spinning, and non-spinning reserves. Microgrids 

rely more on renewable energy resources such as Wind, solar, and fuel cell energy resources which have 

been integrated to reduce carbon emissions. Solar and wind energies are stochastic in nature and have 

specific output limits which must be met. Similarly, the fuel cell also has specific operating limits. 

Therefore, while solving the optimization formulations related to the energy management for microgrids 

utilizing renewable resources, these operating conditions are considered constraints [57], [58]. Furthermore, 

micro-grid technical constraints include feeder currents, the voltage at buses, start-up and shut-down reserve 

constraints, frequency security aspects, and ramping limits. In some of the studies that often consider 

responsive loads, DR program-related constraints need to be fulfilled [32], [114]. A summary of the 

considered constraints used in the formulation of microgrid EMS in various literature is shown in Table 2-

7. 

 

 

 



27 

 

Table 2-7: Collection of utilized micro-grid EMS constraints in the literature [32] 
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✓  ✓  ✓   ✓      ✓  ✓     [115] 

✓  ✓    ✓      ✓     ✓  [116] 

✓  ✓  ✓  ✓  ✓  ✓   ✓   ✓  ✓  ✓    [108] 

✓  ✓   ✓  ✓     ✓  ✓    ✓   [117] 

 ✓   ✓  ✓      ✓      [118] 

✓  ✓  ✓  ✓  ✓  ✓  ✓  ✓    ✓  ✓    [119] 

✓  ✓  ✓  ✓  ✓  ✓     ✓  ✓   ✓   [120] 

 

2.6   Optimization Techniques used in Micro-grid Energy Management Problem 

Many researchers have addressed energy management problems by implementing various optimization 

techniques to achieve the optimal and efficient operation of micro-grid. The literature reviews show that 

researchers have used different approaches in order to solve the optimization problems [121]. The 

optimization techniques used in solving the energy management problem are shown in Figure 2-6. 

 

Figure 2-6: Optimization techniques used in micro-grid energy management [57] 
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The following sub-section discusses the relevant works related to each particular technique. 

2.6.1 Energy Management Based on Linear and Non-Linear Programming Techniques 

The objective functions and constraints used in linear and non-linear programming are linear functions and 

non-linear functions, respectively, with real-valued and whole-valued decision variables. Mixed-integer 

linear programming (MILP) has been suggested in various publications to address different energy-related 

problems. Mehleri et al. [57] minimized the total annualized cost by optimally selecting different system 

components and renewable resources for the smart grid. In [122], the authors presented a technical and 

economic approach to optimize a micro-grid based on mixed-integer linear programming (MILP). The work 

further presented the merits of programming the generation of distributed sources, managing the 

intermittency and volatility of this type of generation, and reducing load peaks. The authors solved the cost 

function through linear programming based on a general algebraic modeling system (GAMS). Wakui et al. 

[123] solved the multi-objective framework using the MILP. The framework facilitates an optimal tradeoff 

between low running costs and decent energy services to the end consumers. The objective includes the 

operating cost of distributed generators, the cost of power exchange with the main grid, the payment for 

demand response load, the startup and shutdown costs, the penalty costs for involuntary load curtailment, 

and renewable energy spillage. Manjili et al. [124] adopted a non-linear programming-based approach to 

optimize the system with the objective function of maximizing the revenue due to power exchange between 

the micro-grid and the utility grid. Comodi et al. [125] proposed a mixed-integer non-linear programming-

based computational framework to evaluate the performance of a hybrid renewable energy system. 

2.6.2 Energy Management Based on Dynamic Programming Techniques 

Dynamic programming techniques are used to solve more complicated optimization problems that can be 

sequenced and discretized. Hence, the optimization problem is typically broken down into sub-problems 

that are solved optimally. Therefore, these solutions are then superimposed to develop an optimal solution 

for the original problem. Houshmand et al. [126] used a dynamic programming technique to minimize 

energy cost and maximize the battery's lifetime simultaneously. In [127], dynamic programming is used to 

solve the energy management problem in micro-grid with renewable generation sources and batteries. The 

objective was to minimize the cost required to satisfy the energy demand and maximize the benefits from 

the sale of renewable energy. A non-regulated energy market where electricity prices vacillate is used by 

the author and also used dynamic programming to determine the battery control actions. An algorithm based 

on dynamic programming for the management and control of stand-alone micro-grids was proposed in 

[128]. The deep learning algorithm works in real-time, requiring intra-day scheduling to obtain a control 

strategy for micro-grid optimization while sending information from local controllers within a centralized 
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management framework. Additionally, a dynamic programming method and methodology based on the 

rules applied to a stand-alone micro-grid containing diesel and photovoltaic generators and a battery was 

presented in [129]. More so, the constraints are governed by the power balance between generation and 

consumption, along with each distributed generator's capacity. Hence, the dynamic programming technique 

is adopted in minimizing the operational and emission costs. The constraints are the power balance between 

the supply and demand and the operating capacity of each distributed generator. 

2.6.3 Energy Management Based on Stochastic and Robust Programming  

Stochastic and robust programming techniques are used to solve optimization problems when the 

parameters have random variables. These optimization techniques were introduced to explain parameter 

uncertainties using uncertain boundaries. The robust optimization technique is suitable when there is a lack 

of information about the probability distribution function (PDF) of parameters [130]. Samadi et al. [131] 

used robust and stochastic programming techniques to address the challenge of load and renewable 

uncertainties for energy consumption scheduling in micro-grids. As uncertainties play a significant role in 

the micro-grid network, Farzin et al. [132], proposed a stochastic framework for optimal energy 

management of micro-grids during unscheduled islanding periods, providing a cost-effective solution to 

this problem while capturing all the inherent uncertainties. The presented framework addresses the 

prevailing uncertainties of islanding duration as well as prediction errors of demand and renewable power 

generation. Jiang et al. [133] proposed a stochastic receding-horizon control (SRHC) technique based on 

modified stochastic predictive model control (SMPC) to address fluctuations in renewable energy and 

loads. A hierarchical control mechanism was proposed by [134] to regulate and supervise the loads and 

dispatchable energy inside a micro-grid. Stochastic optimization was used on a low scale to avoid errors in 

the forecast of renewable energies. Deterministic optimization was realized on a fast scale to update the 

optimal dispatch conditions. In [135], a new stochastic programming algorithm is used for reactive power 

scheduling of a microgrid. The authors used a multi-objective function to minimize the loss and to maximize 

the reactive power reserve and the security margin of voltage. The author argued that the Particle Swarm 

Optimization algorithm performed better compared to stochastic programming algorithm. 

2.7   Solution Approaches for the Energy Management Problem 

Various researchers have used diverse solution methods to address the optimization problem related to 

energy management in microgrids. Different solution methods used in solving energy management 

problems are shown in Figure 2-7. These methods are discussed below, as well as the related works [57]. 
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Figure 2-7: Solution approaches for energy management problem [57] 

2.7.1 Heuristic and Metaheuristic Solution Approaches 

Metaheuristic is a vital solution method to solve the micro-grid optimization problem. Heuristic solution 

methods are combined to approximate the best solution using biological evolution, genetic algorithms, and 

statistical mechanisms for achieving optimal operation and control of the micro-grid system. Numerous 

control algorithms spanning from metaheuristics and heuristics have been presented to address the problem 

of micro-grid power dispatch in literature. Hence, these algorithms are but are not limited to the following, 

genetic algorithms (GA) [136], evolutionary strategies, and algorithms for tabu searching [137]. 

Consequently, the emerging control methods in the literature are either computationally robust or not 

suitable for real-time implementation, or they may generate sub-optimal solutions. However, either the 

optimization problem remains non-linear in the works described above, or other essential features, such as 

minimum up and downtimes and demand-side programs, are overlooked [115]. Gu et al. [138] utilized 

heuristic algorithms to implement micro-grid electricity. Similarly, few research works [139], [140] have 

used the hysteresis band control (HBC) technique for energy management due to its reasonable simplicity 

and ease of implementation. Dufo-López et al. [141] proposed a novel control technique, optimized by 

genetic algorithm (GA), for the control of autonomous micro-grid consisting of renewable energy sources 

[PV, Wind and hydro], a fuel cell, batteries, an electrolyser, and an AC generator. This technique optimizes 

the hybrid system control, obtaining the values of different variables that make the system's overall net 

present cost (NPC) minimal. 

2.7.2 Agent-Based Solution Approaches 

Agent-based optimization methods used to solve micro-grid energy management problems allow 

decentralized management of the micro-grid and consist of sections having autonomous behavior to execute 

the tasks with defined objectives. Thus, these agents, including distributed generators, storage systems, and 
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loads, communicate with each other to achieve a minimal cost. A multi-agent system (MAS) aims to solve 

the optimization problems that are too difficult for a single agent [142]. Zhao et al. [143] used the multi-

agent system approach to find the optimal solution by the EMS problem by assuming each member the 

optimal solution by the EMS problem. Karavas et al. [101] used a muti-agent system approach to the 

decentralized EMS problem, and optimum results were obtained. Huynh et al. [144] interconnected the 

multi-agent system effectively using the trust and reputation models. Logenthiran et al. [145] proposed a 

three-stage algorithm based on MAS to model the EMS problem in a multi-microgrid environment in which 

the first stage schedules each microgrid to satisfy its load. The second and third stages determine microgrid 

bids and export power bids, respectively. 

2.7.3 Artificial Intelligence Solution Approaches 

Artificial intelligence solution approaches include fuzzy logic and artificial neural networks. They are 

known as stochastic techniques that may solve optimization problems for the system having random 

variables. The dynamic nature of the RESs in micro-grid systems is caused by climatic conditions, which 

influence power generation. An expert system for energy management in micro-grid systems using neural 

networks to predict the power generation of the installed RESs was presented in [146]. Jaganmohan et al. 

[147] developed and trained the layered ANNs strategy with Levenberg–Marquardt Back Propagation 

algorithm. In today's real-time energy networks, the proposed concept can be used to mitigate the risks of 

potential energy shortages with increased stability and seamless communication between microgrids 

deployed at different locations. Venayagamoorthy et al. [148] presented energy management for a micro-

grid connected to the utility grid to maximize the use of renewable energies while minimizing carbon 

emission. The proposed energy management was modeled by two neural networks using evolutionary 

adaptive dynamic programming and learning concepts. The authors used one neural network to check the 

optimal performance of the system, while the other was used for the management strategy. Several micro-

grid applications utilize fuzzy control (FC), either for tuning or supporting conventional controllers or as 

the central controller [149]. A fuzzy logic-based EMS for an isolated micro-grid that minimizes net present 

cost together with penalty cost on battery SOC, hydrogen, and water storages is proposed by [150]. The 

load demands are divided into three categories of electric load, transport load, and water load. Hence, 

hydrogen is taken as a fuel for transport load. The decision inputs for the fuzzy logic system are water, 

battery SOC, and system frequency. 

2.7.4 Model Predictive Control Solution Approaches 

The model predictive control solution approach is an optimization-based approach that can compute the 

control actions (i.e., set points to various units that incorporate the micro-grid) to fulfill some criteria. These 
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approaches are used in an application where predicting the supply and demand is essential to ensure 

effective management of stored energy. The main advantage of MPC is that the optimization mechanism is 

embedded in a control structure that integrates feedback. More so, MPC can deal with disturbances and 

model mismatch, re-calculating the appropriate control actions in a receding manner when new information 

about the microgrid state is available [4], [151]. Some of the optimization techniques (LP, QP, NLP, MILP, 

MIQP, metaheuristics, etc.) can be incorporated in MPC depending on the type of model used (linear, 

nonlinear, hybrid, etc.) and the cost function utilized in the optimization problem. The intermittent and 

volatile generation of renewable energy and consumers' random behavior introduces a stochastic 

component to the control problem. In practical applications, all of these variables are not entirely 

controllable. Still, knowledge of their time evolution is essential for improving micro-grid management and 

control, especially when using MPC approaches [15], [152]. The MPC-based optimization approach has, 

over time, drawn the power system network's consideration attributable to a few focal points over the 

Metaheuristic and Heuristic control techniques. One of the advantages of the MPC-based control scheme 

over other control schemes is that it focuses on the future behavior and predictions of the system and is 

therefore extremely appealing to systems that are inherently dependent on forecasting energy demand and 

the production of renewable energy, and offers a feedback mechanism that makes the system more sensitive 

to uncertainty and disturbance [1]. Moreover, this control strategy can address complex system constraints, 

integrate generation and demand projections, and finally, manage physical and operational constraints such 

as storage capacity or generator slew-rate power limits [31]. A model predictive control (MPC) approach 

has been utilized in several works on the micro-grid scheduling problem [153], [154]. The performance of 

deterministic and stochastic MPC in micro-grids' economic scheduling has been presented in refs [155], 

[156]. Zhang et al. [157] proposed a model predictive control (MPC)-based home energy management 

system for residential micro-grids in which all related information, such as the time-varying information of 

the load demand, electricity price, and renewable energy generations, are all taken into account. More so, 

ref [158] presented the control of a hydrogen-based domestic micro-grid by an MPC-based structure. 

Different works also allude to optimal generation for renewable micro-grids considering hybrid storage 

systems [94], [159]. Ref [160] gave an overview of the main developments in the area of stochastic model 

predictive control (SMPC) and further provided the various SMPC algorithms and the key theoretical 

challenges in stochastic predictive control without undue mathematical complexity. Ref [161] developed 

MPC algorithms for optimal control of distributed energy resources with a battery storage system. Ref [97] 

demonstrates how the MPC controller in hybrid storage systems tends to be a viable solution. MPC was 

also used to manage micro-networks connected to charging stations for electric vehicles [162]. Several 

other papers have applied the MPC controller with satisfactory results in the hybridization of ESSs. The 

MPC controller was used in the Vahidi and Greenwell studies [97], Del Real et al. [163], and Valverde et 
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al. [164]. More so, Arce et al. [104] and Bordons et al. [105] have similar technologies developed in fuel 

cell and battery hybridization. A careful review of the previous studies shows that, despite the use of MPCs 

in energy systems and industries [5], the consideration of measurable disturbance as well as an appropriate 

control technique, which is of great importance in addressing all the prevailing uncertainties of micro-grid 

operation, has not been extensively discussed. The thesis outlines a technique for considering the prediction 

of disturbances in the EMS while using the adaptive model predictive control (AMPC) technique. This 

thesis's work shows how AMPC can incorporate disturbance information to predict its effect and boost the 

performance of micro-grids [17]. 

2.8   Simulation Software and Tools used to Solve Micro-grid Energy Management Problem 

The optimization algorithms used to solve the energy management problem in a micro-grid can be 

efficiently tested and implemented using software platforms dedicated to the modeling and simulation of 

the distribution systems in the presence of controllable devices, such as DGS, ESS, and controllable loads. 

Open-source software for static time series simulations, such as GridLAB-D [165] and OpenDSS [166], are 

flexible and power tools that can be used to test and analyze the performance of the energy management 

before its implementation into a real microgrid. The collection of simulation software and tools used to 

solve the micro-grid energy management problems are stipulated in Table 2-8. 

Table 2-8: Simulation software and tools used to address micro-grid EM problems 

Tools Features Ref. 

MATLAB/Simulink 

MATPOWER 

Engineers use the matrix-based programming language in power 

systems, telecommunications, power electronics, and control. 

Compatible with other programming languages such as Fortran, Java, 

and C++. 

[167], 

[168] 

CPLEX (IBM, 

Armonk, NY, USA) 

CPLEX is optimization software that is compatible with Java, C++, 

Python, and C languages. 

[169], 

[170] 

PSCAD/EMTDC Simulation software for power systems, HVDC, FACTS, power 

electronics, and control systems. 

[171] 

HOMER Simulation software for modeling hybrid systems of energy 

generation. 

[122, 

172]
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GAMS (GAMS 

Development Corp., 

Fairfax, VA, USA) 

GAMS is a high-level language for mathematical optimization of 

mixed-integer linear and nonlinear systems. 

[122], 

[173] 

Dig SILENT Power 

Factory 

The software is used for standard power system analysis and for 

handling wind power and distributed generation design 

[174] 

RSCAD (RTDS 

Technologies Inc., 

Winnipeg, MA, 

Canada) 

RSCAD is a real-time simulator for power systems 

 

[175] 

 

2.9   Demand Response Techniques for Micro-grid Energy Management System 

Demand-side management (DSM) is an essential feature in electrical networks that helps consumers to 

make decisions on their energy usage while also assisting operators in reducing peak load demand and 

reshaping the load profile. It consists of measures introduced by power utilities to regulate electricity use 

at the consumer level and are used to allow optimal use of the existing energy without the need for additional 

facilities [20]. The adoption of the DSM technique has a range of advantages, including improved system 

performance, reduced overall operational costs, supply protection, and decreased environmental effects. In 

the DSM context, demand response (DR) refers to consumers' actions using information (mainly prices) to 

adjust their loads. This type of scheme can be used to avoid unwanted peaks in the demand curve that arise 

at certain times throughout the day, culminating in a more beneficial rearrangement, in addition to saving 

money on energy bills [4], [20]. The primary aim of the DR strategies mentioned in the literature is to lower 

system peak load demand and running costs. Numerous research works have used DR techniques to address 

microgrid EM problems. Chen et al. [176] developed a scenario-based stochastic optimization approach to 

evaluate real-time price-based DR management of residential appliances, which can be embedded into 

smart meters, considering time-varying electricity price uncertainties. In [177], genetic algorithms are used 

for load shifting. Based on the kind of loads used in the research work, the authors modeled the 

inconvenience caused to the customer as a polynomial function of the shifting time. The process is aimed 

at minimizing the combination of generation cost and the inconvenience caused to the customer. 

Logenthiran et al. [20] presented a DSM technique based on load shifting technique for smart grids with 

many devices of various types. The day-ahead load shifting technique proposed by the authors is 

mathematically formulated as a minimization problem and solved with a heuristic-based evolutionary 

algorithm. Parisio et al. [1] formulated and solved the overall optimization problem using mixed-integer 
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linear programming (MILP) solver embedded in MPC. The authors integrated load curtailment into the 

mixed logical dynamical framework. 

2.10 Micro-grid Energy Management System with Electric Vehicles Integration 

The development of an energy management system for managing the use of electric vehicle batteries is a 

core area of research. Vehicle-to-grid (V2G) systems use the batteries in electric vehicles to store energy 

for an electrical network when they are not in use. Therefore, it is reported that a vehicle is only in motion 

for 4% of the time [23], leaving the majority of the time for it to function as an electrical energy storage 

facility. Furthermore, in regular operation, the batteries are recharged overnight (during times of low 

electricity demand) and parked in the workplace during high electricity demand, allowing the generated 

energy to be used to satisfy peak demand. The incorporation of V2G networks can be a crucial component 

of microgrid reliability, ensuring that demand and generation variations are mitigated. Hence, recent studies 

in the literature have based their research on optimizing the interaction between EVs and the grid [105], 

[5]. Wang et al. [178] formulated a stochastic optimization strategy capable of handling uncertain outputs 

of EVs and renewable generation. Mou et al. [179] addressed DSM for EVs by formulating the problem as 

convex optimization, proposing a solution by means of a decentralized algorithm. The authors also used a 

moving horizon approach to handle the random arrival of EVs and the inaccuracy of the forecast of non-

EV load through the use of a distribution grid capacity market scheme. Mohsenian-Rad H et al. [180] 

proposed a closed-form solution that would allow optimal time-shifting loads with uncertain deadlines, 

with an emphasis on charging EVs with unpredictable departure times. The use of a game theoretical 

analysis was used to examine the market rivalry among electric vehicle charging stations in [181]. In the 

micro-grid designed by Tushar et al. [182], an electric vehicle is used as the power storage unit without a 

control procedure to handle the benefit of the microgrid in the case of energy exchange with an external 

agent. MPC was also used to manage micro-networks connected to charging stations for electric vehicles 

[183]. More so, in [184], the problem is solved by real-time optimization algorithms, whereas in [185], an 

MPC-based algorithm is presented. A multiple MPC strategy for bidirectional charging/discharging of 

plug-in hybrid electric vehicles are developed in [186] by regulating the batteries' SOC to control microgrid 

frequency stabilization. References [18] and [187] are examples of applying the interaction of microgrids 

with external agents. 

2.11 Load Frequency Control of a Stand-Alone Micro-grid 

Load frequency control (LFC) problem of a multi-area interconnected power system with a stand-alone 

micro-grid is more challenging as the penetration level of renewable distribution generations with the major 

issues of variability and uncertainty continue to increase [26]. Therefore, to ensure stand-alone micro-grid 
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stability, the frequency controller should be appropriately designed with due importance. Frequency and 

voltage regulation within specified nominal values in autonomous micro-grid operation is essential for 

reliable system operation and has received sufficient considerations. The battery energy storage system 

(BESS) used in the stand-alone micro-grid system with secondary frequency control function is to enhance 

the frequency control performance. Therefore, to study the system dynamics under various system 

disturbances, various control strategies in the area of LFC in isolated micro-grids have been reported in the 

literature to date. Hence, such methods range from the classical droop controls to various advanced control 

schemes that contribute to the secondary load frequency control of both conventional and distributed power 

generation systems [25]. Thus, the application of such control schemes examines various aspects of 

secondary load frequency control in micro-grid [188]. A fuzzy-based proportional-integral-derivative 

controllers (PID) controller mainly for coordinating the aqua electrolyser and fuel cell to control the micro-

grid's power variation was proposed in ref [189]. Ref [188] proposes a hierarchical droop control method 

for the load frequency control of micro-grid. In addition, advanced control schemes based on recent LFC 

techniques, some of which are robust control theories [190], model predictive control (MPC) [189], sliding 

mode control (SMC) [191], internal mode control (IMC) [192] and neural network control (NNC) [193] 

have been given more considerations. It is worth noting that there are distinctive evolutionary algorithm-

based proportional-integral (PI) and PID control techniques to solve multi-area power systems LFC 

problem [194]. Therefore, some examples of the evolutionary algorithms are differential evolution [195], 

firefly algorithm [196], genetic algorithm [197], hybrid-particle swarm optimization [198], and multi-

objective optimization using weighted sum artificial bee colony algorithm [199] to tune the PID for the 

LFC problem. Recent studies did not consider physical constraints such as the DB for governor, TD at the 

unit control outputs, and GRC for steam turbines [200], [201]. Su et al. [202] and Han et al. [203] have 

proposed robust frequency control techniques taking into account the uncertainties of micro-grid system to 

enhance both micro-grid system robustness and its nominal performance. Hence, it is worthy of notice that 

MPC had recently been widely embraced due to simple and fast implementation. As a result, MPC is proven 

to be effective indigenously, due to its modeling flexibility, which involves a straightforward design 

procedure, acceptable computational time, and ease in the process-industry constraint handling. MPC also 

has several noteworthy points of interest, such as rapid response and stronger robustness against load 

disturbance and uncertainty in the parameters. One prominent feature of the MPC, is prediction of future 

behavior of desired control variables based on minimizing a cost function over a predefined horizon [10]. 

Besides, this has been a fascinating control system for LFC of power systems which can compute optimal 

control actions within realistic limits by simply performing an optimization procedure. Moreover, physical 

constraints, such as DB, TD, and GRC significantly impact the control performance of the conventional 

MPC algorithm [204]. As such, a more robust control scheme is needed to eliminate this drawback [205]. 
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Besides, most of the MPCs used in load frequency control in literature are transformed from centralized to 

distributed/decentralized MPCs. However, just a few have presented enthusiasm in examining MPC 

adaptability improvements [206]. Nonetheless, little had been done recently concerning the application of 

the AMPC controller for optimal LFC problem of multi-area power system with renewable energy sources 

and practical constraints that adversely affect power system performance. The above analysis motivated the 

proposal for an AMPC technique for the load frequency control of a multi-area interconnected power 

system with renewable energy sources coupled with the addition of UPFC along both the AC tie line and 

the AC-DC tie line for optimal system performance. 

2.12 Chapter Summary 

This chapter presented a comprehensive state-of-the-art overview of energy management in microgrid 

systems with renewable energy generations. Hence, various control approaches for effectively operating 

the micro-grid systems, such as centralized, decentralized, and hierarchical management structures, were 

also reviewed. A concise overview of control and optimization methods was presented to define the most 

common and efficient EM approach in micro-grid systems. A compendium of optimization techniques, 

solution approaches, objectives, constraints, tools, and algorithms used to solve energy management 

problems in microgrids in various literature was discussed in detail. Furthermore, energy storage systems 

are considered an appealing choice for handling fluctuating renewable energy production trends due to 

improved technology sophistication, energy density, and the potential to deliver grid services, such as 

frequency response. Hence, a study on the key energy storage systems, which is one way to solve the energy 

imbalance issue due to the high penetration of RERs, is then provided. An overview of the key concepts of 

demand side management (DSM) and demand response technique (DRT) for energy management in 

microgrid systems was also presented. More so, a recent survey on the integration of EVs in microgrids, 

which is presently a core area of research, was summarized. A thorough review of the recent studies on the 

system dynamics under various system disturbances, various control strategies, and techniques in the area 

of LFC in isolated micro-grids has been presented in detail. Several works that adopted various control 

methods to solve the LFC problem in micro-grids have been reviewed. A Careful review of previous studies 

reveals that, despite the use of other conventional control techniques and MPCs in energy systems and 

industries, consideration of measurable disturbances as well as an effective control strategy, which is of 

great significance in resolving all the prevalent complexities of micro-grid operation, has not been 

thoroughly addressed. Despite the advantages of MPC over traditional control techniques and its extensive 

usage for most of the control aspects of micro-grid in the industrial community, some drawbacks require 

urgent attention as far as control performance is concerned. It is worth noticing that the conventional MPC 

controller is not accurate in handling varying dynamics since the internal plant model used in MPC for 
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prediction is constant. The optimum outcome could not be achieved by an MPC-based energy management 

system with the constant penalty weights when taking into account micro-grid complexities; meanwhile, 

the mechanism would be closed in certain outrageous circumstances. Thus, adapting the weights as 

indicated by the ESS state will increase the robustness of the system. The above analysis motivated the 

proposal for an AMPC technique, which takes the updated plant model at each time step for the current 

operating condition; thus, it makes accurate predictions for the new operating condition. Hence, in order to 

deal with changes in plant dynamics, the AMPC controller is utilized. The adaptive model predictive 

controller requires a discrete plant model for its control actions, which results in excellent controller 

performance. Thus, in terms of excellent tracking and regulating control performance, AMPC is superior 

to the MPC controller running in the non-adaptive mode. 
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CHAPTER THREE 

MATHEMATICAL MODELING AND METHODOLOGY 

3.1   Introduction 

 This chapter presents the various methods and approaches adopted in this research work. This chapter is 

in two folds; the first aspect discusses the mathematical modeling of the dynamic behavior of a renewable 

energy-based micro-grid, which is a significant concept in control engineering and, most notably, in the 

adaptive model predictive control scheme. A detailed derivation of a mathematical thermo-electrical model 

is first described, considering the wavelength-specific effects, which enhance the predictions of temperature 

and module performance. Subsequently, the development of the mathematical models of the renewable 

generation technologies (Photovoltaic system or Wind turbine generation) and energy storage system 

(Batteries and hydrogen-based systems) with high penetration in micro-grids are discussed in details. The 

state-space equations are formulated from the dynamic characteristics of the power and frequency changes 

in the two-area renewable energy-based micro-grid [17]. The concepts of mathematical modeling of the 

micro-grid system are very imperative for the design of the proposed controller (AMPC). The second part 

describes the research methodology used to solve different control and energy management issues in the 

micro-grid system of the subsequent chapters. Hence, this thesis proposed an adaptive model-based horizon 

control technique in the bid to addressing issues related to the control and energy management systems 

(EMS) in micro-grid operations. Although several techniques can be used for micro-grid control, however, 

AMPC offers a general framework to solve most of the problems in an integrated manner using some 

common ideas. The offline computation of control law is substituted with an online solution of an optimal 

control problem that accounts for the existing control action by the AMPC scheme [4]. This proposed 

algorithm is used to solve a constrained dynamic optimal control problem by repeated online optimization 

of the open-loop problem instead of the sophisticated offline computation of control law. The MPC offers 

an excellent approach to optimal control of systems subject to constraints, which justifies the reason why 

AMPC is referred to as an advanced control strategy with the most remarkable acceptance in the industry. 

Hence, the AMPC technique has some fantastic features that make it a suitable methodology for the micro-

grid system used in the subsequent chapters. In addition to its logical formulation, the approach is simple 

to comprehend and can include constraints and nonlinearities and handle multivariate and distributed 

scenarios [26]. Therefore, in order to satisfy the objectives and answer the research questions stated in 

chapter 1 of this thesis, the AMPC algorithm is used to solve the EMS-based optimization problem in the 

micro-grid system in subsequent chapters. Hence, it is expedient to describe in details the fundamentals, 

ideas, and formulations of the AMPC technique, since it will be extensively used to solve the control and 
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EMS problems in the micro-grid system throughout this thesis. MATLAB/Simulink environment is the 

simulation tool used to model the system dynamics of the renewable energy-based micro-grids used 

throughout this thesis. 

3.2   Derivation of the Wavelength-Based Thermo-Electrical Model of PV Module 

This section describes the derivation of the mathematical model of the wavelength-based thermo-electrical 

model of the PV module used in chapter 4 of this thesis. The purpose of the model is to accurately predict 

the impact of each module wavelength on the temperature and output power of the PV module. The 

temperature of the PV module depends on the incident radiant power density, the electrical power output, 

the thermal properties of the module materials, and the heat transfer exchange with the surroundings. More 

so, the rate of change in the temperature of a PV module is a function of the incident light, which is said to 

be longwave radiation 𝑄𝑙𝑤, shortwave radiation 𝑄𝑠𝑤, output power 𝑃𝑜𝑢𝑡 and heat convection to the 

surroundings 𝑄𝑐𝑜𝑛𝑣. The rate of change in the PV module temperature admits expression as [207]: 

∆𝐶𝑚𝑜𝑑𝑢𝑙𝑒
𝑑𝑇𝑚

𝑑𝑡
= 𝑄𝑠𝑤 − 𝑄𝑙𝑤 − 𝑄𝑐𝑜𝑛𝑣 − 𝑃𝑜𝑢𝑡                                                                                            (3-1) 

The descriptions of all the symbols used are stipulated in the appendix section. The detailed derivations and 

discussions of these components are in ref [208]. 

3.2.1 Shortwave Radiation 

The input power to the PV module through its front surface is known as shortwave radiation. The input 

power to the module is simply a function of the power density of the solar irradiance that is absorbed in the 

layers of the PV module. The detailed explanation of this component is in ref [207]. The shortwave radiation 

is expressed as [13], [207]: 

𝑄𝑠𝑤 = (∫ 𝛼𝑠1(𝜆)𝐹𝑟𝑟(𝜆)𝑑𝜆
𝜆2

𝜆1
) (𝑀𝐴𝑗) + (∫ 𝛼𝑠2(𝜆)𝐹𝑟𝑟(𝜆)𝑑𝜆

𝜆2

𝜆1
) (𝐴 − 𝑀𝐴𝑗)                                           (3-2) 

3.2.2 Longwave Radiation 

The heat exchange between the ground, the sky, and the PV module admits expression as [209]: 

𝑄𝑙𝑤 = −𝜎𝐴(
1+cos(𝛽𝑠𝑢𝑟𝑓𝑎𝑐𝑒)

2
휀𝑠𝑘𝑦𝑇𝑠𝑘𝑦

4 +
1−cos(𝛽𝑠𝑢𝑟𝑓𝑎𝑐𝑒)

2
휀𝑔𝑟𝑑𝑇𝑔𝑟𝑑

4 − 휀𝑚𝑇𝑚
4)                                            (3-3) 

The temperature of the ground is presumed to be equal to the ambient temperature due to the testing position 

close to the ground. Meanwhile, the tilt angle 𝛽𝑠𝑢𝑟𝑓𝑎𝑐𝑒 is measured, the sky temperature 𝑇𝑠𝑘𝑦 is different 

for various sky conditions. Similarly, for a clear sky condition, the sky temperature admits expression as 

[209]: 
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𝑇𝑠𝑘𝑦 = 𝑇𝑎𝑚𝑏 − ∆𝑇                                                                                                                                     (3-4) 

Where ∆𝑇 is constant and equals 20 K. Moreover, for overcast conditions, the sky temperature is the same 

as the ambient temperature [209].  

3.2.3 Convection Heat Transfer 

The heat convection that occurs between the PV module and the air is expressed as [209]: 

𝑄𝑐𝑜𝑛𝑣 = ℎ𝑐𝐴(𝑇𝑚 − 𝑇𝑎𝑚𝑏)                                                                                                                         (3-5) 

Hence, the coefficients of force and free convective heat transfer are used in calculating the coefficient of 

heat convection, which is expressed as [210]: 

ℎ𝑐 = √ℎ𝑐,𝑓𝑟𝑒𝑒
3 + (ℎ𝑐,𝑓𝑜𝑟𝑐𝑒𝑑(𝑊𝑆))33

                                                                                                         (3-6) 

A comprehensive explanation of the computation of the convection coefficient, 𝐴, can be seen in refs [209] 

and [207]. Therefore, the coefficient of free heat transfer ℎ𝑐,𝑓𝑟𝑒𝑒 of the PV is expressed as: 

ℎ𝑐,𝑓𝑟𝑒𝑒 = 𝜖(𝑇𝑚 − 𝑇𝑎𝑚𝑏)
1

3⁄                                                                                                                        (3-7) 

The wind speed is a significant factor that is required when estimating the value of the coefficient of forced 

heat transfer ℎ𝑐,𝑓𝑜𝑟𝑐𝑒𝑑. Reference [211] presents the linear relation to compute ℎ𝑐,𝑓𝑜𝑟𝑐𝑒𝑑 using the wind 

speed. It is observed in this study that utilizing a constant value of ℎ𝑐,𝑓𝑜𝑟𝑐𝑒𝑑 over a specific time yields a 

large error, as a result, a formula is proposed to compute the value of ℎ𝑐,𝑓𝑜𝑟𝑐𝑒𝑑 that put into consideration 

the dynamic changes of the wind speeds. The expression for computing the value of this parameter is [211]: 

ℎ𝑐,𝑓𝑜𝑟𝑐𝑒𝑑 = 3.3 (
𝐽

𝑚3𝐾
)𝑊𝑆 + 6.5 (

𝑊

𝑚2𝐾
)                                                                                                   (3-8) 

Equation (3-8) is required to predict the values of ℎ𝑐,𝑓𝑜𝑟𝑐𝑒𝑑 accurately. 

3.2.4 Output Power 

The temperature of a PV cell immensely influences its output power. The relation between the electrical 

and thermal aspects of the PV cell is mainly interactive. The 𝑀 series-connected PV cells in relation to its 

output power admit expression as [14]: 

𝑃𝑜𝑢𝑡 = 𝑀𝑉𝐼                                                                                                                                               (3-9) 

This study utilized a two-diode equivalent-circuit model for an excellent PV cell performance [14]. The PV 

cell output current and the terminal voltage are related by the mathematical formulation, which admits 

expression as [14]: 
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𝐼 = 𝐼𝑝ℎ − 𝐼𝑂1 [𝑒𝑥𝑝 (
𝑉+𝐼𝑅𝑠

𝑛𝐾𝑇𝑚
) − 1] − 𝐼𝑂2 [𝑒𝑥𝑝 (

𝑉+𝐼𝑅𝑠

𝑛𝐾𝑇𝑚
) − 1] −

𝑉+𝐼𝑅𝑠

𝑅𝑝
                                                        (3-10) 

Therefore, in order for the last term of Equation (3-10) to be negligibly small, the shunt resistance 𝑅𝑝 is 

presumed to be sufficiently large. Hence, the solar-induced or photonic current admits expression as: 

𝐼𝑝ℎ = 𝑄𝐴𝑗 ∫ 𝜙𝑟𝑟(𝜆)𝛼𝑐(𝜆)𝐼𝑄𝐸(𝜆)
𝜆2

𝜆1
𝑑𝜆                                                                                                   (3-11) 

The photon energy admits expression as [14]: 

𝐸(𝜆) =
ℎ𝑐

𝜆
                                                                                                                                                 (3-12) 

Furthermore, utilizing the irradiance at each wavelength and Equation (3-12), the photons number that 

travels in a similar wavelength is expressed as [209]: 

𝜙𝑟𝑟(𝜆) =
𝐹𝑟𝑟(𝜆)

𝐸(𝜆)
                                                                                                                                        (3-13) 

The absorption coefficient, 𝛼𝑐 determines the fraction of the photonic flux that the material of the PV cell 

absorbs per each wavelength. The internal quantum efficiency (IQE) is a property of the PV cell 

construction. A model is required to compute the reverse saturation current, which changes dramatically 

with the temperature of the PV cell. Therefore, it is expressed as [209]:  

𝐼0 = 𝐼0𝑟(
𝑇𝑚

𝑇𝑟
⁄ )3𝑒𝑥𝑝 [𝑄𝐸𝑔 (1 𝑇𝑟

⁄ − 1
𝑇𝑚

⁄ )/(𝐾𝑛)]                                                                                (3-14) 

Therefore, the determination of this reference saturation current 𝐼0𝑟 is frequently at the reference 

temperature 𝑇𝑟. Similarly, the short circuit current 𝐼𝑠𝑐 and the open-circuit voltage 𝑉𝑜𝑐 ought to be measured 

at the reference temperature. Hence, the reference saturation current 𝐼0𝑟 admits expression as [209]: 

𝐼0𝑟 =
𝐼𝑠𝑐

[𝑒𝑥𝑝(𝑄𝑉𝑜𝑐/(𝑀𝐾𝑛𝑇𝑟)) − 1]⁄                                                                                                     (3-15) 

Furthermore, in order to track the maximum power point, Equation (3-10) is solved mathematically for the 

current that produces the maximum output power to compute the maximum output power of the PV cells. 

On the other hand, we can use empirical relations to compute the maximum output power. Therefore, the 

maximum output power is estimated with the following expression [14]: 

𝑃𝑚𝑎𝑥 = 𝐹𝑓𝑎𝑐𝑡𝑜𝑟𝑉𝑜𝑐𝐼𝑠𝑐                                                                                                                               (3-16) 

However, it is presumed that the impact of the series resistance on the short-circuit current is negligibly 

small, that is, 𝐼𝑠𝑐 ≈ 𝐼𝑝ℎ. Consequently, the open-circuit voltage admits expression as [14]: 

𝑉𝑜𝑐 =
𝑛𝐾𝑇𝑚

𝑄
ln (

𝐼𝑝ℎ

𝐼0
+ 1)                                                                                                                           (3-17) 
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It is evident from Equation (3-17), due to the changes in the open-circuit voltage, the fill factor likewise 

depends on temperature. The empirical formula commonly used to estimate the fill factor is [14]: 

 𝐹𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑉𝑛−ln(𝑉𝑛+0.72)

𝑉𝑛+1
                                                                                                                          (3-18) 

Where 𝑉𝑛 is the normalized open-circuit voltage, which is expressed as [14]: 

𝑉𝑛 =
𝑄

𝑛𝐾𝑇𝑚
𝑉𝑜𝑐                                                                                                                                           (3-19) 

3.2.5 Heat Capacity 

The summation of the heat capacities of each layer of the PV module is the module's heat capacity. 

Therefore, the capacity of the module for individual component made of some material, signified by 𝑚 is 

expressed as: 

𝐶𝑚𝑜𝑑𝑢𝑙𝑒 = ∑𝐶𝑚𝜌𝑚𝐴𝑚𝑑𝑚                                                                                                                       (3-20) 

3.2.6 Integration of the Thermo-Electrical Model of PV Module 

The integration of the thermo-electrical model of the PV module is implemented by substituting Equations 

(3-2) - (3-5), and (3-20) into Equation (3-1). The general expression for the rate of change in the module 

temperature for the model under study is [208]: 

∆𝐶𝑚𝑜𝑑𝑢𝑙𝑒 = ((∫ 𝛼𝑠1(𝜆)𝐹𝑟𝑟(𝜆)𝑑𝜆
𝜆2

𝜆1
) (𝑀𝐴𝑗) + (∫ 𝛼𝑠2(𝜆)𝐹𝑟𝑟(𝜆)𝑑𝜆

𝜆2

𝜆1
) (𝐴 − 𝑀𝐴𝑗) ) −

𝜎𝐴 (
1+cos(𝛽𝑠𝑢𝑟𝑓𝑎𝑐𝑒)

2
휀𝑠𝑘𝑦𝑇𝑠𝑘𝑦

4 +
1−cos(𝛽𝑠𝑢𝑟𝑓𝑎𝑐𝑒)

2
휀𝑔𝑟𝑑𝑇𝑔𝑟𝑑

4 − 휀𝑚𝑇𝑚
4) − (√ℎ𝑐,𝑓𝑟𝑒𝑒

3 + ℎ𝑐,𝑓𝑜𝑟𝑐𝑒𝑑
33

)𝐴(𝑇𝑚 −

𝑇𝑎𝑚𝑏) − 𝑀𝑉𝐼                                                                                                                                           (3-21) 

Thus, this model under study is a nonlinear model, which requires numerical analysis to be estimated. For 

instance, in order to compute the module temperature at every time step, the Euler method is utilized, which 

is expressed as follows [208]: 

𝑇𝑚(𝑡 + 𝑡𝑠𝑡𝑒𝑝) = 𝑇𝑚(𝑡) + 𝑡𝑠𝑡𝑒𝑝
𝑑𝑇𝑚

𝑑𝑡
                                                                                                         (3-22) 

3.2.7 Generation of Controller Reference 

The maximum output power signal is a function of the PV module temperature and the ambient temperature, 

as shown in Equation (3-21). Consequently, in order to obtain optimal output power at a given ambient 

temperature, the PV module temperature is used as the control signal. Hence, the block diagram for the 

plant model, controller, and reference generator is depicted in Figure 3-1 [212]. 
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Figure 3-1: Block representation of the plant, controller, and reference generator 

3.3   System Model Development of the Stand-alone Micro-grid 

This section further explains the development of the system model of the stand-alone micro-grid system 

used in chapter 4 of this thesis. Hence, chapter 4 of this thesis is set to investigate an optimal control strategy 

that will efficiently manage a stand-alone residential micro-grid comprising renewable and non-renewable 

energy sources. The PV module described in the previous section is used as the renewable energy source 

of the stand-alone micro-grid investigated in this section. The variations in power output due to solar 

geometry, temperature changes, efficiency changes, etc. are neglected and assumed to be captured by the 

output power profile. This is a valid assumption for the purposes of hourly scheduling of power delivery 

by the AMPC controller as the solar system often contains energy storage units that can buffer energy. Such 

a buffering allows for minor deviations due to photovoltaic cell output, while major deviations can be 

readjusted in the power profile provided to the supervisory controller on a timely basis. The power output 

of the solar system is considered as 𝑃𝑠𝑜𝑙𝑎𝑟(𝑡). 

3.3.1 Diesel Generator 

The first-order lag equation used to describe the dynamics of the diesel engine is taken from ref [213]. Since 

the dynamics of the generation system attached to the diesel engine is faster than the diesel engine, hence, 

the overall power dynamics can be assumed mostly dependent on the dynamics of the diesel engine. Hence, 

Equation (3-23) sufficiently describes the power output dynamics of the diesel generator at a supervisory 

level. The AMPC controller provides a power output command to the Diesel Generator. A local controller 

capable of following this commanded output is assumed and provides the required control inputs to meet 

the commanded power output. 

 �̇�𝑑 = −
1

𝜏𝑑
𝑃𝑑 +

𝑈𝑑

𝜏𝑑
                         (3-23) 
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3.3.2 Storage System Power 

The power dynamics of the storage system are modeled using first-order lag dynamics represented by 

Equation (3-24). The equation represents the lag between the power command and the power delivery and 

is modeled after the power dynamics equation presented in ref [214]. This modeling approach was 

considered sufficient at the supervisory level. Detailed dynamics of the storage system and its power 

delivery can be considered in a local-level controller. 

�̇�𝑠𝑠 = −
1

𝜏𝑠𝑠
𝑃𝑠𝑠 +

𝑈𝑠𝑠

𝜏𝑠𝑠
                         (3-24) 

Where, 𝜏𝑠𝑠 is the average delay incurred between power command and delivery in sec, and 𝑈𝑠𝑠 is the power 

command by the AMPC controller in kW. 

3.3.3 Storage System 

The capacity of the storage system considered is 80 kWh. The storage type considered is for a battery bank; 

meanwhile, this can be substituted for any storage system. The battery model is obtained from ref [215], 

where a self-charge is also considered. The State of Charge (SOC) of the battery is the ratio of the residential 

energy to the total energy of the battery. It is very imperative to know the SOC of the battery for accurate 

control of the micro-grid. The equation for the charging dynamics of the storage system is given as: 

 �̇�𝑠𝑠 = −𝛿𝑠𝑠𝐸𝑠𝑠 −
𝑃𝑠𝑠𝜂𝑐ℎ𝑟𝑔

𝐸𝑠𝑠
𝑚𝑎𝑥                          (3-25) 

Where, 𝐸𝑠𝑠 is the current SOC, which is the representative of the energy content in the battery, 𝑃𝑠𝑠 is the 

power entering the battery in kW, 𝜂𝑐ℎ𝑟𝑔 is the charging efficiency of the battery and 𝐸𝑠𝑠
𝑚𝑎𝑥 is the maximum 

storage capacity of the battery in kWh. More so, the equation for the discharge dynamics of the storage 

system is given as: 

 �̇�𝑠𝑠 = −𝛿𝑠𝑠𝐸𝑠𝑠 −
𝑃𝑠𝑠

𝐸𝑠𝑠
𝑚𝑎𝑥𝜂𝑑𝑖𝑠

            (3-26) 

Where, 𝜂𝑑𝑖𝑠 is the discharging efficiency of the battery. 

3.3.4 Description of the Control Scheme 

The AMPC technique used to solve an optimal power reference-tracking problem, where the consumption 

of energy from the diesel generator is minimized while maximizing the efficiency of the storage bank in 

chapter 4, is depicted in Figure 3-6. The AMPC controller provides control commands to the various 

components on the electric grid. The main objective is to make maximum use of the renewable power 

source, i.e., the solar system, while using the least amount of power from the diesel generator. The AMPC 

controller does not directly control the operation of the solar system but allows for the maximization of 
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solar power usage by tracking a reduced power profile. The state information fed back to the controller 

consists of information on the power delivery by the DG, storage system, and its current energy level along 

with power output by the solar system. The controller used a technique that solves the micro-grid system 

as a continuous system given a time horizon and selects piece-wise optimal mode sequences and control 

inputs. The controller then sends the power commands U to the respective systems on the power grid. The 

current state information is then returned from the systems back to the controller to reduce the accumulation 

of modeling errors, and the controller increments its prediction horizon. This process is repeated iteratively 

for each partition during the prediction horizon. 

 

Figure 3-2: Implementation of the AMPC scheme 

3.3.5 Formulations of the AMPC Optimization Problem 

This section describes the formulation and implementation of the adaptive model predictive control on the 

stand-alone micro-grid system, where a convex analysis is enforced on the mode switching, to guarantee 

autonomy and best performance from the controller and the optimization algorithm. The assumptions, cost 

function, system dynamics, constraints are discussed below; 

3.3.5.1 Assumptions 

• Generator and storage system charge/discharge efficiencies are assumed constant. 

• Power Transmission Line loss is assumed as part of the reference load profile 

3.3.5.2 System Dynamics 

The state variables, 𝑥, and the control inputs admit expressions as: 

𝑥 = [

𝐸𝑠𝑠

𝑃𝑠𝑠

𝑃𝑑

],  𝑢 = [
𝑈𝑠𝑠

𝑈𝑑
]                         (3-27) 
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Then, the control system is modeled as a continuous linear time-invariant system with three states variables 

and two control inputs as follows:  

�̇� = 𝐴𝜎𝑥 + 𝐵𝑢          𝜎 = 0,1                        (3-28) 

Where each hybrid mode is represented by a different dynamic stated in the matrix A: 

 𝐴𝜎=0 = [
−𝛿𝑠𝑠 −1/(𝜂𝑑𝑖𝑠𝐸𝑠𝑠

𝑚𝑎𝑥) 0
0 −1/𝜏𝑠𝑠 0
0 0 −1/𝜏𝑑

]    𝐴𝜎=1 = [

−𝛿𝑠𝑠 −𝜂𝑐ℎ𝑟𝑔/(𝐸𝑠𝑠
𝑚𝑎𝑥) 0

0 −1/𝜏𝑠𝑠 0
0 0 −1/𝜏𝑑

]    (3-29) 

The inputs are related to the states through 𝐵 matrix, which remains the same regardless of the operation 

mode. 

 𝐵 = [

0 0
1/𝜏𝑠𝑠 0

0 1/𝜏𝑑

]             (3-30) 

3.3.5.3 Cost Function 

The optimization problem is formulated as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑢𝜎=0,𝑢𝜎=1,

𝑣 ∫ 𝑤1𝑃𝑑
2 +

𝑡𝑓

𝑡0
𝑤2(𝐸𝑠𝑠 − 𝐸𝑠𝑠

𝑛𝑜𝑚)2 + 𝑤3 (𝑃𝑑 + 𝑃𝑠𝑠 − 𝑃𝐿𝑜𝑎𝑑
𝑟𝑒𝑓 (𝑡))

2
+ Ψ(𝑥)        (3-31) 

Subject to   �̇� = �̂�𝑥 + 𝐵�̂� 

                   𝑥 ≤ 𝑥 ≤ 𝑥 

Where,       �̂� = 𝑣𝐴𝜎=0 + (1 − 𝑣)𝐴𝜎=1          𝑣 ∈ [0,1] 

                  �̂� = 𝑣𝑢𝜎=0 + (1 − 𝑣)𝑢𝜎=1 

                  Ψ(𝑥) = (𝑥 < 𝑥)(𝑥 − 𝑥)
2
+ (𝑥 > 𝑥)(𝑥 − 𝑥)2 

Where 𝑤𝑥 are tracking weights, 𝑤1 = 5,𝑤2 = 2 𝑎𝑛𝑑 𝑤3 = 40. The optimizer solves this problem as an 

embedded problem where 𝑣 ∈ [0,1]. 

3.3.5.4 State Constraints 

In an attempt to model the system to be able to deliver a realistic power load, it is imperative that the storage 

bank be protected from deep discharge and overcharge. This implies that the net energy in the storage bank 

should be constrained for efficient usage of the battery. Furthermore, the power input/output from the 

battery needs to accommodate the maximum and minimum capacities. The constraints on the diesel 

generator are strictly determined by the model used. Equations (3-28) to (3-32) are used to enforce power 

and energy constraints. 
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 [

𝐸𝑠𝑠
𝑚𝑖𝑛

𝑃𝑠𝑠
𝑚𝑖𝑛

𝑃𝑑
𝑚𝑖𝑛

] ≤ [

𝐸𝑠𝑠

𝑃𝑠𝑠

𝑃𝑑

] ≤ [

𝐸𝑠𝑠
𝑚𝑎𝑥

𝑃𝑠𝑠
𝑚𝑎𝑥

𝑃𝑑
𝑚𝑎𝑥

]                        (3-32a) 

Furthermore, the initial state, initial time, and final time are fixed, while the final state is free. So that: 

 𝐸𝑠𝑠,𝑡0
= 𝐸𝑠𝑠,𝑛𝑜𝑚 

The power balance equation admits expression as: 

 𝑃𝑠𝑜𝑙𝑎𝑟 + 𝑃𝑠𝑠 + 𝑃𝑑 = 𝑃𝑙𝑜𝑎𝑑                                                                                                                     (3-32b) 

The control outputs from the MPC depend on the current mode of operation of the system, 𝑣. These outputs 

are determined by using two different approaches using the embedded value of v provided by the 

optimization algorithm: 

• Logic Projection 

The hybrid mode 𝑣 is computed as a continuous state ranging from [0, 1]. Once a value has been 

assigned, this is projected to either mode 0 or mode 1, satisfying the following logic: 

 𝑖𝑓 𝑣 >  0.5  𝑡ℎ𝑒𝑛 𝑣 =  1 

 𝑒𝑙𝑠𝑒 𝑣 = 0 

• Projection Based on 𝑈𝑠𝑠 

In this case, the sign of the control input 𝑈𝑠𝑠 determines whether the system goes to charging or 

discharging mode. i.e., 

 𝑖𝑓 𝑈𝑠𝑠  >  0  𝑡ℎ𝑒𝑛 𝑣 =  0 

 𝑒𝑙𝑠𝑒 𝑣 = 1 

From either logic, an optimal sequence of control inputs is obtained for the entire time horizon, which 

minimizes the power delivered from the diesel generator while maximizing the efficiency of the storage 

bank. The whole process is repeated for each time window until the total simulation time has been spanned. 

Each iteration produces an optimal control output and optimal hybrid mode, which can then be compiled 

into the optimal sequences, as shown in the simulation results in chapter 4. 

3.4   Dynamic Modeling of the Renewable-based Micro-grid Components 

This section describes the modeling of the dynamic behavior of a renewable energy-based micro-grid used 

in chapters 5-7 of this thesis, which is a significant concept in control engineering and, most notably, in the 

AMPC control scheme. More so, the mathematical models of the renewable generation technologies 

(Photovoltaic or Wind turbine system), and energy storage system (Batteries and hydrogen-based systems) 

with high penetration in micro-grids are discussed elaborately in this section. Note that, since the main idea 

of these models is to build the simplest models that measure up with the objectives, then the model design 
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must be precise and simple enough to prevent computational burden when it is numerically solved. In 

general, the essence of modeling in control engineering is for control design and simulation to analyze the 

system behavior. Furthermore, accurate modeling is a significant step forward for energy management and 

helps the optimization algorithm adapts to exact dispatch decisions [5], [68]. In the AMPC control scheme, 

model design plays a significant role; meanwhile, these models are incorporated into an optimization 

problem, which needs simple formulations. In the following subsections, we modeled each of the micro-

grid components in the proposed network of micro-grids used in chapters 5-7 separately. 

3.4.1 Modeling of the Distributed Energy Resources 

The mathematical models of the DERs (renewable energy-based resources) utilized in the micro-grids of 

chapters 5-7 are described as follows: 

3.4.1.1 Photovoltaic System Modeling 

Photovoltaic (PV) cells are electronic devices that generate electrical energy from solar radiation. 

Therefore, the energy the cells transform depends on the temperature, material properties, and solar 

radiation. This study utilized a two-diode equivalent-circuit model for excellent PV cell performance [14]. 

The mathematical equations, which models the current-voltage behavior of the ideal PV cell, therefore 

admits expressions as [14]: 

𝐼 = 𝐼𝑝ℎ − 𝐼𝐷1 − 𝐼𝐷2 − 𝐼𝑠ℎ                                                                        (3-33)    

𝐼𝐷1 = 𝐼𝑂1 [𝑒𝑥𝑝 (
𝑞𝑉

𝐴1𝑘𝑇
) − 1]                                                               (3-34) 

𝐼𝐷2 = 𝐼𝑂2 [𝑒𝑥𝑝 (
𝑞𝑉

𝐴2𝑘𝑇
) − 1]                                                                      (3-35) 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑂1 [𝑒𝑥𝑝 (
𝑞𝑉

𝐴1𝑘𝑇
) − 1] − 𝐼𝑂2 [𝑒𝑥𝑝 (

𝑞𝑉

𝐴2𝑘𝑇
) − 1] − 𝐼𝑠ℎ                                                               (3-36) 

Equation (3-36) is the fundamental equation of the PV cell model, which does not reflect the functional I-

V characteristics of PV cells. Practical PV module consists of various elements, such as 𝑅𝑠, and 𝑅𝑝, that 

need to be introduced into the above Equation (3-36). The functional output current of the PV cell admits 

expression as [216]: 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑂1 [𝑒𝑥𝑝 (
𝑉+𝐼𝑅𝑠

𝐴1𝑉𝑡
) − 1] − 𝐼𝑂2 [𝑒𝑥𝑝 (

𝑉+𝐼𝑅𝑠

𝐴2𝑉𝑡
) − 1] −

𝑉+𝐼𝑅𝑠

𝑅𝑝
                                                       (3-37)                                                    

Where, 

𝑉𝑡 =
𝑁𝑠𝑘𝑇

𝑞
                                                                                                            (3-38) 
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Where, 𝐼𝑝ℎ is the photo-generated current by a PV cell, 𝐼𝐷1, 𝐼𝐷2 are  the diode currents, 𝐼𝑂1, 𝐼𝑂2 are the 

reverse saturation current of diodes 𝐷1, 𝐷2, in Ampere. 𝑉𝑡 is the thermal voltage, 𝑉 is the cell output voltage, 

𝑁𝑠, 𝑁𝑝 is the number of PV cells connected in series and parallel, 𝑘 is the Boltzmann constant (1.38 ∗ 10−23 

J/K), 𝑞 is the charge on the electron (1.602 ∗ 10−19). 𝐴1, 𝐴2 are the ideality factors of diodes 𝐷1, 𝐷2, 𝑇 is 

the Reference cell-operating temperature, 20℃. The PV cell output current, as defined by equation (3-37), 

is the single PV unit. Hence, in order to achieve the desired voltage and current output level, the PV cells 

are connected in series and parallel. Where the PV modules are composed of parallel-connected 𝑁𝑝cells, 

the output current of the PV module admits expression as [14]: 

𝐼𝑚𝑜𝑑𝑢𝑙𝑒 = 𝐼𝑐𝑒𝑙𝑙 ∗ 𝑁𝑝                                                                                   (3-39) 

The equation for the PV current as a function of temperature and irradiance admits expression as: 

𝐼𝑝ℎ = (𝐼𝑠𝑐 + 𝐾𝑖∆𝑇)
𝐺

𝐺𝑆𝑇𝐶
                                                                                        (3-40) 

Where 𝐼𝑠𝑐 is the short circuit current under standard test conditions (STC), ∆𝑇 = 𝑇 − 𝑇𝑆𝑇𝐶 (In Kelvin, 𝑇𝑆𝑇𝐶= 

25℃) are the actual and nominal temperature, 𝐺 is the surface irradiance of the cell, 𝐺𝑆𝑇𝐶 is the nominal 

Irradiance under STC (1000W/𝑚2, 𝐾𝑖 is the short circuit current coefficient, usually provided by the 

manufacturer. The diode saturation current 𝐼𝑂1 is dependent on temperature and therefore admits expression 

as [14]: 

𝐼𝑂1 = 𝐼𝑂, 𝑛 (
𝑇𝑛

𝑇
)
3
𝑒𝑥𝑝 [

𝑞𝐸𝑔

𝐴1𝑘
(

1

𝑇𝑛
−

1

𝑇
)]                                             (3-41) 

Where 𝐸𝑔 is the band-gap energy of the semi-conductor (𝐸𝑔 = 1.12𝑒𝑉 for the polycrystalline silicon at 

25℃, 𝐼𝑂 , 𝑛 is the standard test condition (STC) nominal saturation current, which admits expression as: 

𝐼𝑂, 𝑛 =
𝐼𝑠𝑐,𝑛

[𝑒𝑥𝑝(
𝑉𝑜𝑐,𝑛
𝑉𝑡,𝑛𝐴

)−1]
                                                                                 (3-42) 

Considering temperature variations, an improved equation to describe the saturation current is obtained 

from Equations (3-41) and (3-42), which admits expression as [217]: 

𝐼𝑂 =
(𝐼𝑠𝑐,𝑛+𝐾𝑖∆𝑇)

𝑒𝑥𝑝[(𝑉𝑜𝑐,𝑛+𝐾𝑣∆𝑇)/𝐴1𝑉𝑡,𝑛]−1
                                                                (3-43) 

Where 𝐾𝑣 is the open-circuit voltage coefficient (value is available on datasheets). More so, a power inverter 

or a DC/DC converter is used to interface the photovoltaic panel with the micro-grid. Maximum Power 

Point Tracking (MPPT) algorithm is used to track the optimal generation point, which works efficiently 

with the power electronics associated with the photovoltaic panel. 
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3.4.1.2 Wind Turbine System Modeling 

Wind energy, which is a sustainable power source, uses the rotor blades to convert the kinetic energy in the 

wind velocity into electrical energy utilizing a technique known as aerodynamic techniques. Wind power 

has many points of interest over the different forms of energy, such as excellent return on investment and 

high-power density. Wind turbines are used to transform wind energy into electric energy. Note that the 

wind energy system converts kinetic energy from the wind into electrical energy. Hence, the kinetic energy 

generated by the dynamic system admits expression as [216]: 

𝐸𝑘 =
1

2
𝑚𝑉2                                                                                                               (3-44) 

Where 𝑚 is the air mass, 𝑉 is the velocity of the wind. Similarly, the mass (m) is given as: 

𝑚 = 𝜌(𝐴𝑑)                                                                                                                                              (3-45) 

Where 𝜌 is the air density in 𝐾𝑔/𝑚3, 𝐴 is the rotor blade swept area in 𝑚2 and 𝑑 is the distance covered 

by the wind in 𝑚. Moreover, according to Betz theory, the wind turbine kinetic energy for time (t), i.e., 

mechanical power (𝑃𝑤), which is captured by the corresponding mechanical torque and wind turbine admit 

expressions as [218]: 

𝑃𝑤 =
𝐸𝑘

𝑡
=

1

2
𝜌𝐴𝑑𝑉2

𝑡
=

1

2
𝜌𝐴𝑑𝑉3 =

1

2
𝜋𝜌𝑅2𝑉3𝐶𝑝                          (3-46)                                  

𝑇𝑚 =
𝑃𝑤

𝜔𝑤
=

1

2
𝜋𝜌𝑅2𝑉3𝐶𝑝

1

𝜔𝑤
                                                       (3-47)                                              

Wind turbine active power depends on the turbine power coefficient or otherwise known as turbine 

efficiency, which represents the turbine conversion efficiency, and it is given by 𝐶𝑝(𝜆, 𝛽)  The power or 

wind energy utilization coefficient of the turbine is a function of tip speed ratio, 𝜆 and pitch angle, 𝛽. 

Thus, the tip speed ratio, 𝜆, is given as the turbine speed to the wind speed ratio, which is given as: 

𝜆 =
𝜔𝑅

𝑉
                                                                                           (3-48)                                                

Where 𝜔 is the turbine angular speed, 𝑅 is the turbine radius. Similarly, the wind turbine stored real power 

and the wind turbine torque expressed by Equations (3-49) and (3-50), respectively, can comprehensively 

be written as utilized in this research work as: 

𝑃𝑤 =
1

2
𝐶𝑝(𝜆, 𝛽)𝜌𝐴𝑑𝑉3                                                               (3-49)                                                                                        

𝑇𝑚 =
1

2
𝐶𝑡(𝜆, 𝛽)𝜌𝐴𝑅𝑉2                                                               (3-50)                                                         

Where the wind turbine torque coefficient is defined as: 

𝐶𝑡(𝜆, 𝛽) = 𝐶𝑝(𝜆, 𝛽)/𝜆                                                                        (3-51)                                                          
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Hence, the most extreme power can be extricated from the turbine just when 𝐶𝑝(𝜆, 𝛽) is 0.48, 𝜆 is 8.1, and 

𝛽 is 0. Therefore, the turbine power coefficient 𝐶𝑝(𝜆, 𝛽), which is a non-linear function, admits expression 

using the generic function [219]: 

𝐶𝑝(𝜆, 𝛽) = 0.0068𝜆 + 0.5176 (
116

𝜆𝑖
− 0.4𝛽 − 5) ℯ

−21

𝜆𝑖              (3-52)                                               

Where, 

1

𝜆𝑖
=

1

𝜆+0.08𝛽
−

0.035

𝛽3+1
                                                                     (3-53)                                                   

Note that if the pitch angle 𝛽=0, then 𝐶𝑝 is a function of the turbine tip speed ratio, 𝜆. Equation (3-52) is 

reduced to: 

𝐶𝑝(𝜆, 𝛽) = 0.0068𝜆 + 0.5176 (
116

𝜆𝑖
− 5) ℯ

−21

𝜆𝑖                            (3-54)                                                 

It is worth mentioning that the wind turbine used in the simulation utilized Equation (3-54) to calculate the 

turbine power coefficient. Similarly, the transmission of energy via the gearbox to the generator is given 

as: 

𝑑𝜔𝑔𝑒𝑛

𝑑𝑡
=

𝑇−𝑇𝑤

𝐽𝑒𝑞
−

𝐵𝑚

𝐽𝑒𝑞
𝜔𝑔𝑒𝑛                                                              (3-55)                                               

Where 𝜔𝑔𝑒𝑛 is the generator angular speed, 𝑇 is the mechanical torque, 𝐵𝑚 is the damping coefficient, 𝑇𝑤 

is the aerodynamic torque and 𝐽𝑒𝑞 is the equivalent rotational inertia of the generator, where [220], [221]: 

𝐽𝑒𝑞 = 𝐽𝑔𝑒𝑛 +
𝐽𝑤

𝑛𝑔
2                                                                           (3-56)                                                                                                   

Where 𝐽𝑤 and 𝐽𝑔𝑒𝑛 are the rotational inertia corresponding to generator and rotor and 𝑛𝑔 is the gear ratio. 

Similar to the photovoltaic case, wind turbines also utilize the MPPT control algorithm for optimal power 

output. 

3.4.2 Modeling of the Distributed Energy Storage System 

ESSs installation in an electrical power network gives the prospect for better economic dispatch 

management of renewable energies. In the meantime, the control scheme must be able to determine which 

ESS to use in real-time, depending on the operating conditions. Similarly, the mathematical models of the 

distributed energy storage systems utilized in the micro-grid architecture of chapters 5-7 are described as 

follows: 
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3.4.2.1 Battery Storage System Modeling 

The Battery Energy Storage System (BESS) is an electrical energy storage device. The two battery types 

utilized in this study are lead-acid and lithium-ion batteries. Therefore, to improve the stability and 

reliability of the micro-grid network, it is appropriate to introduce the Energy Storage Systems, ESS, into 

the micro-grid network. Hence, the ESS discharges its power and supplies the loads in order to meet any 

local shortage in supplying the loads to the customer [68]. It is worth noting that the operation of the micro-

grid EMS is simple if only one ESS is used, such as a battery, i.e., the imbalance between generation and 

demand is absorbed by the battery, given its SOC is between the upper and lower limits. Meanwhile, it is 

expected that power generation will be halted or that excess energy will be sold to the grid (for grid-

connected micro-grids) if the upper limit is reached. Hence, more loads must be disconnected, or the lack 

of energy must be purchased from the grid, should it reach its lower limit. More so, the criterion is mainly 

to utilize the control technique to schedule the appropriate storage system with higher efficiency to balance 

the mismatch between the generation and demand, in the presence of several energy storage systems (such 

as batteries, hydrogen, ultra-capacitors, or flywheels) [222], [223]. The switching rules among various ESSs 

are often-times based on the stored energy. The fuel cell and electrolyser switching during micro-grid 

operation that utilizes batteries and hydrogen as energy buffer are usually based on the SOC level of the 

battery. i.e., the fuel cell is activated as soon as the level of SOC is deficient. Similarly, the electrolyser is 

switched ON, should the battery SOC level be high as per given limits. Therefore, it is expedient to protect 

the battery bank from undercharging (low SOC level) or overcharging (high SOC level). In this case, in 

order to prolong the life span (integrity) of the battery, energy is transferred from the grid by the control 

system. The mathematical model of the battery storage is based on a basic voltage source model and an 

internal resistor. The battery voltage is expressed as a function of the battery power and battery current, 

which is given as [220]: 

𝑉𝑏𝑡 = 𝑉𝑏𝑡,𝑖𝑛𝑡 − 𝑅𝑖𝐼𝑏𝑡                                                                              (3-57)                                                       

 Moreover, charging and discharging of batteries are modeled differently. Thus, when the battery is 

charging: 

𝑉𝑏𝑡,𝑖𝑛𝑡 = 𝑉𝑏𝑡,0 − 𝐾𝑏𝑡
𝐶𝑚𝑎𝑥,𝑏𝑡

𝐶𝑚𝑎𝑥,𝑏𝑡−𝐶𝑏𝑡,𝑡
𝐼𝑏𝑡,𝑐ℎ − 𝐾𝑏𝑡

𝐶𝑚𝑎𝑥,𝑏𝑡(𝛿𝑏𝑡,𝑐ℎ)

𝐶𝑚𝑎𝑥,𝑏𝑡−𝐶𝑏𝑡,𝑡
𝐶𝑏𝑡,𝑡 + 𝐴𝑏𝑡𝑒

−𝐵𝑏𝑡𝐶𝑏𝑡,𝑡                                (3-58) 

Similarly, during the discharging period of the battery, the expression is as follows: 

𝑉𝑏𝑡,𝑖𝑛𝑡 = 𝑉𝑏𝑡,0 − 𝐾𝑏𝑡
𝐶𝑚𝑎𝑥,𝑏𝑡

𝐶𝑚𝑎𝑥,𝑏𝑡−𝐶𝑏𝑡,𝑡
𝐼𝑏𝑡,𝑑𝑖𝑠 − 𝐾𝑏𝑡

𝐶𝑚𝑎𝑥,𝑏𝑡(𝛿𝑏𝑡,𝑑𝑖𝑠)

𝐶𝑏𝑡,𝑡+0.1𝐶𝑚𝑎𝑥,𝑏𝑡
𝐶𝑏𝑡,𝑡 + 𝐴𝑏𝑡𝑒

−𝐵𝑏𝑡𝐶𝑏𝑡,𝑡                              (3-59) 

Where 𝑉𝑏𝑡,0 is the open circuit battery voltage, V, 𝐾𝑏𝑡 is the polarization constant (internal parameter of the 

battery, V), 𝐶𝑚𝑎𝑥,𝑏𝑡 is the maximum capacity (Ah) of the battery, 𝐶𝑏𝑡,𝑡 is the battery current capacity (Ah), 
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𝐼𝑏𝑡,𝑐ℎ and 𝐼𝑏𝑡,𝑑𝑖𝑠 are the charge and discharge currents, respectively. Note that this study assumed the 

𝐶𝑚𝑎𝑥,𝑏𝑡 ≠ 𝐶𝑏𝑡,𝑡, which might result due to aging degradation of the battery. This assumption was necessary 

in order for the value of 𝑉𝑏𝑡,𝑖𝑛𝑡 not to approach ∞ during charging and discharging. Thus, 𝛿𝑏𝑡,𝑐ℎ and 𝛿𝑏𝑡,𝑑𝑖𝑠 

are the binary variables of the charge and discharge state of the battery respectively, 𝐴𝑏𝑡 is the amplitude 

of the exponential zone, V, 𝐵𝑏𝑡 is the inverse of the time constant in the exponential zone (𝐴ℎ−1), 𝑅𝑖 is the 

internal ohmic battery resistor. The battery capacity (Ah) admits expression as [224]: 

𝐶𝑏𝑡,𝑡 = ∫ 𝐼𝑏𝑡,𝑡𝑑𝑡
𝑡

0
                                                                        (3-60) 

Lastly, the battery state of charge (SOC) is related to the battery capacity as follows: 

𝑆𝑂𝐶𝑏𝑡,𝑡 =
𝐶𝑏𝑡,𝑡

𝐶𝑚𝑎𝑥,𝑏𝑡
                                                                        (3-61)                                                                  

Therefore, in order to model the dynamic behavior of the battery storage, the battery State of Charge, 

𝑆𝑂𝐶𝐵𝑆, is taken into account as the state variable. The charging and discharging power are segregated, 

consequent to the disparity in power flow efficiencies between charging and discharging (i.e., 𝜂 =

𝑃𝑜𝑢𝑡/𝑃𝑖𝑛). Hence, the battery storage discrete-time model admits expression as [18]: 

𝑆𝑂𝐶𝐵𝑆(𝑡𝑘+1) = 𝑆𝑂𝐶𝐵𝑆(𝑡𝑘) +
𝜂𝑐ℎ𝑃𝑐ℎ(𝑡𝑘)𝑇𝑠

𝐶𝐵𝑆,𝑟
−

𝑃𝑑𝑖𝑠(𝑡𝑘)𝑇𝑠

𝜂𝑑𝑖𝑠𝐶𝐵𝑆,𝑟
                                       (3-62)                                                            

Where the battery charging and discharging powers are 𝑃𝑐ℎ and 𝑃𝑑𝑖𝑠, respectively, kW, the storage battery 

charging and discharging efficiencies are 𝜂𝑐ℎ and 𝜂𝑑𝑖𝑠, respectively, 90% and the battery storage rated 

capacity is 𝐶𝐵𝑆,𝑟, kWh. 

3.4.2.2 Ultracapacitor Dynamical Modeling 

An ultracapacitor is an electrical component used to store electrical energy. It consists of two metal plates 

separated by a nonconducting dielectric layer. The energy stored in a capacitor admits expression as: 

 𝐸 =
1

2
𝐶𝑈2                          (3-63) 

where C is the capacitance (in Farads), and U is the voltage between terminals. The stored charge Q in the 

capacitor is obtained by the product of the capacitance and the voltage. Reference [225] describes the 

comparison between the dynamical models of ultracapacitors. Therefore, only the simplified model of the 

ultracapacitor is developed in this section. Hence, the total capacitance of an ultracapacitor 𝐶𝑢𝑐(𝑡) depends 

on voltage, and it is expressed as [226], [227]: 

 𝐶𝑢𝑐(𝑡) = 𝐶𝑢𝑐,0 + 𝑘𝑢𝑐𝑈𝑢𝑐(𝑡)                                                                        (3-64) 

where 𝐶𝑢𝑐,0 is the initial capacitance (electrostatic capacitance) of the capacitor, and 𝑘𝑢𝑐 is a constant that 

models the linear dependence with the voltage. 
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 𝐼𝑢𝑐(𝑡) =
𝑑𝑄𝑢𝑐

𝑑𝑡
=

𝑑(𝐶𝑢𝑐(𝑡)𝑈𝑢𝑐(𝑡))

𝑑𝑡
            (3-65) 

 𝐼𝑢𝑐(𝑡) = (𝐶𝑢𝑐,0 + 2𝑘𝑢𝑐𝑈𝑢𝑐(𝑡))
𝑑𝑈𝑢𝑐(𝑡)

𝑑𝑡
           (3-66) 

The following expression is used to model the energy stored in the ultracapacitor: 

 𝐸𝑢𝑐(𝑡) =
1

2
(𝐶𝑢𝑐,0 +

4

3
𝑘𝑢𝑐𝑈𝑢𝑐(𝑡))𝑈𝑢𝑐

2 (𝑡)                      (3-67) 

The SOC is expressed as the ratio between the current stored energy and its maximum value, which is given 

as: 

 𝑆𝑂𝐶𝑢𝑐(𝑡) =
(𝐶𝑢𝑐,0+

4

3
𝑘𝑢𝑐𝑈𝑢𝑐(𝑡))𝑈𝑢𝑐

2 (𝑡)

(𝐶𝑢𝑐,0+
4

3
𝑘𝑢𝑐𝑈𝑢𝑐

𝑚𝑎𝑥(𝑡))(𝑈𝑢𝑐
𝑚𝑎𝑥(𝑡))

2                                              (3-68) 

This mathematical model is used in the MATLAB/Simulink of chapters 5-7, considering constant 

capacitance and the model of the conventional capacitor. 

3.4.3 Modeling of the Hydrogen Storage System 

Hydrogen is often seen as a potential option to be used as an energy storage device, particularly when 

hydrogen is generated with sustainable sources of energy. A complete hydrogen-energy storage system 

consists of a system for hydrogen production, a hydrogen storage system, and another system for converting 

hydrogen into electricity, such as a fuel cell or a hydrogen engine. Nonetheless, the most intriguing choice 

to use in micro-grids is hydrogen production by coupling electrolyser to renewable sources. In this study, a 

metal hydride is used to store hydrogen, in which the fuel cell can easily double the conversion capacity for 

the normal operating temperature to convert into electricity [220]. 

3.4.3.1 Mathematical Modeling of Electrolyser 

The electrolysers are electrochemical devices, which, when the direct current is applied, can separate 

hydrogen and oxygen from the water molecules. Thus, the mathematical model of the electrolyser is a 

simplification of the Equation presented in refs [220], [158]. The electrolyser stack voltage𝑉𝑒𝑙𝑧(𝑡), V, is 

expressed as the product of the number of electrolysis cells 𝑁𝑒𝑙𝑧
𝑐𝑒𝑙𝑙 and the single cell voltage 𝑉𝑒𝑙𝑧

𝑐𝑒𝑙𝑙. 

𝑉𝑒𝑙𝑧(𝑡) = 𝑁𝑒𝑙𝑧
𝑐𝑒𝑙𝑙𝑉𝑒𝑙𝑧

𝑐𝑒𝑙𝑙(𝑡)                                                            (3-69) 

Similarly, the single-cell voltage is expressed by the following Equation [5]: 

𝑉𝑒𝑙𝑧
𝑐𝑒𝑙𝑙(𝑡) = 𝑉𝑒𝑙𝑧,0

𝑐𝑒𝑙𝑙 (𝑡) + 𝑉𝑒𝑙𝑧,𝑎𝑐𝑡
𝑐𝑒𝑙𝑙 (𝑡) + 𝑉𝑒𝑙𝑧,𝑜ℎ𝑚

𝑐𝑒𝑙𝑙 (𝑡) + 𝑉𝑒𝑙𝑧,𝑐𝑜𝑛𝑐
𝑐𝑒𝑙𝑙 (𝑡)                                                             (3-70) 
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Where, 𝑉𝑒𝑙𝑧,0
𝑐𝑒𝑙𝑙  is the Nernst voltage or reversible potential, 𝑉𝑒𝑙𝑧,𝑎𝑐𝑡

𝑐𝑒𝑙𝑙  is the activation overpotential, 𝑉𝑒𝑙𝑧,𝑜ℎ𝑚
𝑐𝑒𝑙𝑙  

is the ohmic overvoltage and 𝑉𝑒𝑙𝑧,𝑐𝑜𝑛𝑐
𝑐𝑒𝑙𝑙  provides the losses due to concentration mass. Therefore, the voltage 

drop is the sum of the following terms: 

𝑉𝑒𝑙𝑧,0
𝑐𝑒𝑙𝑙 (𝑡) = 𝐸𝑒𝑙𝑧

0 +
∆𝑆𝑒𝑙𝑧

0

2𝐹
(𝑇𝑒𝑙𝑧(𝑡) − 𝑇𝑒𝑙𝑧

0 ) +
2.3𝑅𝑇𝑒𝑙𝑧(𝑡)

2𝐹
ln (

𝑃𝐻2(𝑡)𝑃𝑂2

1
2⁄ (𝑡)

𝑃𝐻2𝑂(𝑡)
)                                               (3-71) 

𝑉𝑒𝑙𝑧,𝑎𝑐𝑡
𝑐𝑒𝑙𝑙 (𝑡) =

𝑅𝑇𝑒𝑙𝑧(𝑡)

𝐹
[𝑠𝑖𝑛ℎ−1 (

𝐼𝑒𝑙𝑧(𝑡)

2𝐴𝑒𝑙𝑧𝑖𝑎0,𝑒𝑙𝑧
) + 𝑠𝑖𝑛ℎ−1 (

𝐼𝑒𝑙𝑧(𝑡)

2𝐴𝑒𝑙𝑧𝑖𝑐0,𝑒𝑙𝑧
)]                                                        (3-72) 

𝑉𝑒𝑙𝑧,𝑜ℎ𝑚
𝑐𝑒𝑙𝑙 (𝑡) = 𝐼𝑒𝑙𝑧(𝑡)𝑅𝑜ℎ𝑚                                                       (3-73)                                                    

𝑉𝑒𝑙𝑧,𝑐𝑜𝑛𝑐
𝑐𝑒𝑙𝑙 (𝑡) = 𝐾1,𝑒𝑙𝑧

𝑐𝑜𝑛𝑐𝑒
(𝐾2,𝑒𝑙𝑧

𝑐𝑜𝑛𝑐𝐼𝑒𝑙𝑧(𝑡))                                          (3-74)                                                             

Where 𝑇𝑒𝑙𝑧(𝑡) is the electrolyser temperature, 𝑇𝑒𝑙𝑧
0  is the temperature in standard conditions, ∆𝑆𝑒𝑙𝑧

0  is the 

entropy change, 𝑅 and 𝐹 are ideal gas and Faraday constant respectively, 𝑃𝑂2 is the oxygen partial pressure, 

𝑃𝐻2 is the hydrogen partial pressure, 𝐼𝑒𝑙𝑧 is the electrolyser current, 𝑖𝑎0,𝑒𝑙𝑧 and 𝑖𝑐0,𝑒𝑙𝑧 are the anode and 

cathode current densities respectively, and 𝐾1,𝑒𝑙𝑧
𝑐𝑜𝑛𝑐 and 𝐾2,𝑒𝑙𝑧

𝑐𝑜𝑛𝑐 are the concentration-losses factors of the 

electrolyser. Therefore, taking into account the reaction in the electrolysis stack, the mass flow of hydrogen 

is modeled as follows: 

𝑊𝑒𝑙𝑧

𝐻2,𝑝𝑟𝑜(𝑡) = 𝑁𝑒𝑙𝑧
𝑐𝑒𝑙𝑙 𝐼𝑒𝑙𝑧(𝑡)

𝐹
                                                       (3-75)                                                         

3.4.3.2   Mathematical Modeling of Metal Hydride 

Metal hydride is a hydrogen storage technology utilized in micro-grid system to store hydrogen at a 

moderate pressure. Concerning metal hydrides, certain metal (M), such as iron, nickel, aluminum, titanium, 

etc. produce a metal hydride compound via an easily controllable reversible reaction as they react with 

hydrogen. Hence, hydrogen is stored at moderate pressures with this technology, typically around 2 bar. 

The general expression is as follows [6]: 

𝑀 + 𝐻2 ↔ 𝑀𝐻2                                                                                   (3-76)                                                                        

Meanwhile, this study utilized ref [228] for the mathematical model of metal hydride in the simulation. 

3.4.3.3   Mathematical Modeling of Fuel Cell 

Fuel cells are electrochemical devices that are used for producing energy from hydrogen and oxygen flows. 

The anode, which is one of the electrodes, is utilized to separate the molecules of hydrogen gas into proton 

and electron, using a catalyst for the reaction [229]: 

2𝐻2 → 4𝐻+ + 4𝑒−                                                                     (3-77)                                                                                         

Similarly, the protons move toward the cathode through the electrolyte. 
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𝑂2 + 4𝐻+ + 4𝑒− → 2𝐻2𝑂                                                         (3-78)  

Therefore, the fuel cell overall reaction is expressed as: 

2𝐻2 + 𝑂2 + 4𝐻+ + 4𝑒− → 2𝐻2𝑂                                         (3-79)                                                                                  

Moreover, the fuel cell dynamic, defined by the balances of mass and heat, results in a slow transient 

response contrasted with ultra-capacitor or batteries. This study utilized Proton-Exchange-Membrane Fuel 

Cell (PEMFC) since it operates at relatively low temperatures and has a faster response time. Moreover, 

they utilize a solid polymer membrane as the electrolyte and platinum as the catalyst. Hence the 

mathematical model used in this study is based on a simplified model of the study in refs [220, 230]. A fuel 

stack comprises of several cells 𝑁𝑓𝑐
𝑐𝑒𝑙𝑙 which are series-connected. The stack voltage admits expression as 

[220]: 

𝑉𝑓𝑐(𝑡) = 𝑁𝑓𝑐
𝑐𝑒𝑙𝑙𝑉𝑓𝑐

𝑐𝑒𝑙𝑙(𝑡)                                                            (3-80)                                                                  

Similarly, the single-cell voltage is expressed by the following Equation: 

𝑉𝑓𝑐
𝑐𝑒𝑙𝑙(𝑡) = 𝑉𝑓𝑐,0

𝑐𝑒𝑙𝑙(𝑡) − 𝑉𝑓𝑐,𝑎𝑐𝑡
𝑐𝑒𝑙𝑙 (𝑡) − 𝑉𝑓𝑐,𝑜ℎ𝑚

𝑐𝑒𝑙𝑙 (𝑡) − 𝑉𝑓𝑐,𝑐𝑜𝑛𝑐
𝑐𝑒𝑙𝑙 (𝑡)                                                               (3-81)                                                             

Descriptions of the parameters are similar to the electrolyser. 

Thus, the voltage drop is a sum of four terms, which can be expressed with the following expression: 

𝑉𝑓𝑐,0
𝑐𝑒𝑙𝑙(𝑡) = 𝐸𝑓𝑐

0 +
∆𝑆𝑓𝑐

0

2𝐹
(𝑇𝑓𝑐(𝑡) − 𝑇𝑓𝑐

0 ) +
𝑅𝑇𝑓𝑐(𝑡)

2𝐹
ln (

𝑃𝐻2(𝑡)𝑃𝑂2

1
2⁄ (𝑡)

𝑃𝐻2𝑂(𝑡)
)                                                         (3-82) 

More so, the activation losses in the fuel cell can be modeled as a function of two constant coefficients 

𝐾1,𝑎𝑐𝑡 and 𝐾2,𝑎𝑐𝑡 and the stack current, 𝐼𝑓𝑐. 

𝑉𝑓𝑐,𝑎𝑐𝑡
𝑐𝑒𝑙𝑙 (𝑡) = −𝐾1,𝑎𝑐𝑡(1 − 𝑒(−𝐼𝑓𝑐 𝐾2,𝑎𝑐𝑡⁄ )                                     (3-83)                                                                    

Similarly, the ohmic losses can be modeled as a function of the equivalent ohmic resistor of the cell 𝑅𝑜ℎ𝑚 

and the stack current 𝐼𝑓𝑐. 

𝑉𝑓𝑐,𝑜ℎ𝑚
𝑐𝑒𝑙𝑙 (𝑡) = 𝐼𝑓𝑐(𝑡)𝑅𝑜ℎ𝑚                                                           (3-84)                                                             

The concentration losses can be modeled as a function of two constant coefficients 𝐾1,𝑓𝑐
𝑐𝑜𝑛𝑐 and 𝐾2,𝑓𝑐

𝑐𝑜𝑛𝑐 and 

the stack current. 

𝑉𝑓𝑐,𝑐𝑜𝑛𝑐
𝑐𝑒𝑙𝑙 (𝑡) = 𝐾1,𝑓𝑐

𝑐𝑜𝑛𝑐𝑒
(𝐾2,𝑓𝑐

𝑐𝑜𝑛𝑐𝐼𝑓𝑐(𝑡))                                             (3-85) 

3.4.4 Dynamic Modeling of the Load 

The loads in this study are classified as essential loads and curtailable loads based on a demand management 

perspective. The power generations should regularly meet the demand for power of the critical loads. Thus, 
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each EMU's load forecasting strategies can assist the adaptive controller in making important decisions for 

the network under study, such as charging and discharging the ESS and buying or selling it to the host grid. 

The load is predicted by the EMU at-time step, which uses the preceding duration data for a future 

predefined horizon 𝑁𝑝 [68]. Moreover, as the AMPC procedure continues, estimates are subsequently 

revised and delivered to the EMU responsible for updating the parameters of the prediction model to 

introduce corrections and minimize errors. Consequently, the total micro-grid load demand is expressed as 

[68, 231]: 

𝑃𝑙𝑜𝑎𝑑(𝑡𝑘) = 𝑃𝑙𝑜𝑎𝑑−𝑐𝑢𝑟𝑡(𝑡𝑘)(1 − 𝜃(𝑡𝑘)) + 𝑃𝑙𝑜𝑎𝑑−𝑐𝑟𝑖𝑡(𝑡𝑘)       (3-86)  

Where the curtailable load demand and essential load demand are 𝑃𝑙𝑜𝑎𝑑−𝑐𝑢𝑟𝑡(𝑡𝑘) and 𝑃𝑙𝑜𝑎𝑑−𝑐𝑟𝑖𝑡(𝑡𝑘), 

respectively, and the curtailment ratio of the curtailable loads is 𝜃(𝑡𝑘). 

3.4.5 Main Grid 

The energy exchange between the main grid and micro-grid is implemented as an economic transaction, 

where energy is sold to or purchased from the host grid. Hence, economic transactions are based on the 

energy price in the energy markets. Forecast algorithms are the best optimization approach to know the 

value of the energy prices at every instant of time. The necessary models are usually based on causal models, 

artificial intelligence-based models, and stochastic time series. Reference [232] reviews some of the most 

famous electricity price forecasting methods. 

3.5   Formulations of EMS-Based AMPC Optimization Problem 

The primary goal of EMS in a micro-grid network is to reduce the costs of purchased electricity while at 

the same time maintaining the power balance, generation limits, ESS limits, and power exchange limits. 

Moreover, AMPC problem formulation requires a micro-grid model for predictions; It also requires 

minimizing the concept of cost function and imposing operational constraints. Hence, this section describes 

the formulation of the EMS optimization problem used in chapter 5 of this thesis. Consequently, the 

problem formulation is implemented by specifying the objective function, as well as the functional and 

operational constraints associated with each source of energy [68]. 

3.5.1 Cost Function Formulations 

The main objective of the EMS is to ensure a reliable supply of electrical power to its local customers. 

Meanwhile, the EMS fulfills the following objectives: lowering running costs by decreasing the energy 

exchanged with the grid, increasing the battery life by preventing deep overcharging and discharging, 

protecting electrolysers and fuel cells from regular usage by limiting their power rates, and ensuring energy 

efficiency at the plant by using the most effective storage. The fulfillment of these objectives is attributable 
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to their weights in the cost function [158, 233]. The cost function can incorporate terms that consider the 

values of the different powers involved (identified with the cost of utilizing each DER) and the power rates 

(identified with their lifetimes). It may also penalize the stored energy deviation from a desired point of 

operation. Therefore, the quadratic cost function associated with each energy source is given to minimize 

the total system cost, which is solved by the proposed control algorithm (AMPC). 

Notice that two objective functions are obtained for the various scenarios investigated in chapter 5, and the 

AMPC algorithm solver tries to minimize it. The first multi-objective function (Equation (3-87a)) is used 

in the scenario when disturbance prediction is not incorporated in the AMPC algorithm. In contrast, the 

second multi-objective function (Equation (3-87b)) considers the integration of disturbance prediction. The 

aim is to investigate the impact of integrating disturbance prediction on the performance of the EMS in 

micro-grid in terms of cost minimization. Therefore, in order to track the reference outputs, the controller 

is designed to set 𝑃𝑛𝑒𝑡 = 0, which consequently adds a perturbation on 𝑃𝑛𝑒𝑡 of which the responsibility of 

the controller is to balance the rest of the control variables (𝑃𝑓𝑐 , 𝑃𝑒𝑙𝑧, 𝑃𝑔𝑟𝑖𝑑  ). Moreover, the highest weight 

value is often assigned to the 𝑃𝑛𝑒𝑡 variable in order to drive the system to attain the system's power balance 

(𝑃𝑛𝑒𝑡 = 𝑃𝑔𝑒𝑛 − 𝑃𝐿 = 0). 

min 𝐽 = ∑ 𝛼1𝑃𝑔𝑟𝑖𝑑
2 (𝑡 + 𝑘) + 𝛼2𝑃𝑓𝑐

2 (𝑡 + 𝑘)𝑁𝑐
𝑘=1 + 𝛼3𝑃𝑒𝑙𝑧

2 (𝑡 + 𝑘) + 𝛼4𝑃𝑏𝑎𝑡
2 (𝑡 + 𝑘) + 𝛽1∆𝑃𝑔𝑟𝑖𝑑

2 (𝑡 + 𝑘) +

𝛽2∆𝑃𝑓𝑐
2 (𝑡 + 𝑘) + 𝛽3∆𝑃𝑒𝑙𝑧

2 (𝑡 + 𝑘) + 𝛽4∆𝑃𝑏𝑎𝑡
2 (𝑡 + 𝑘) + ∑ 𝛾1(𝑆𝑂𝐶(𝑡 + 𝑘) − 𝑆𝑂𝐶𝑟𝑒𝑓)

2
+ 𝛾2(𝐿𝑂𝐻(𝑡 +

𝑁𝑝

𝑘=1

𝑘) − 𝐿𝑂𝐻𝑟𝑒𝑓)
2
                                                                                                                                       (3-87a)    

min 𝐽 = ∑ 𝛼1𝑃𝑔𝑟𝑖𝑑
2 (𝑡 + 𝑘) + 𝛼2𝑃𝑓𝑐

2 (𝑡 + 𝑘)𝑁𝑐
𝑘=1 + 𝛼3𝑃𝑒𝑙𝑧

2 (𝑡 + 𝑘) + 𝛼4𝑃𝑛𝑒𝑡
2 (𝑡 + 𝑘) + 𝛽1∆𝑃𝑔𝑟𝑖𝑑

2 (𝑡 + 𝑘) +

𝛽2∆𝑃𝑓𝑐
2 (𝑡 + 𝑘) + 𝛽3∆𝑃𝑒𝑙𝑧

2 (𝑡 + 𝑘) + 𝛽4∆𝑃𝑛𝑒𝑡
2 (𝑡 + 𝑘) + ∑ 𝛾1(𝑆𝑂𝐶(𝑡 + 𝑘) − 𝑆𝑂𝐶𝑟𝑒𝑓)

2
+ 𝛾2(𝐿𝑂𝐻(𝑡 +

𝑁𝑝

𝑘=1

𝑘) − 𝐿𝑂𝐻𝑟𝑒𝑓)
2
                                                                                                                                       (3-87b)    

Where 𝑁𝑐 is the time horizon and 𝛼𝑖, 𝛽𝑖, and  𝛾𝑖 are the weights for each variable. The first four terms in 

this cost function weigh the usage of the manipulated variable, the subsequent four terms penalize the rate, 

and the last two terms help to keep the stored energy around an operating point. More so, weighting values 

(in the cost function and operational constraints) are often associated with the priority of using a particular 

unit, either for operating costs (reference tracking) or for efficiency purposes. For example, it is appropriate 

to use batteries first, if possible, in a micro-grid with hydrogen storage, when there is a significant mismatch 

between generation and demand because hydrogen has a lower path efficiency. As a consequence, the 

weight of the battery will be smaller than that of the fuel cell. This study has selected a quadratic cost 

function as the system costs to be minimized. Meanwhile, the battery bank utilized in this micro-grid is 

directly connected to the DC bus, therefore, 𝑃𝑏𝑎𝑡 is not taken as the manipulated variables [220].  The 
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minimization also includes constraints, accurately measured, as shown in Table 1. Notice that some of them 

are physical limits (e.g., the power generated by the generator or the fuel cell), and others are limits that are 

imposed to prevent system failure (e.g., power rate required by the fuel cell). 

3.5.2 Dynamic System Constraints Formulations 

In the optimization problem, which is to minimize the cost function of Equation (3-87), and solved by the 

proposed advanced control algorithm, the physical and operational constraints must be put into 

consideration. The physical constraints include the limited power that can be supplied by the units (external 

grid, DERs, batteries, fuel cells, electrolysers, etc.). They are physical limits that cannot be trespassed for 

productive reasons. Notice that there is an upper threshold for all units, but it is often normal for a lower 

threshold to occur, meaning that once the unit is attached, a minimum power must be supplied. Such 

constraints relate in this way to the power (variable 𝑢(𝑡)) and also to the capacity of the storage units 

(maximum energy which can be stored in a battery or an ultra-capacitor). In addition, equipment constraints 

in terms of capacity limits and power rates are implemented to maximize performance, lifespan, and 

operating & maintenance costs. The battery bank will, therefore, operate in a range of SOC values to prevent 

overcharging and undercharging, which significantly decreases the number of possible cycles [220, 234]. 

The following constraints are considered in this study: 

3.5.2.1 Inequality Constraints 

The constraints imposed in the problem of optimal control include the generation limits of the units, which 

admit expressions such as [220]: 

𝑃𝑔𝑒𝑛
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑒𝑛(𝑡) ≤ 𝑃𝑔𝑒𝑛

𝑚𝑎𝑥                                                                          (3-88) 

𝑃𝑔𝑟𝑖𝑑
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑟𝑖𝑑(𝑡) ≤ 𝑃𝑔𝑟𝑖𝑑

𝑚𝑎𝑥                                                                        (3-89) 

𝑃𝑓𝑐
𝑚𝑖𝑛 ≤ 𝑃𝑓𝑐(𝑡) ≤ 𝑃𝑓𝑐

𝑚𝑎𝑥                                                                          (3-90) 

𝑃𝑒𝑙𝑧
𝑚𝑖𝑛 ≤ 𝑃𝑒𝑙𝑧(𝑡) ≤ 𝑃𝑒𝑙𝑧

𝑚𝑎𝑥                                                                         (3-91) 

The storage limits admit expressions as: 

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶(𝑡) ≤ 𝑆𝑂𝐶𝑚𝑎𝑥                                                          (3-92)                       

𝐿𝑂𝐻𝑚𝑖𝑛 ≤ 𝐿𝑂𝐻(𝑡) ≤ 𝐿𝑂𝐻𝑚𝑎𝑥                                                 (3-93) 

Notice that the maximum and minimum values can be the same physical limits, and a protective band can 

be considered as well, preventing working close to hazardous regions [1, 68]. 

∆𝑃𝑔𝑒𝑛
𝑚𝑖𝑛 ≤ ∆𝑃𝑔𝑒𝑛(𝑡) ≤ ∆𝑃𝑔𝑒𝑛

𝑚𝑎𝑥                                                        (3-94)                                           

∆𝑃𝑔𝑟𝑖𝑑
𝑚𝑖𝑛 ≤ ∆𝑃𝑔𝑟𝑖𝑑(𝑡) ≤ ∆𝑃𝑔𝑟𝑖𝑑

𝑚𝑎𝑥                                                    (3-95)                                                      
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∆𝑃𝑓𝑐
𝑚𝑖𝑛 ≤ ∆𝑃𝑓𝑐(𝑡) ≤ ∆𝑃𝑓𝑐

𝑚𝑎𝑥                                                       (3-96) 

∆𝑃𝑒𝑙𝑧
𝑚𝑖𝑛 ≤ ∆𝑃𝑒𝑙𝑧(𝑡) ≤ ∆𝑃𝑒𝑙𝑧

𝑚𝑎𝑥                                                     (3-97)                                                            

∆𝑆𝑂𝐶𝑚𝑖𝑛 ≤ ∆𝑆𝑂𝐶(𝑡) ≤ ∆𝑆𝑂𝐶𝑚𝑎𝑥                                           (3-98)                                                

In the same way, the other kind of constraints is imposed in order to prevent sudden shifts in the power 

supplied by the units. These are limits that influence the degradation of the units and will be significant in 

costly equipment such as fuel cells. It is worthy of note that some of these constraints can be shifted to the 

soft constraints category if the inequalities are replaced by a weighted term in the cost function. That is the 

case with the energy-storage capacity constraints [5]. 

3.5.2.2 Energy Balance Constraints 

Including the constraints of the energy balance at each time instant is essential mainly for the purposes of 

the power system's stability. More so, to keep the network running effectively and reliably, the micro-grids 

must meet the power balance constraint [68]. 

∑ 𝑃𝑔𝑒𝑛,𝑖(𝑡) +
𝑛𝑔

𝑖=1
∑ 𝑃𝑒𝑥𝑡,𝑖(𝑡) + ∑ 𝑃𝑠𝑡𝑜,𝑖(𝑡) −

𝑛𝑠
𝑖=1

𝑛𝑒
𝑖=1 ∑ 𝑃𝑙𝑜𝑎𝑑,𝑖(𝑡)

𝑛𝑠
𝑖=1 = 0                                                  (3-99) 

Where 𝑃𝑔𝑒𝑛,𝑖 is the power generated by the generation unit 𝑖, 𝑃𝑠𝑡𝑜,𝑖 is the power exchange with the storage 

units, 𝑃𝑒𝑥𝑡,𝑖 is the power exchanged with the external connections such as the main utility grid or other 

micro-grids, 𝑃𝑙𝑜𝑎𝑑,𝑖 is the power consumed by the loads. During micro-grid operations, the balance between 

energy production and demand must always be met; thus, Equation (3-99) must be applied as a constraint 

for equality to the formulation. 

3.6   Formulations of DR-Based AMPC Optimization Problem 

In this section, the general AMPC formulations for the DR technique in micro-grid used in chapter 6 of this 

thesis are formulated, which is similar to the previous AMPC optimization formulations. The method 

discussed in the previous section is further extended to include load curtailment and shifting. AMPC 

problem formulation requires a micro-grid model; It also requires minimizing the concept of cost function 

and imposing operational constraints. Hence, this section describes the formulation of the DR technique for 

the EMS optimization problem of the micro-grid used in chapter 6. Consequently, the problem formulation 

is carried out by specifying the objective function, as well as the functional and operational constraints 

associated with each source of energy [68]. 

3.6.1 DR-Based Cost Function Formulations 

The cost function can incorporate terms that consider the values of the different powers involved (identified 

with the cost of utilizing each DER) and also the power rates (identified with their lifetimes). It may also 
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penalize the stored energy deviation from a desired point of operation. Therefore, the quadratic cost function 

associated with each energy source is given to minimize the total system cost, which is solved by the 

proposed control algorithm (Adaptive MPC): 

 min 𝐽 = ∑ 𝛼1𝑃𝑔𝑒𝑛
2 (𝑡 + 𝑘) + 𝛼2𝑃𝑓𝑐

2 (𝑡 + 𝑘)𝑁𝑐
𝑘=1 + 𝛼3𝑃𝑒𝑙𝑧

2 (𝑡 + 𝑘) + 𝛼4𝑃𝑏𝑎𝑡
2 (𝑡 + 𝑘) + 𝛽1∆𝑃𝑔𝑒𝑛

2 (𝑡 + 𝑘) +

𝛽2∆𝑃𝑓𝑐
2 (𝑡 + 𝑘) + 𝛽3∆𝑃𝑒𝑙𝑧

2 (𝑡 + 𝑘) + 𝛽4∆𝑃𝑏𝑎𝑡
2 (𝑡 + 𝑘) + ∑ 𝛾1(𝑆𝑂𝐶(𝑡 + 𝑘) − 𝑆𝑂𝐶𝑟𝑒𝑓)

2
+ 𝛾2(𝐿𝑂𝐻(𝑡 +

𝑁𝑝

𝑘=1

𝑘) − 𝐿𝑂𝐻𝑟𝑒𝑓)
2
+ 𝜑1𝑃𝐶𝑢𝑟𝑡−𝑙𝑜𝑎𝑑

2 (𝑡 + 𝑘)                     (3-100) 

3.6.2 DR-Based System constraints Formulations 

Similarly, in order to consider the load curtailment technique of some adjustable loads in the micro-grid 

system in chapter 6 of this thesis, the model-based design shown in Figures 6-1 and 6-2 are utilized. The 

basic EMS presented in the previous section is modified by adding curtailable loads to the micro-grid 

design. Moreover, since some of the loads are curtailable loads, i.e., loads that can be adjusted during 

specific periods in order to enhance the operation of the micro-grid or during contingencies, therefore, its 

associated power (𝑃𝑙𝑜𝑎𝑑) can be manipulated by the EMS. Meanwhile, it is worth mentioning that 𝑃𝑙𝑜𝑎𝑑 is 

part of the vector of manipulated variables instead of a disturbance. 

Hence, some additional constraints need to be applied to the optimization problem, as the load can only be 

adjusted to a certain level, so its limits need to be set.  

 𝑃𝐶𝑢𝑟𝑡−𝑙𝑜𝑎𝑑𝑠
𝑚𝑖𝑛 (𝑡) ≤ 𝑃𝐶𝑢𝑟𝑡−𝑙𝑜𝑎𝑑(𝑡) ≤ 𝑃𝐶𝑢𝑟𝑡−𝑙𝑜𝑎𝑑𝑠

𝑚𝑎𝑥 (𝑡)                                 ∀𝑡               (3-101a) 

 𝐶𝐶𝑢𝑟𝑡−𝑙𝑜𝑎𝑑 = 𝑚 . [∑ 𝑃𝐶𝑢𝑟𝑡−𝑙𝑜𝑎𝑑(𝑡)24
𝑡=1 ]                               (3-101b)  

Where 𝑚 and 𝐶𝐶𝑢𝑟𝑡−𝑙𝑜𝑎𝑑 are shedding prices and shedding costs, respectively. 

Therefore, the minimum and maximum values may change at each instant (and can be set to avoid any 

curtailment if needed). The other physical and operational constraints required to solve the optimization 

problem, such as energy balance and amplitude and rate constraints, are described in the previous section. 

More so, since load adjustment can result in discomfort to the user, a set point 𝑃𝐶𝑢𝑟𝑡−𝑙𝑜𝑎𝑑𝑟𝑒𝑓 can be utilized 

to avoid large deviations from the desired value and its associated weight 𝜑(𝑡) can be set to a high value to 

prevent curtailment at a specific time instant or interval. Therefore, the Quadratic Programming (QP) is 

used to solve the optimization problem, as all the variables are continuous (continuous-valued variables). 

3.7   Formulations of EMS-Based AMPC Optimization Problem with EV Integration 

The AMPC algorithm is used to minimize the cost function, which is formulated as a sum of the different 

cost functions of the micro-grid components: 

min 𝐽(𝑡) = ∑ [𝐽𝑔𝑟𝑖𝑑(𝑡 + 𝑘|𝑡) + 𝐽𝑏𝑎𝑡,𝑢𝑐(𝑡 + 𝑘|𝑡) + 𝐽𝐻2
(𝑡 + 𝑘|𝑡)]24

𝑘=1                                     (3-102) 
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The cost function of the energy exchange with the host grid is given as 𝐽𝑔𝑟𝑖𝑑. Similarly, the battery/ultra-

capacitor and the hydrogen are 𝐽𝑏𝑎𝑡,𝑢𝑐 and 𝐽𝐻2
, respectively. Moreover, the grid cost function is simply the 

economic revenue of selling energy to the grid or the economical cost of buying energy from the grid, which 

admits expression as follows: 

𝐽𝑔𝑟𝑖𝑑(𝑡 + 𝑘|𝑡) = (−ℱ𝑠𝑎𝑙𝑒
𝐷𝑀 (𝑡 + 𝑘|𝑡) ∗ 𝑃𝑠𝑎𝑙𝑒(𝑡 + 𝑘|𝑡) + ℱ𝑝𝑢𝑟𝑐

𝐷𝑀 (𝑡 + 𝑘|𝑡) ∗ 𝑃𝑝𝑢𝑟𝑐(𝑡 + 𝑘|𝑡)) ∗ 𝑇𝑠          (3-103) 

Where ℱ𝑠𝑎𝑙𝑒
𝐷𝑀 (𝑡 + 𝑘|𝑡) and ℱ𝑝𝑢𝑟𝑐

𝐷𝑀 (𝑡 + 𝑘|𝑡) correspond to the forecast values for the energy prices, while 

𝑃𝑠𝑎𝑙𝑒(𝑡 + 𝑘|𝑡) and 𝑃𝑝𝑢𝑟𝑐(𝑡 + 𝑘|𝑡) are the energy sale and purchase with the host grid, respectively.  

Where both the energy sale and purchase with the host grid admit expressions as the following equations: 

𝑃𝑠𝑎𝑙𝑒(𝑡𝑘) = {
𝑃ℎ𝑜𝑠𝑡 𝑔𝑟𝑖𝑑(𝑡𝑘),              𝑃ℎ𝑜𝑠𝑡 𝑔𝑟𝑖𝑑(𝑡𝑘) ≥ 0

0,                                   𝑃ℎ𝑜𝑠𝑡 𝑔𝑟𝑖𝑑(𝑡𝑘) < 0
                    (3-104) 

𝑃𝑝𝑢𝑟𝑐(𝑡𝑘) = {
𝑃ℎ𝑜𝑠𝑡 𝑔𝑟𝑖𝑑(𝑡𝑘),              𝑃ℎ𝑜𝑠𝑡 𝑔𝑟𝑖𝑑(𝑡𝑘) > 0

0,                                   𝑃ℎ𝑜𝑠𝑡 𝑔𝑟𝑖𝑑(𝑡𝑘) ≤ 0
           (3-105) 

The above piece-wise functions are implemented in the AMPC algorithm utilizing the transformation 

technique illustrated in ref [235], which results in the MLD constraints in ref [18]. 

Equation (3-106) gives the expression for the cost function of the batteries. The proposed algorithm 

minimizes the economic cost related to the use of the batteries.  The battery manufacturers measure the life 

of the ESS based on the number of cycles of charging and discharge. The main mechanism to be avoided 

relates to the exposure of batteries to a high-stress current ratio in the charging and discharging process. 

Therefore, in order to penalize the high values of 𝑃𝑏𝑎𝑡
2 , a second term in the cost function of the batteries is 

incorporated in the expression of Equation (3-106). 

 𝐽𝑏𝑎𝑡,𝑈𝐶(𝑡 + 𝑘|𝑡) =
𝐶𝐶𝑏𝑎𝑡,𝑈𝐶

2∗𝐶𝑦𝑐𝑙𝑒𝑠𝑏𝑎𝑡,𝑈𝐶
(𝑃𝑏𝑎𝑡,𝑈𝐶−𝑐ℎ(𝑡 + 𝑘|𝑡) + 𝑃𝑏𝑎𝑡,𝑈𝐶−𝑑𝑖𝑠(𝑡 + 𝑘|𝑡)) ∗ 𝑇𝑠 + 𝐶𝑜𝑠𝑡𝑑𝑒𝑔𝑟,𝑐ℎ ∗

𝑃𝑏𝑎𝑡,𝑈𝐶−𝑐ℎ
2 (𝑡 + 𝑘|𝑡) + 𝐶𝑜𝑠𝑡𝑑𝑒𝑔𝑟,𝑑𝑖𝑠 ∗ 𝑃𝑏𝑎𝑡,𝑈𝐶−𝑑𝑖𝑠

2 (𝑡 + 𝑘|𝑡)                  (3-106) 

Where 𝐶𝐶𝑏𝑎𝑡,𝑈𝐶 corresponds to the cost function of the battery and ultra-capacitor, 𝐶𝑦𝑐𝑙𝑒𝑠𝑏𝑎𝑡,𝑈𝐶 are the 

number of the battery and ultra-capacitor life cycles. The parameters 𝐶𝑜𝑠𝑡𝑑𝑒𝑔𝑟,𝑐ℎ and 𝐶𝑜𝑠𝑡𝑑𝑒𝑔𝑟,𝑑𝑖𝑠 are the 

cost associated with the degradation mechanisms of the batteries and capacitor. Since hydrogen storage is 

implemented with the following components, fuel cell, electrolyser, and hydrogen tank, the cost function 

of hydrogen storage is simply the sum of the cost functions of these components. Therefore, the 

compression cost of hydrogen storage is not put into consideration in order to simplify the cost. In a similar 

vein with batteries, the fuel cells and electrolysers have a limited lifetime. Meanwhile, this lifetime is often 

expressed as several life hours. Hence, the lifetime can be mitigated should the degradation aspects 

associated with the technology are not minimized. For this reason, not only are working hours for 
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electrolysers and fuel cells reduced, but also start-up/shutdown cycles and fluctuations in operating 

conditions are also included. Batteries (Lithium-ion batteries) have virtually low or no cost of operation 

and maintenance (O&M) [236]. Details of the characteristics of each battery used in this research work are 

given in Table D-7. However, electrolysers and fuel cells require maintenance aspects included in the cost 

function on an hourly basis. The cost function of hydrogen storage is expressed as Equation (3-107a). 

𝐽𝐻2
(𝑡 + 𝑘|𝑡) = 𝐽𝑒𝑙𝑧(𝑡 + 𝑘|𝑡) + 𝐽𝑓𝑐(𝑡 + 𝑘|𝑡)                                                                                       (3-107a) 

Where, 

𝐽𝑒𝑙𝑧(𝑡 + 𝑘|𝑡) = (
𝐶𝐶𝑒𝑙𝑧

𝐻𝑜𝑢𝑟𝑠𝑒𝑙𝑧
+ 𝐶𝑜𝑠𝑡𝑂&𝑀,𝑒𝑙𝑧) 𝛿𝑒𝑙𝑧(𝑡 + 𝑘|𝑡) + 𝐶𝑜𝑠𝑡𝑆𝑡𝑎𝑟𝑡,𝑒𝑙𝑧 ∗ 𝜎𝑒𝑙𝑧

𝑜𝑛(𝑡 + 𝑘|𝑡) + 𝐶𝑜𝑠𝑡𝑑𝑒𝑔𝑟𝑑,𝑒𝑙𝑧 ∗

𝜗𝑒𝑙𝑧
2 (𝑡 + 𝑘|𝑡)                                                                                               (3-107b) 

𝐽𝑓𝑐(𝑡 + 𝑘|𝑡) = (
𝐶𝐶𝑓𝑐

𝐻𝑜𝑢𝑟𝑠𝑓𝑐
+ 𝐶𝑜𝑠𝑡𝑂&𝑀,𝑓𝑐) 𝛿𝑓𝑐(𝑡 + 𝑘|𝑡) + 𝐶𝑜𝑠𝑡𝑆𝑡𝑎𝑟𝑡,𝑓𝑐 ∗ 𝜎𝑓𝑐

𝑜𝑛(𝑡 + 𝑘|𝑡) + 𝐶𝑜𝑠𝑡𝑑𝑒𝑔𝑟𝑑,𝑓𝑐 ∗

𝜗𝑓𝑐
2 (𝑡 + 𝑘|𝑡)                                                                                        (3-107c) 

Therefore, the capital cost of the fuel cell and the electrolyser are denoted as 𝐶𝐶𝑓𝑐 and 𝐶𝐶𝑒𝑙𝑧 respectively. 

𝐻𝑜𝑢𝑟𝑠𝑒𝑙𝑧 and 𝐻𝑜𝑢𝑟𝑠𝑓𝑐 are the lifetime hours of the electrolyzer and the fuel cell from the manufactures, 

𝐶𝑜𝑠𝑡𝑂&𝑀,𝑓𝑐 and 𝐶𝑜𝑠𝑡𝑂&𝑀,𝑒𝑙𝑧 are the two terms associated with the operation and maintenance cost of the 

fuel cell and the electrolyzer, 𝐶𝑜𝑠𝑡𝑆𝑡𝑎𝑟𝑡,𝑒𝑙𝑧 and 𝐶𝑜𝑠𝑡𝑆𝑡𝑎𝑟𝑡,𝑓𝑐 are the costs associated with the degradation 

processes linked to the start-up and shutdown of the components. Lastly, the costs related to the degradation 

processes linked to the power fluctuations in the fuel cell and the electrolyser are denoted by 𝐶𝑜𝑠𝑡𝑑𝑒𝑔𝑟𝑑,𝑓𝑐 

and 𝐶𝑜𝑠𝑡𝑑𝑒𝑔𝑟𝑑,𝑒𝑙𝑧, respectively. Therefore, the third terms in the cost function of Equations (3-107b) and 

(3-107c) are incorporated in order to minimize the power fluctuations of fuel cells and electrolysers. The 

logical power variation 𝜗𝑓𝑐 and 𝜗𝑒𝑙𝑧, of the fuel cell and electrolyzer is described as the power variation in 

all the instants except those where the component moves from the start-up state to the energized state or 

from the energized state toward switch off. Hence, in order to solve the optimization problem with the cost 

functions of Equations (3-102) to (3-107c), some physical limits must be strictly adhered to and should not 

be violated. The physical constraints are imposed by the ESS 'upper and lower limits, which can consume 

or supply the maximum and minimum energy storage levels that have been stored in each ESS (the main 

grid power exchange is also considered). Therefore, the minimization of the cost function is subject to the 

following constraints along the schedule horizon (𝑘 = 1,… , 𝑆𝐾): 

𝑃𝑊𝑇(𝑡 + 𝑘|𝑡) + 𝑃𝑃𝑉(𝑡 + 𝑘|𝑡) − 𝑃𝑙𝑜𝑎𝑑(𝑡 + 𝑘|𝑡) + 𝑃𝑔𝑟𝑖𝑑(𝑡 + 𝑘|𝑡) + 𝑃𝑏𝑎𝑡,𝑢𝑐(𝑡 + 𝑘|𝑡) − 𝑍𝑒𝑙𝑧(𝑡 + 𝑘|𝑡) +

𝑍𝑓𝑐(𝑡 + 𝑘|𝑡) = 0                                                                                                                                    (3-108) 

0 ≤ 𝛿𝑖(𝑡 + 𝑘|𝑡) ≤ 1|𝑖=𝑒𝑙𝑧,𝑓𝑐                                                                                                                  (3-109) 
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𝑃𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑖(𝑡 + 𝑘|𝑡) ≤ 𝑃𝑚𝑎𝑥|𝑖=𝑔𝑟𝑖𝑑,𝑏𝑎𝑡,𝑒𝑙𝑧,𝑓𝑐                                                                                        (3-110) 

𝑆𝑂𝐶𝑖
𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶𝑖(𝑡 + 𝑘|𝑡) ≤ 𝐿𝑂𝐻𝑚𝑎𝑥|𝑖=𝑏𝑎𝑡,𝑈𝐶                                                                                     (3-111) 

 𝐿𝑂𝐻𝑖
𝑚𝑖𝑛 ≤ 𝐿𝑂𝐻𝑖(𝑡 + 𝑘|𝑡) ≤ 𝐿𝑂𝐻𝑚𝑎𝑥|𝑖=𝑒𝑙𝑧,𝑓𝑐                                                                                    (3-112) 

Equation (3-108) corresponds to the energy balance in the micro-grid, while Equations (3-109) - (3-112) 

are the physical inequality constraints of the micro-grid components. 

Similarly, the conversions implemented in ref [235] makes it feasible to incorporate the binary and auxiliary 

variables embedded in a discrete-time dynamic system to explain the evolution of the system's continuous 

and logical signals in a unified model. Therefore, in order to accomplish the charging process, the following 

additional constraints are imposed: 

• Fulfill the necessary energy 𝐸𝑒𝑣 for the desired charge at a constant power 𝑃𝑒𝑣−𝑐ℎ: 

 ∑ 𝑃𝑒𝑣−𝑐ℎ𝑇𝑠𝛿𝑒𝑣(𝑡)
𝑁𝑝

𝑘=1 = 𝐸𝑒𝑣          (3-113) 

• Charge during a total number of instants: 

 0 ≤ ∑ 𝛿𝑜𝑛(𝑘) ≤ 𝑁𝑒𝑣
𝑁𝑝

𝑘=1           (3-114) 

• Charging without any form of interruption (only one transition): 

 0 ≤ ∑ 𝜎𝑒𝑣(𝑘) ≤ 1
𝑁𝑝

𝑘=1            (3-115) 

• Energy balance at each instant t: 

 ∑ 𝑃𝑔𝑒𝑛−𝑖(𝑡) +
𝑛𝑔

𝑖=1
∑ 𝑃𝑒𝑥𝑡−𝑖(𝑡) +

𝑛𝑒
𝑖=1 ∑ 𝑃𝑠𝑡𝑜𝑟−𝑖(𝑡) − 𝑃𝑒𝑣−𝑐ℎ

𝑛𝑠
𝑖=1 𝛿𝑒𝑣(𝑡) = 0     (3-116) 

Where 𝑁𝑝 is the schedule horizon (usually 24 hours). 

For the sake of simplicity, we consider just a few numbers of electric vehicles. Meanwhile, the formulation 

can be extended to any number of electric vehicles. This can be done by simply adding as many 𝛿 (for the 

connection state) and 𝜎 (for transitions) as the number of EVs and the associated constraints. The solver 

finds an optimal solution for the micro-grid, providing a set of the control variables, which are logic and 

continuous, and the AMPC controller is formulated as a mixed-integer quadratic programming (MIQP) 

problem. The different operation modes in the micro-grid are modeled with the mixed logic dynamical 

(MLD) framework. The output signals which are generated by the solver are the values of exchange power 

with the main grid (𝑃𝑔𝑟𝑖𝑑), the power of electrolyser, fuel cell, and battery (𝑃𝑒𝑙𝑧, 𝑃𝑓𝑐, 𝑎𝑛𝑑 𝑃𝑏𝑎𝑡), the 

activation signals for the electrolyzer and fuel cell (𝛿𝑒𝑙𝑧 𝑎𝑛𝑑 𝛿𝑓𝑐) and the activation and transition of the 

electric vehicle (𝛿𝑒𝑣 and 𝜎𝑒𝑣). Note that the sampling time is 1 hour, and the schedule horizon is 24 hours. 
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3.8   Control Oriented Linear Model 

The control-oriented model of the micro-grid incorporated into the AMPC optimization procedure is a 

simplified model. It is worth mentioning that at the EMS level, the generators and loads dynamics are very 

fast compared to the characteristic sampling time; therefore, it can be neglected. Hence, the main dynamics 

of interest in this study are the storage units, which, together with the balance equation of powers in the 

bus, will constitute the model to be used by the AMPC control algorithms. The proposed control algorithm 

(AMPC) utilized a control-oriented linear model for its control design. Hence, a state-space model can be 

derived utilizing Equations (3-92) - (3-93) for the battery and the hydrogen storage. Thus, the state vector 

is expressed as [220]: 

𝑣(𝑡) = [𝑆𝑂𝐶(𝑡)  𝐿𝑂𝐻(𝑡)]𝑇                                                      (3-117)                                                            

Similarly, the vector of the manipulated variable is given as: 

𝑣(𝑡) = [𝑃𝐻2
(𝑡)  𝑃𝑔𝑟𝑖𝑑(𝑡)]

𝑇
                                                     (3-118)                                                                              

Where 𝑆𝑂𝐶(𝑡) is the state of charge of the battery and 𝐿𝑂𝐻(𝑡) is the hydrogen level in the hydride tank. 

Meanwhile, the battery's fixed efficiency value was used to prevent the use of binary variables. 

𝑆𝑂𝐶(𝑡 + 1) = 𝑆𝑂𝐶(𝑡) −
𝜂𝑏𝑎𝑡𝑇𝑠

𝐶𝑚𝑎𝑥
𝑃𝑏𝑎𝑡(𝑡)                                   (3-119)                                              

𝐿𝑂𝐻(𝑡 + 1) = 𝐿𝑂𝐻(𝑡) +
𝜂𝑒𝑙𝑧𝑇𝑠

𝑉𝑚𝑎𝑥
𝑃𝑒𝑙𝑧(𝑡) −

𝑇𝑠

𝜂𝑓𝑐𝑉𝑚𝑎𝑥
𝑃𝑓𝑐(𝑡)                     (3-120)  

Where 𝑃𝑏𝑎𝑡 is the power supplied by the battery and 𝑉𝑚𝑎𝑥 is the maximum volume of 𝐻2 (normal cubic 

meters) that can be stored in the tanks. The manipulated variables are the power that can be exchanged with 

the grid (𝑃𝑔𝑟𝑖𝑑), fuel cell (𝑃𝑓𝑐) and electrolyser (𝑃𝑒𝑙𝑧). As it is evident in Figures 5-1 and 5-2, the battery is 

attached to the DC bus and absorbs the unbalance, so 𝑃𝑏𝑎𝑡 must compensate for the remainder of the power 

in the DC bus [220, 237]. 

𝑃𝑏𝑎𝑡(𝑡) = 𝑃𝑙𝑜𝑎𝑑(𝑡) + 𝑃𝑒𝑙𝑧(𝑡) − 𝑃𝑓𝑐(𝑡) − 𝑃𝑔𝑟𝑖𝑑(𝑡) − 𝑃𝑔𝑒𝑛(𝑡)                               (3-121) 

Note that the imbalances generated by the difference between power generated by the renewables (non-

dispatch-able units, i.e., Solar and Wind), and the demand is considered as the disturbances, 𝑑(𝑡). Since the 

demand and generation have a similar impact on the energy balance (one positive and the other negative), 

it is expedient to group such disturbances into one variable only: Therefore, the generation and demand net 

effect admits expression as: 

𝑑(𝑡) = 𝑃𝑔𝑒𝑛(𝑡) − 𝑃𝑙𝑜𝑎𝑑(𝑡)                                                             (3-122)                                                                
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It is worth mentioning that the generation and demand are measurable quantities; therefore, they are 

measurable disturbances. Hence, the storage expressions, defining Equation (3-122) as the measurable 

disturbance are: 

𝑆𝑂𝐶(𝑡 + 1) = 𝑆𝑂𝐶(𝑡) −
𝜂𝑏𝑎𝑡𝑇𝑠

𝐶𝑚𝑎𝑥
(𝑃𝑒𝑙𝑧(𝑡) − 𝑃𝑓𝑐(𝑡) − 𝑃𝑔𝑟𝑖𝑑(𝑡) − 𝑑(𝑡))                                                (3-123)                  

𝐿𝑂𝐻(𝑡 + 1) = 𝐿𝑂𝐻(𝑡) +
𝜂𝑒𝑙𝑧𝑇𝑠

𝑉𝑚𝑎𝑥
𝑃𝑒𝑙𝑧(𝑡) −

𝑇𝑠

𝜂𝑓𝑐𝑉𝑚𝑎𝑥
𝑃𝑓𝑐(𝑡)                             (3-124)                                                                                                      

However, the conversion values for SOC and LOH vary from charging power to electrical and hydrogen 

storage between 10 and 90%, and the charging and discharge capacity vary from 600 to 1800 W. The mean 

value obtained for the battery's conversion coefficient admits expression as: 

𝐾𝑏𝑎𝑡 =
𝜂𝑏𝑎𝑡

𝐶𝑚𝑎𝑥
                                                                             (3-125)                                                                                     

Similarly, in the case of hydrogen, the mean values are expressed as [238]: 

𝐾𝑒𝑙𝑧 =
𝜂𝑒𝑙𝑧

𝑉𝑚𝑎𝑥
      [For charging, electrolyser]                           (3-126)                                            

𝐾𝑓𝑐 =
1

𝜂𝑓𝑐𝑉𝑚𝑎𝑥
      [For discharging, fuel cell]                                (3-127)                                           

The mathematical descriptions of the matrix’s forms of the SOC and LOH used in chapters 5-7 are given 

in Appendix A. Hence, the state considered in the optimization process is the level of the storage devices 

(batteries (SOC) and hydrogen (LOH)), and the control actions are the power exchanged with the grid and 

the power of the hydrogen storage network (including an electrolyser, a fuel cell, and hydrogen tanks). 

Consequently, a multi-objective function is used to accomplish the entirety of the previous objectives, and 

the solver aims to minimize it. In summary, the overall objective function of the energy management 

problem, which is solved by the AMPC algorithm, can be formulated as: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝐽 (3 − 87𝑎), (3 − 87𝑏), (3 − 100) & (3 − 102)                                                              (3-128)                                           

Subject to: 

Dynamic constraint - (3-62) & (3-68) 

Equality constraints - (3-99) & (3-108) 

Inequality constraints - (3-88) – (3-98), (3-101a) – (3-101b) and (3-109) - (3-116). 

3.9   System Modeling of the Two-Area Power System with a Stand-Alone Micro-grid 

This section describes the system modeling of the two-area power system with a stand-alone micro-grid 

used in chapter 8 of this thesis. In the system model, as shown in Figures 8-1 and 8-2, the following 

equations are formulated from the dynamic characteristics of the power and frequency changes in the two-

area power system with a stand-alone micro-grid: 
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∆�̇�1(𝑡) =
1

2𝐻
[∆𝑃𝑓_𝑓𝑖𝑙𝑡1(𝑡) + ∆𝑃𝑃𝑉1(𝑡) + ∆𝑃𝑊1(𝑡) − ∆𝑃𝑏𝑎𝑡1(𝑡) − ∆𝑃𝐿1(𝑡) − 𝐷∆𝐹1(𝑡) − ∆𝑃4(𝑡)]    (3-129)                             

∆�̇�2(𝑡) =
𝐾𝑃1

𝑇𝑃1
∆𝑃𝑡𝑖𝑒(𝑡) −

1

𝑇𝑃2
∆𝐹2(𝑡) +

𝐾𝑃2

𝑇𝑃2
∆𝑃4(𝑡) −

𝐾𝑃2

𝑇𝑃2
∆𝑃𝐿2(𝑡)                                          (3-130)                                    

∆�̇�1(𝑡) = −𝑎1∆𝑃1(𝑡) + 𝐾1∆𝑃𝐶1(𝑡)                                                          (3-131) 

 ∆�̇�𝑓𝐶1(𝑡) =
1

𝑇𝑓𝐶1
[∆𝑃𝐶𝑓1(𝑡) − ∆𝑃𝑓𝐶1(𝑡)]                                        (3-132)                                                                                                 

∆�̇�𝑓_𝑖𝑛𝑣1(𝑡) =
1

𝑇𝑖𝑛𝑣1
[∆𝑃𝑓𝐶1(𝑡) − ∆𝑃𝑓_𝑖𝑛𝑣1(𝑡)]                                             (3-133)                                                                                             

∆�̇�𝑓_𝑓𝑖𝑙𝑡1(𝑡) =
1

𝑇𝑓𝑖𝑙𝑡1
[∆𝑃𝑓_𝑖𝑛𝑣1(𝑡) − ∆𝑃𝑓_𝑓𝑖𝑙𝑡1(𝑡)]                              (3-134)                                                                               

∆�̇�𝑏𝑎𝑡1(𝑡) =
1

𝑇𝑏
[∆𝐹1(𝑡) − ∆𝑃𝑏𝑎𝑡1(𝑡)]                                            (3-135)  

∆�̇�𝑃𝑉1(𝑡) = (𝑏1 − 𝑎1)∆𝑃1(𝑡) − 𝐶1∆𝑃𝑃𝑉1(𝑡) + 𝐾1∆𝑃𝐶1(𝑡)           (3-136)                                                                           

∆�̇�2(𝑡) = −
𝑅

𝑇𝑔
∆𝐹2(𝑡) −

1

𝑇𝑔
∆𝑃2(𝑡) +

1

𝑇𝑔
∆𝑃𝐶2(𝑡) +

1

𝑇𝑔
∆𝑃𝐿3(𝑡)                                                              (3-137)                        

∆�̇�3(𝑡) =
1

𝑇𝑡
∆𝑃2(𝑡) −

1

𝑇𝑡
∆𝑃3(𝑡)                                                   (3-138)                                                                                           

∆�̇�4(𝑡) =
𝐾𝑟𝑇𝑟

𝑇𝑡𝑇𝑟
∆𝑃2(𝑡) + (

1

𝑇𝑟
−

𝐾𝑟𝑇𝑟

𝑇𝑡𝑇𝑟
)∆𝑃3(𝑡) −

1

𝑇𝑟
∆𝑃4(𝑡)              (3-139)                                                                            

𝐴𝐶𝐸1(𝑡) = ∆𝑃𝑡𝑖𝑒(𝑡) =
2𝜋𝑇12(∆𝐹1(𝑠)−∆𝐹2(𝑠))

𝑠
                                       (3-140)                                                                         

𝐴𝐶𝐸2(𝑡) = −∆𝑃𝑡𝑖𝑒(𝑡) + 𝐵∆𝐹2(𝑡)                                                          (3-141) 

∆�̇�𝑡𝑖𝑒(𝑡) =
1

𝑇𝑈𝑃𝐹𝐶1
[2𝜋𝑇12 (∆𝑃𝑃𝑉1(𝑡) + ∆𝑃𝑓𝑖𝑙𝑡1(𝑡) + ∆𝑃𝑊1(𝑡) − ∆𝑃𝑏𝑎𝑡1(𝑡)) − ∆𝑃𝑡𝑖𝑒(𝑡) − ∆𝐹2(𝑡) −

∆𝑃𝐿1(𝑡)]                 (3-142)                                                                     

Where ∆𝑃𝑃𝑉1(𝑡) is the power change of PV, ∆𝑃1(𝑡) is the intermediate power change of PV, ∆𝑃𝑡𝑖𝑒(𝑡) is 

the total tie-line power change in this system, ∆𝑃2(𝑡), ∆𝑃3(𝑡), and ∆𝑃4(𝑡) are the power change of governor, 

steam turbine, and re-heater, respectively.  ∆𝐹1(𝑡), and ∆𝐹2(𝑡) are the frequency deviations of area 1 and 

area 2, respectively, ∆𝑃𝐶1(𝑡) and ∆𝑃𝐶2(𝑡) are the control action of area 1 and area 2, respectively, ∆𝑃𝐿1(𝑡), 

∆𝑃𝐿2(𝑡), and ∆𝑃𝐿3(𝑡) are the load changes, 𝐵 is the frequency bias factor, and 𝑅 is the regulation parameter 

(Hz/p.u.MW). The definitions of other parameters are listed in the nomenclature section. The state-space 

models of the stand-alone micro-grid system used in chapter 8 are described in Appendix C. More so, the 

modeling of UPFC used in the proposed system model is described in ref [26]. 

3.10 Adaptive MPC-Based Power Scheduling of Renewable Energy-Based Micro-grid 

AMPC is a control strategy used in micro-grids and has vast potential for addressing numerous complex 

problems in the area of micro-grids. While other proven methods can be used to control micro-grids, AMPC 



69 

 

offers a generalized structure for handling most of the concerns in an organized way using some common 

ideas. The approach taken into consideration in this study is primarily to adaptively control the EMS in 

micro-grid (power management) to ensure a reliable supply of electrical power to local load consumers. 

The primary responsibility of the adaptive controller is to coordinate and, at the same time, manage the 

power in the micro-grid network by suitably allowing the optimal operation of each generation unit. The 

problem of AMPC-based optimization offers a solution that indicates an input trajectory and states in the 

future that meets operational constraints while optimizing those parameters. For each sampling instant, an 

optimal plan is formulated based on generation and demand forecast and similarly on the knowledge of the 

level of energy storage. More so, the first element in the control sequence is introduced, and the horizon is 

moved [26]. Therefore, using the newly available information, a new optimization problem will be solved 

at the next sampling time. The new optimal design will theoretically compensate for the disturbance that 

acts on the micro-grid by using the feedback mechanism. AMPC is responsible for the efficient operation 

of the micro-grid under consideration [68, 220]. The principal sources of uncertainty in this energy 

management problem are due to incident irradiation, wind speed, and load power forecast. Therefore, the 

conventional MPC is not successful in managing the varying dynamics of renewable sources, as its control 

efficiency is deteriorating due to variations in their production capacity. Hence, it is appropriate to use the 

AMPC controller, which updates the plant's internal model for any changes in operating conditions. Figures 

3-3 and 3-4 show the block diagram and the flowchart of the AMPC-based EMS control scheme [68, 157]. 

The state-space model of Equations (3-143a) and (3-143b) are often utilized to model an AMPC, which 

admit expressions as:  

𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)                                                                (3-143a)                                                                

 𝑦(𝑡) = 𝐶𝑥(𝑡)                                                                                                  (3-143b) 

Where the system state composed of the charging state of the Energy Storage Systems (ESSs) is given as, 

𝑥(𝑡), similarly, the manipulated vector variables, consisting of the dispatchable generation and the power 

exchanged by the ESSs, are given as, 𝑢(𝑡) and the output vector, which in this case corresponds with the 

state as 𝑦(𝑡). Hence, the AMPC's state-space model can be implemented and can be solved at the same 

time using Quadratic Programming (QP). As with any network, micro-grids are susceptible to disturbance 

during normal operation. There are two simple sources of disturbance in micro-grids: the power generated 

by the RESs (which is usually non-dispatchable) and the power demanded. These are external inputs to the 

system, which the controller cannot manipulate. As renewable sources are used for the generation, this 

makes them a problem to be solved by the control system because of their time-varying existence, the 

complexity of prediction, and lack of manipulative capability. The initial formulation of AMPC does not 

contain disturbances, but in this context, several AMPC strategies have been introduced to ensure stability 
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and adherence to constraints [239]. Note that the feedback mechanism allows AMPC to reject disturbances, 

like any other controller. If disturbances can be measured (or estimated), however, their impact on the 

output can be included in the dynamic model. Thus, the controller can predict their influence on system 

performance. In this way, AMPC will have a feedforward effect inherently. The impact of these 

disturbances, 𝑑(𝑡), can be applied to the AMPC state-space formulation. Hence, the system's dynamic 

model can be written as [5]: 

𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐵𝑑𝑑(𝑡)                                                (3-144a)                                                                   

 𝑦(𝑡) = 𝐶𝑥(𝑡)                                                                                    (3-144b) 

Where 𝐵𝑑 is the matrix quantifying the effect of disturbances on the states. Now, the forecast includes 

disturbance values along the horizon that can be calculated (in the case of RESs, weather forecasts may 

provide them) or that may be considered constant and equal to the current 𝑑(𝑡) value. The discrete-time 

space models of Equation (3-145a) and (3-145b) are obtained mainly by discretization with sample time 𝑇𝑠, 

which are given by the following Equations [240]: 

𝑥(𝑘 + 1) = 𝐴𝑑𝑥(𝑘) + 𝐵𝑈(𝑘) + 𝐵𝑑𝑑(𝑘)                                                      (3-145a)                                   

 𝑦(𝑘) = 𝐶𝑥(𝑘)                                                                                  (3-145b)                                                                                                                                

Where 𝑥(𝑘 + 1), 𝑥(𝑘), 𝑑(𝑘), 𝑈(𝑘), and 𝑦(𝑘) are the discrete-time forms of 𝑑𝑥(𝑡)/𝑑𝑡, 𝑥(𝑡), 𝑑(𝑡), 𝑈(𝑡), 

and 𝑦(𝑡), respectively, 𝐴𝑑 = 𝑒𝐴𝑇𝑠, 𝐵1𝑑 = ∫ 𝑒𝐴𝑡𝐵𝑑𝑡
𝑇𝑠

0
, 𝐵2𝑑 = ∫ 𝑒𝐴𝑡𝐵1𝑑𝑡

𝑇𝑠

0
. The incremental form of 

Equations (3-146a) and (3-146b) are expressed as follows [8], [241]: 

∆𝑥(𝑘 + 1) = 𝐴𝑑∆𝑥(𝑘) + 𝐵∆𝑈(𝑘) + 𝐵𝑑∆𝑑(𝑘)                                (3-146a)                                                                           

 ∆𝑦(𝑘) = 𝐶∆𝑥(𝑘)                                                                                          (3-146b)                

Where ∆𝑥(𝑘 + 1), ∆𝑥(𝑘), ∆𝑑(𝑘), ∆𝑈(𝑘) and ∆𝑦(𝑘) are the incremental forms of 𝑥(𝑘 + 1), 𝑥(𝑘), 𝑑(𝑘), 

𝑈(𝑘), and 𝑦(𝑘), respectively. 

 

Figure 3-3: Block representation of Adaptive MPC Control Unit [68] 
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Figure 3-4: Flowchart of ems-based AMPC algorithm[68] 

The MPC is widely divided into two parts: a model identifier for obtaining plant predictions provided by 

the optimizer, and an optimizer for deriving control action [242]. Therefore, in order to solve the cost 

function, the MPC optimizer adopts the receding horizon concept. It is also worth noting that only the first 

component corresponding to the first instant prediction of the optimal solution is retained, and this 

optimization process is repeated until an optimal control output is obtained that satisfies all the constraints 

involved. However, determining the controller stability in indirect adaptive control techniques is unwieldy 

for time-varying non-linear systems. AMPC is also divided into two parts, the identifier for the plant model 

and the synthesizer for the controller [243]. The following objectives were explicitly taken into account in 

the development of AMPC: track the SOC and LOH references in predicted conditions, limit the fuel cell 

and electrolyser power rate to protect this costly equipment from extensive usage, protect the battery bank 

against deep overcharging and discharging. Therefore, it is easier to use the battery in a micro-grid with 

hydrogen storage as the first form of energy storage wherever possible. Since the efficiency of the hydrogen 

is much lower than the efficiency of the batteries, this approach is only used when there is a huge imbalance 

between supply and demand. Hence, the AMPC actualizes these goals by formulating a deterministic 

optimization model with an appropriate objective function and many constraints [220, 242]. 

3.11 Adaptive MPC Controller Design of Two-Area Power System with a Stand-Alone Micro-grid 

In this section, in order to implement Model Predictive Control (MPC) based on adaptive mode, a 

conventional model predictive controller for the nominal operating conditions of the control system is 

designed. Then the plant models and the nominal conditions used by the MPC controller are updated over 

time and remain constant over the prediction horizon [244]. Moreover, an AMPC algorithm is used to fine-

tune the weights of different targets spontaneously, as per the state of the systems. The main idea of the 

proposed technique is to use a discrete-time space model to formulate a system dynamic characteristic of 

the LFC problem, and then to obtain a predictive dynamic model by simply introducing an expanded state 
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vector. Therefore, based on the cost function, a rolling optimization of the control signal is implemented by 

minimizing the weighted sum of squared predicted errors and square future control values [242], [245]. The 

expanded discrete-time state-space model formulations from the controller design are discussed in ref [26]. 

The detailed structure of the proposed control scheme (AMPC) for the LFC problem of a multi-area 

interconnected power system with renewable energy sources is depicted in Figure 3-5 based on the above 

analysis. Moreover, the flow chart of the proposed control scheme adopted in this study is shown in Figure 

3-6. 

 

Figure 3-5: Block diagram of an AMPC scheme for the optimal LFC problem under study 

 

Figure 3- 6: The flowchart of AMPC for the LFC problem in a multi-area interconnected power system 
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3.12 Chapter Summary 

This chapter presented the mathematical modeling of the dynamic behavior of the various micro-grid 

systems used in this thesis (grid-connected and stand-alone micro-grid). A detailed derivation of the 

mathematical thermo-electrical model was described, considering the wavelength-specific effects to 

enhance the predictions of temperature and module performance. More so, the system modeling of the 

stand-alone micro-grid system that is used in the subsequent chapter have been discussed. The system 

model is used to investigate the optimal control strategy to efficiently manage the stand-alone micro-grid 

used in the next chapter. Furthermore, the research methodologies used to solve different control and energy 

management issues in the micro-grid systems of the subsequent chapters have been discussed. This chapter 

also discussed the formulations of the EMS-based AMPC optimization problem, cost functions, dynamic 

system constraints, and the control-oriented linear model, which are to be solved by the proposed algorithm 

(AMPC). More so, the fundamentals, ideas, and formulations of the AMPC control technique have been 

discussed. The mathematical modeling and the research methodologies described in this chapter are used 

in the subsequent chapters to investigate the various cases and to address issues related to the control and 

energy management system in micro-grid operation. The simulation results obtained due to the 

implementation of the methodologies discussed in this chapter are outlined and discussed in subsequent 

chapters. 
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CHAPTER FOUR 

 OPTIMAL CONTROL STRATEGY FOR ENERGY MANAGEMENT IN A 

STAND-ALONE MICRO-GRID 

4.1   Introduction 

This chapter investigates an optimal control strategy that efficiently manages a stand-alone residential 

micro-grid comprising of renewable and non-renewable energy sources. An adaptive model predictive 

control (AMPC) algorithm is implemented for choosing an optimal mode and set of inputs for the system 

to track both a constant and load-varying power demand profile. However, in order to implement MPC 

based on adaptive mode, a traditional MPC controller is designed for the nominal operating conditions of 

the control system, and then the plant models and nominal conditions used by the MPC controller are 

updated at run time and then remain constant over the prediction horizon. This suggests there is a need to 

self-learn the theory, design technique, and implementation of MPC in a simulation-oriented fashion. Most 

of the challenges faced in the implementation of traditional MPC are the system identification of the plant, 

design technique of MPC in MATLAB and Simulink, the tuning art of MPC as well as the simulating of 

the MPC with non-linear plant in Simulink. Therefore, in the bid to fully understand how MPC is designed 

and implemented in an electrical network, the MPC controller is used in a wavelength-based thermo-

electrical model of a photovoltaic (PV) module. The essence of this model is mainly to predict the impact 

of each module wavelength on both the temperature and the output power of the PV module. More so, since 

the output power is affected by the module temperature, it is expedient to design a controller that locates 

the optimal cut-off spectral wavelength to lessen the module temperature, therefore, getting the most out of 

the output power over a period of time. In this vein, a Model Predictive Controller whose objective is to 

maximize the output power by simply controlling the input power through filtering the spectrum 

wavelength is designed for a Photovoltaic (PV) system. The main objective of this case study is to improve 

the PV module efficiency by using an optimal control scheme to design an active filtering process that 

enhances the output power through controlling the input power. The detailed derivation of the mathematical 

thermo-electrical model considering the wavelength-specific effects, which permits improving the 

predictions of temperature and module performance, are discussed in the previous chapter. The design and 

simulation of the plant model, as well as the MPC controller, are carried out on the MATLAB/Simulink 

environment. Subsequent to the above investigation, the PV system is used as a renewable source in a 

micro-grid that consists of a fossil fuel energy plant and grid-level energy storage. The residential customer 

is modeled using an expected demand. The objective of the optimal control scheme is for the generation to 

meet the demand, minimize the use of fossil fuels and ensure the energy storage is always maintained 
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around a nominal point such that it is not over-depleted. Hence, the formulation of the cost function, system 

constraints, system dynamics, and the control scheme are discussed in the previous chapter. This chapter 

presents the results and analysis obtained in the two case studies conducted. 

4.2   Description of the System Models  

In this section, the MATLAB/Simulink environment is used to model the system dynamics of the two cases 

investigated in this chapter. The first model is the wavelength-based thermo-electrical model of a PV 

module. The purpose of the model is to accurately predict the impact of each module wavelength on both 

the temperature and the output power of the PV module. The various thermal and thermo-electrical models 

in literature [9], [207] that predict the PV module temperature, output power, and the interaction between 

them have some shortcomings. Firstly, the estimated input power in these models depends on the 

supposition that the generated current is proportional to the total power density of the incident solar 

irradiance ignoring the wave-specific effects. Notably, the PV cell reacts to a specific wavelength range of 

the sun-oriented irradiance to create power. This range relies upon the photovoltaic material. In this manner, 

just this segment of the solar irradiance ought to be taken into account to compute the input power to the 

PV material. Secondly, these models, therefore, utilized a constant absorption coefficient for all 

wavelengths neglecting the various optical properties of the distinctive module layers and the internal light 

reflections between these layers. This possibly influences the predictions of the model input and output 

power. Moreover, the temperature of the PV module is a function of the thermal properties of the material 

composing the module, the incident radiant power density, the heat transfer exchange with the surroundings 

and the output electrical power [246], [247]. 

 

Figure 4-1: Heat transfer and exchange of energy in the PV module 

Similarly, the PV system used previously is integrated into the stand-alone micro-grid system in case study 

2. The MATLAB/Simulink environment is used to model the system dynamics of the renewable energy-

based micro-grid depicted in Figure 4-2. The micro-grid system consists of three energy sources, such as a 

PV system, a storage system (SS), and a diesel generator (DG). The 50𝑘𝑊 PV solar system is the 
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representative of renewable energy sources used. The storage system has been approximated for a 

maximum storage capacity of 800𝑘𝑊ℎ using an energy/power flow model with self-discharge depicting 

the losses incurred with the storage bank, which allows for bi-directional power flows to/from the micro-

grid. The DG considered is a commercially available  150𝑘𝑊 diesel-powered generator whose usage is to 

be maintained at a minimum. 

 

Figure 4-2: The model-based design description of the micro-grid under study 

4.3   Simulation Results and Discussions 

This section presents the results of the MATLAB/Simulink simulation of the two case studies. The first 

case study is to locate the optimal output power of the PV module at each ambient temperature and also to 

investigate the tracking response performance of the MPC controller between the module temperature and 

the reference temperature of the PV module.  

4.3.1 Scenario 1: Location of the Optimal Power at Each Ambient Temperature 

In this section, a Simulink model was utilized for the Design of Experiment (DOE), so as to find the optimal 

output power at each ambient temperature, 𝑇𝑎𝑚𝑏. The DOE has two essential input factors, the ultraviolet 

(UV) cut-off wavelength 𝜆𝑈𝑉 and ambient temperature 𝑇𝑎𝑚𝑏. Thus, these input factors of DOE presume 

that the UV cut-off wavelength range is 300 ≤ 𝜆𝑈𝑉 ≤ 430 divided into 14 levels, and the ambient 



77 

 

temperature range is 280 ≤ 𝑇𝑎𝑚𝑏 ≤ 340 divided into 10 levels. Meanwhile, at each simulation, both the 

PV output power and the temperature are measured and recorded. Notice that the duration of the simulation 

must be based on the time constant of the system. 

 
Figure 4-3: System model for the design of experiment (DOE) 

The heat capacity of the module is calculated using the parameters given in Table D-1. The inputs to this 

model are ultraviolet wavelength 𝜆𝑈𝑉, the infrared wavelength 𝜆𝐼𝑅 (it is constant and has a value of 

11,100nm), the ambient temperature, 𝑇𝑎𝑚𝑏, and the wind speed, WS. 𝑇𝑎𝑚𝑏 and 𝑊𝑠𝑝𝑑 are the measured 

inputs and  𝜆𝑈𝑉 is the manipulated variable. The PV model computes the heat transfer and the input power 

using Equations (3-10) and (3-21), respectively. The PV plant outputs are the module temperature and 

output power, of which both are measurable quantities. Figure 4-4 depicts the plot of the representation of 

the PV module output power against the ambient temperature and, likewise, the PV temperature against the 

ambient temperature. Hence, it can be seen that the relationship between the PV output power and ambient 

temperature is inversely proportional, as said earlier, the higher the ambient temperature, the lesser the 

output power of the PV module. The PV temperature has an increasing relationship with ambient 

temperature. Moreover, at each ambient temperature, the maximum output power is selected. Therefore, a 

linear fit expression is generated for the ambient and PV module temperature that maximizes the PV module 

output power. The expression for the linear fit between the PV temperature and the ambient temperature is 

given as: 

𝑇𝑚 = 0.916𝑇𝑎𝑚𝑏 + 79.79                                                                                                                      (4-1) 

More so, the reference PV module temperature for MPC is generated by using Equation (4-1), and then, the 

controller will attempt to maintain this reference temperature by manipulating the cut-off wavelength 𝜆𝑈𝑉, 

so that at any given ambient temperature, the maximum output power can be generated. 
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Figure 4-4: The output power and temperature of a PV module against the ambient temperature 

4.3.2 Scenario 2: Generation of data required for system linearization from the PV module 

The generation of an approximate linearized plant model is essential for designing an MPC controller. In 

this section, the input-output data that is required for the system identification are extracted. As earlier said, 

the thermo-electrical model given in Equation (3-1) is used as the plant that data are derived from it. 

Therefore, in order to generate the necessary data for linearization, two-step changes in 𝜆𝑈𝑉 is connected 

with the plant model. The ultraviolent wavelength, 𝜆𝑈𝑉  has a value that changes from minimum (300 nm) 

to maximum (430 nm) and thenceforth back to the minimum (300 nm). Figure 4-5 depicts the System model 

utilized to generate the data required for the system linearization from the PV module. From Figure 4-5, it 

is seen that the wind speed and the ambient temperature are provided as a lookup table as these inputs 

change dynamically with time. The manipulated input 𝜆𝐼𝑅 is maintained at a value of 1100 nm. The module 

temperature and output power would dynamically be affected due to the reduction in the module input 

power when the value of 𝜆𝑈𝑉 is changed to a value higher than 300 nm. Therefore, stepping the value of 

𝜆𝑈𝑉 from 430 to 300 nm increases the input power, which, therefore, increases the module temperature. 

Figure 4-5 is used to extract the matrix components A, B, C, and D that are augmented state-space models 

used in predictive control design. These components are extracted from the system model and are 

represented in a state-space format. The results of the system linearization are as follows: 

System identification of the PV_Linear_Model 

Stp_size = 10                (4-2) 
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System = Discrete-time identified state-space model: 

𝑥(𝑡 + 𝑇𝑠) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐾𝑒(𝑡)                          (4-3) 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) + 𝑒(𝑡)               (4-4) 

𝐴 = [
0 1 0
0 0 1

0.9681 −2.936 2.9677
]  , 𝐵 = [

−0.0007632
−0.0007444
−0.0007262

] ,  𝐶 = [1 0 0] , 𝐾 = [
0
0
0
],  𝐷 = [0]      (4-5) 

Sample time: 10 seconds, Discrete-time state-state model. 

 
Figure 4-5: System linearization from the PV module 

 

Figure 4-6: System identification of the input and output parameters of the PV module 
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Figure 4-6 shows the system identification of the input (ultraviolet wavelength 𝜆𝑈𝑉) and output (PV module 

temperature 𝑇𝑚𝑜𝑑𝑢𝑙𝑒 and output power 𝑃𝑜𝑢𝑡) parameters of the PV module. It is evident in Figure 4-6 that 

at a wavelength of 300 nm, there is a reduction in the temperature of the PV module. Whereas the PV output 

power increases at that value of the ultraviolet wavelength, and this takes place for 2520 seconds. At 2520 

seconds, the value of the ultraviolet wavelength increased to 430 nm. It maintained the value until 6120 

seconds; during this period, the PV module temperature decreases drastically, which consequently increases 

the output power of the PV module. Subsequently, the value 𝜆𝑈𝑉 further reduced to 300 nm, which at the 

same time affects both the PV module temperature and output power, as shown in Figure 4-6. Subsequent 

to the system linearization of the PV module, it is essential to determine the accuracy of the data generated 

from the linearized model by comparing it with the actual data before linearization. Figure 4-7 depicts the 

response of actual and linearized data for step changes. A function called compare was used to generate a 

comparison plot between the linearized model and the actual data of the PV module under study. The match 

percentage, as seen in Figure 4-7 is 92.36%, which signifies a good match between the linearized model 

and the actual plant. 

 

Figure 4-7: Simulated response comparison of the linearized and actual plant model data 

4.3.3 MPC Controller Tracking Performance of the PV Module Temperature 

MPC control is a robust control scheme used in the industries to control sophisticated appliances that have 

to do with the prediction of their future output. Therefore, providing MPC with the constraints for the 

actuators, their rates, together with the range for the outputs, permits the MPC quadratic solver to select 

physically obtainable values, also lessening the tuning time. The range of 𝜆𝑈𝑉 is [300, 430] nm. The range 

for 𝑇𝑚 is not completely known as it relies on the solar irradiance conditions, wind speed and ambient 
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temperature in addition to 𝜆𝑈𝑉. A broad range value of [62, 482] F was selected to investigate the impact 

of temperature on PV power efficiency. Meanwhile, the MPC controller is designed to provide a change in 

frequency ∆𝜆𝑈𝑉 rather than an absolute value of 𝜆𝑈𝑉. This practice in control design is prevalent. More so, 

the range of ∆𝜆𝑈𝑉 is [0, 130] nm whereas the nominal value for 𝜆𝑈𝑉 is 300 nm. Similarly, the range of ∆𝑇𝑚 

is [-100, 100] F while the nominal value for 𝑇𝑚 is 372 ℉. The system identification process obtained from 

Figure 4-5 was used to generate the nominal values of 𝑇𝑚 and 𝜆𝑈𝑉. To design the MPC controller, the linear 

model obtained in Figure 4-5 was loaded and simulated on MATLAB/Simulink, and then the MPC 

Designer App GUI was opened to starting the MPC controller design process. The controller was 

configured using the MPC structure button. The plant model (Linearized) was imported to generate an MPC 

controller for the plant model. The MPC Designer APP requires that the inputs and outputs be scaled. 

Subsequent to the scaling, the controller is then tuned, then the prediction and control horizon for MPC 

were selected. Therefore, in order to select the control and prediction horizon, it is imperative to know the 

time constant as well as the sampling frequency of the sensors. The control and prediction horizons were 

set to 2 and 10 respectively for better performance of the controller. 

 
Figure 4-8: The simulation of the MPC controller 

 

Figure 4-9: Overall simulation of MPC controller with the PV model 
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Furthermore, the constraints tab was used to define the range of the actuators, their rates, and the output. It 

is worth mentioning that the linear PV model, combined with the MPC controller, was utilized to simulate 

the design under study. The simulation of the MPC controller is depicted in Figure 4-8, which shows the 

block assembly of the components.  Figure 4-9 shows the overall simulation of the MPC controller with the 

PV model. More so, it shows the integration of the designed MPC into the Simulink environment for 

evaluating the designed controller. 

 

Figure 4-10: MPC controller performance for the first 2160 seconds of the simulation 

 

Figure 4-11: MPC controller performance for the first 1:40 hours of the simulation 
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Figure 4-12: MPC controller performance for 3 hours of the simulation 

 

Figure 4-13: MPC controller performance for 9 hours of the simulation 
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Figure 4-14: MPC controller performance for 12 hours of the simulation 

 

Figure 4-15: MPC controller performance for 14 hours of the simulation 
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Figure 4-16: MPC controller performance for 18 hours of the simulation 

 

Figure 4-17: MPC controller performance for 24 hours of the simulation 
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Figures 4-10 to 4-17 show the study of MPC controller performance in terms of good tracking response at 

different hours of the simulation. The simulation was run for 24 hours, and the tracking performances of 

the MPC were investigated at various hours of the simulation. The tracking response of Figures 4-10 to 4-

14 is fairly good, as it is evident, that the module temperature is lower than the reference temperature. 

Moreover, the MPC commands the lowest  𝜆𝑈𝑉 value, which is 300 nm. This results in filtering, which in 

turn will generate the highest PV module temperature obtainable at the given ambient conditions. Figures 

4-15 to 4-17 depict good tracking response of the MPC controller, as it is evident in these figures, the 

module and reference temperature are precisely on each other, which therefore shows excellent tracking 

performance. Hence, it is noticed from Figure 4-14 to 4-17 that, at about 2 hours, power is at the maximum 

value of this portion of the simulation. 

Similarly, this section further presents the results of the MATLAB/Simulink simulation of Figure 4-2. The 

problem to be solved by the AMPC control algorithm is to perform an optimal power reference tracking 

problem, where the consumption of energy from the diesel generator is minimized while maximizing the 

efficiency of the storage bank. The AMPC control technique is implemented for choosing an optimal mode 

of inputs for the system for tracking both a constant and load-varying power demand profile. Therefore, the 

main goal is to maximize the use of renewable sources and minimizing the use of traditional sources. 

4.3.4 Reference Power Profile 

The load reference profile obtained from [215] for a 24hrs time horizon and is shown in Fig. 4-18. This 

power demand profile reflects real-world characteristics and has a peak power demand of 180kW. In this 

context, the reference to be tracked is modeled as in Equation 4-6, where the power from the solar plant is 

subtracted from the consumer load to provide the full reference power that the micro-grid needs to deliver. 

Therefore, other renewable energy sources can, at this point, be used further to reduce the power levels of 

the demand profile. 

 𝑃𝑟𝑒𝑓 = 𝑃𝑙𝑜𝑎𝑑 − 𝑃𝑠𝑜𝑙𝑎𝑟(𝑡)              (4-6) 

 

Figure 4-18: Consumer load power 
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Figure 4-18 is the reference power demand curve that would need to be met by the energy management 

unit. The power demand profile is known 24hrs in advance. Having a reference power profile to meet 24hrs 

in advance is a standard model that is currently in use by energy exchanges where 15min intervals that are 

bid reserved and sold 24hrs in advance. While this allows for an efficient overall strategy, near term load 

demands are mostly met by the surplus that is passed to the micro-grid as a factor of safety. The proposed 

model can efficiently manage power demands that are made known a few minutes to hours in advance. 

Meeting such immediate demands is limited to the response rate of the fastest energy producer, which in 

this case, is the energy storage. 

 

Figure 4-19: Optimal control inputs for tracking a 50-kW constant load 

 

Figure 4-20: Trajectory followed by the state variables with a 50-kW constant load 



88 

 

 

Figure 4-21: The load power and cost value with a 50-kW constant load 

 

Figure 4-22: Optimal control inputs for tracking a 50-kW constant load 

 

Figure 4-23: Trajectory followed by the state variables with a 50-kW constant load 
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Figure 4-24: The load power and cost value with a 50-kW constant load 

Figures 4-19 to 4-21 depict the three sets of control inputs commands, the trajectory followed by the state 

variables, the remaining load power (Generations-Consumptions), and the corresponding iteration cost 

obtained from tracking a 50-kW power reference load (constant). Notice that all simulations are run using 

the set of initial conditions. The reference to be tracked is modeled as Equation (4-6), where the power from 

the solar system is subtracted from the consumer load to provide the full reference power that the energy 

sources will need to deliver. This means that the solar system is the primary source of the small-scale micro-

grid; the diesel plant only supplies the remaining load demand reference that the solar system could not 

meet. The objective is to use the AMPC control algorithm to optimally track this power reference, such that 

the consumption of energy from the diesel generator is minimized while maximizing the efficiency of the 

storage bank. Hence, the simulation here was performed in hours for a total of 24 hours spanned. It is 

evident from Figures 4-19 to 4-21 that the power produced by the diesel generator does oscillate about a 

constant value of 50-kW, as it is trying to follow the reference. Furthermore, it is seen that as the diesel 

generator tries to stabilize, the hybrid state continues to switch from one mode to another, as it is expected 

since the system is trying to find the correct balance between the two sources (diesel generation and storage 

system). Thus, it is clear that as the diesel generator is delivering the required power, the power produced 

by the energy storage system drops. The simulation was further run for 60 hours to investigate the tracking 

performance of the proposed algorithm with regards to the supply and the constant load demand reference. 

Figures 4-22 to 4-24 show the outcome of the simulation. It is evident from the result that, when the diesel 

plant reaches its generation limit, the battery starts supplying the load demand until its SOC value gets to 

its limit.  
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Figure 4-25: Optimal control inputs for tracking a load-varying profile reference (𝑊𝑥[2,5,10]) 

 

 Figure 4-26: Trajectory followed by the state variables with a load-varying profile reference (𝑊𝑥[2,5,10]) 



91 

 

 

 Figure 4-27: The load power and cost value with a load-varying profile reference (𝑊𝑥[2,5,10]) 

 

Figure 4-28: Optimal control inputs for tracking a load-varying profile reference (𝑊𝑥[5,2,20]) 
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Figure 4-29: Trajectory followed by the state variables with a load-varying profile reference (𝑊𝑥[5,2,20]) 

 

Figure 4-30: The load power and cost value with a load-varying profile reference (𝑊𝑥[5,2,20]) 
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Figure 4-31: Optimal control inputs for tracking a load-varying profile reference (𝑊𝑥[5,2,40]) 

 

Figure 4-32:Trajectory followed by the state variables with a load-varying profile reference (𝑊𝑥[5,2,40]) 
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Figure 4-33: The load power and cost value with a load-varying profile reference (𝑊𝑥[5,2,40]) 

In a similar vein, to further assess the robustness of the proposed controller, a load-varying reference profile 

is used instead of the 50-kW constant load. Figures 4-25 to 4-33 show the performance of the system when 

subjected to these control inputs. Similar to the previous cases, the power required to deliver such a 

reference profile is a combination of both the diesel generator and the storage bank. The simulations were 

run at several tracking weights to investigate how the proposed algorithm is used to fine-tune the weights 

of different targets spontaneously, as per the states of the system. It is also evident from the results that the 

diesel generator provides most of the power after the solar generation has depleted its energy on the varying-

load demand. The diesel generator reaches its maximum capacity after about 20 hours, the time at which a 

mode switch is required. Consequently, the rest of the power needs to be provided by the battery. However, 

the battery capacity is not enough to provide the 30kW left to deliver the required power load. This is one 

of the cases where the reference profile load is being well tracked, but due to the limitations on maximum 

power delivered by the energy sources, the full power demanded by the load cannot be met. 

4.4   Chapter Summary 

This chapter investigated an optimal control strategy that efficiently manages a stand-alone residential 

micro-grid comprising of renewable and non-renewable energy sources. An adaptive model predictive 

control algorithm is implemented for choosing an optimal mode and set of inputs for the system to track 

both a constant and load-varying power demand profile. Therefore, to understand how MPC is designed 

and implemented in an electrical network, the MPC controller is used in a wavelength-based thermo-



95 

 

electrical model of a photovoltaic (PV) module. The MPC is used to predict the impact of each module 

wavelength on both the output power and the temperature of the PV module based on the individual energy 

contribution of wavelength. This designed model has been able to show its prediction accuracy of the 

interaction between the module output power and its temperature. A predictive model controller was 

designed to maximize the PV output power by controlling the input power by filtering the spectrum 

wavelength for a PV system. From the results, the MPC controller shows an excellent tracking response 

performance between the module temperature and the reference temperature of the PV module. 

Consequently, the PV system used in the previous case was used as the renewable source in a residential 

micro-grid. The AMPC algorithm was implemented to track the power transmitted to residential micro-

grid. Hence, it follows a pre-specified reference power profile that is assumed to capture all variations seen 

in the real-world due to solar geometry and weather, among other factors. The main objective of delivering 

power to a consumer load from two different sources of energy was accomplished by a hybrid switching 

between charging and discharging modes of the storage system, as well as a convex logic implemented on 

the control inputs, that maximized the efficiency of the storage bank and minimized the consumption of 

energy from the diesel generator. Therefore, excellent results were obtained for tracking both a constant 

and a time-varying load reference power profile. The cost function was minimized, which guaranteed 

minimum usage of non-renewable energy sources as it maximizes the consumption of power delivered by 

a renewable energy source. The model used in this chapter is a small-scale residential micro-grid with few 

energy sources. The reference power profile was not completely met due to the limitations on the maximum 

power that can be delivered by the energy sources, as well as the restrictions on the storage capacity of the 

battery. More so, the only renewable source in the model is the solar system, which is unusual in a practical 

grid network. Hence, it is expedient to expand the micro-grid model to include the behavioral models of 

multiple energy producers and storage types. The next chapter presents the optimal management of grid-

connected micro-grids with diverse renewable energy sources and various energy storage systems. It further 

demonstrates how the use of an AMPC-based EMS can enhance micro-grid operation, provided there is 

effective forecasting. 
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CHAPTER FIVE 

ENERGY MANAGEMENT SYSTEMS IN A RENEWABLE ENERGY-

BASED MICRO-GRID 

5.1   Introduction 

The previous chapter investigated an optimal control strategy that efficiently managed a stand-alone 

residential micro-grid comprising of renewable and non-renewable energy sources. An adaptive model 

predictive control (AMPC) algorithm was implemented for choosing an optimal mode and set of inputs for 

the system to track both a constant and load-varying power demand profile. Therefore, to understand how 

MPC is designed and implemented in an electrical network, the MPC controller was used in a wavelength-

based thermo-electrical model of a photovoltaic (PV) module. The MPC was used to predict the impact of 

each module wavelength on both the output power and the temperature of the PV module based on the 

individual energy contribution of wavelength. The model used in the previous chapter is a small-scale 

residential micro-grid with fewer energy sources. The reference power profile was not completely met due 

to the limitations on the maximum power that can be delivered by the energy sources, as well as the 

restrictions on the storage capacity of the battery. Therefore, to solve this problem, the micro-grid model of 

the previous chapter is expanded to include the behavioral models of multiple energy producers and storage 

types. More so, in the quest to addressing the issues related to the energy management system (EMS) in 

micro-grid operations, this chapter adopts the adaptive model-based horizon control technique to solve the 

EMS-based optimization problem. Furthermore, the impact of integrating the disturbance prediction on 

the performance of the energy management system based on the adaptive model predictive control 

algorithm to improve the operating costs of the micro-grid with hybrid-energy storage systems was 

investigated. The AMPC solves the energy optimization problem in a renewable energy-based micro-grid 

with various types of energy storage systems that exchange energy with the host grid. More so, this 

optimization problem is resolved at each sampling period to determine the minimum running costs while 

satisfying demand and taking into account technical and physical constraints. The state-space model is, 

therefore, used to evaluate the impact of the introduction of disturbance predictions on the performance of 

the EMS-based micro-grid with hybrid energy storage systems. Additionally, this chapter studied the 

behavior of the proposed controller under various external conditions, such as weather and demand changes. 

The general methods which are to be adopted in this chapter to control the EMS-based micro-grid 

effectively and also to guarantee steady electrical power supply to the local load consumers have been 

discussed in chapter 3. The formulations of the cost function and the system constraints, which are to be 

solved (minimized) by the proposed algorithm (AMPC), have been presented in chapter 3. More so, the 
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dynamical mathematical modeling of the micro-grid components is also discussed in chapter 3 to 

understand how they are controlled and operated. Subsequently, two distinct kinds of renewable energy 

sources (RESs) are considered and studied independently (Photovoltaic and wind turbine generations). The 

MATLAB simulation results show how the AMPC can adapt to various generation scenarios, providing an 

optimal solution to power-sharing among the distributed energy resources (DERs) and taking into 

consideration both the physical and operational constraints and, similarly, the optimization of the imposed 

operational criteria.   

5.2   Description of the System Model under Study 

In this section, the MATLAB/Simulink environment was used to model the system dynamics of a renewable 

energy-based micro-grid network consisting of RESs (Photovoltaic, PV, Wind Turbine, WT) and Battery 

Storage system [237]. This micro-grid network was used to examine the impacts of integrating disturbance 

predictions on energy management system performance based on the proposed control technique used. We 

investigated two cases in this chapter; case 1 considers the micro-grid operation using the sustainable 

generation sources (PV and Wind sources), the fuel cell, the lead-acid battery, and the external grid. Hence, 

in order to compensate for the shortcomings in Lead-Acid battery as highlighted in Table D-7, a hybrid 

storage configuration with a lithium-ion battery was added in case 2. It is necessary to note that, during the 

micro-grid's normal operation, the energy generated does typically not meet demand. The battery bank is 

mainly utilized to store excess energy from renewable sources, but can also be used by the electrolysis 

process to produce hydrogen. 

Moreover, when power from renewable sources is not accessible, the generation deficits can be 

compensated by a fuel cell using hydrogen. The hydrogen storage network consists of a proton exchange 

membrane (PEM) electrolyser for hydrogen production and a metal hydride tank for hydrogen storage. In 

addition, power electronics are used to connect the components to the current DC bus. More so, both the 

fuel cell and the PEM electrolyser units have their own local controllers, which execute the commands for 

power conversion. Moreover, two DC-DC converters associated with fuel cell and electrolyser enable the 

DC bus to transmit power. 

Conversely, the lead-acid battery bank is directly plugged into the DC bus. Thus, the battery bank maintains 

the bus voltage, thereby simplifying the configuration. The DC micro-grid should, therefore, adopt this 

configuration option to minimize costs and improve reliability, as the batteries absorb any unbalance in the 

network [220]. Figures 5-1 and 5-2 demonstrate the design overview of the proposed micro-grid electric 

and control signal system for cases 1 and 2. Case 1 solved the EMS-based energy optimization problem 

using an AMPC algorithm in a renewable energy micro-grid consisting of generation sources (PV and Wind 

sources), lead-acid battery, fuel cell, and external grid with the inclusion of the three scenarios considered 
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in this chapter. Similarly, a renewable energy-based micro-grid, composed of the generation sources (PV 

and Wind sources), fuel cell, hybrid storage systems (lead-acid and lithium-ion battery), and the external 

grid is used to solve the EMS-based energy optimization problem with the inclusion of the three scenarios 

considered in this chapter in case 2. Therefore, a proper model of the dynamics relating to the uncertainty 

dimension of the micro-grid components should be considered in this design in order to design the micro-

grid network in an optimal way. 

 

Figure 5-1: The model-based design description of the proposed micro-grid system for case 1 

 

Figure 5-2: The model-based design description of the proposed micro-grid system for case 2 
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5.3   Simulation Results and Discussions 

This section presents the MATLAB/Simulink simulation of a renewable energy-based micro-grid network 

composed of RESs (Photovoltaic, PV, Wind turbine, WT) and battery energy system. This micro-grid 

network was utilized to test the control technique applied to energy management to show the impact of 

integrating disturbance predictions on its performance. Therefore, two cases of separate generation 

scenarios were investigated in order to show the effectiveness of the proposed AMPC scheme. Case 1, 

therefore, considered micro-grid operation using generation sources (Photovoltaic, PV or Wind Turbine, 

WT), lead-acid battery, fuel cell, and external grid. In order to have a hybrid storage configuration, a 

lithium-ion battery was added in case 2.  

The proposed micro-grid system shown in Figures 5-1 and 5-2 were simulated on the MATLAB/Simulink 

environment. The EMS-based energy optimization problem in a renewable energy micro-grid with different 

types of energy storage systems was solved using an AMPC control algorithm with or without the inclusion 

of disturbance predictions, which exchanges energy with the host grid. The problem of optimization is 

solved at each sampling time to determine minimum running costs when satisfying the demand and 

respecting the technical and physical constraints. The behavior of the proposed controller was studied under 

various external conditions such as weather and demand changes. Subsequently, we considered two distinct 

kinds of renewable energy sources (RESs), which were studied independently (Photovoltaic and wind 

turbine generations). The results of the MATLAB simulation demonstrate how the AMPC can adapt to 

different generation scenarios, providing an optimized solution for power-sharing among distributed energy 

resources (DERs) and considering both the physical and operational constraints, as well as optimizing the 

imposed operating criteria.  

Furthermore, three scenarios were investigated as regards the incorporation of disturbance predictions in 

the proposed control algorithm of EMS to examine the impacts of the level of disturbance predictions on 

its performance and to show the effectiveness of the control algorithm on the cost function minimization. 

More so, these three scenarios were simulated on the MATLAB/Simulink environment to compare these 

conditions with similar inputs. The performance criteria utilized to show the degree of effectiveness is the 

cost functions, 𝐽, defined in Equations (3-87a) and (3-87b). 

5.3.1 Micro-Grid Operation with Generation Sources and the Lead-Acid Battery Storage 

This section utilized Figure 5-1 to analyze the three scenarios, which are discussed in the following 

subsections. The first scenario is when the model used by the AMPC algorithm does not include any 

disturbance prediction. The second scenario is when disturbance prediction is incorporated into the model, 

but the controller does not have any information on the future evolution of disturbances (constant 
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disturbance prediction). Lastly, when the disturbance prediction is perfect (this is an optimal case that offers 

the best results that can be compared). 

5.3.1.1 Scenario 1: The AMPC formulation without integrating disturbances prediction  

In this section, the EMS-based energy optimization problem was solved in a renewable energy micro-grid, 

which comprises of generation sources (Photovoltaic, PV, Wind turbine, WT), lead-acid battery, fuel cell, 

PEM electrolyser and external grid using AMPC control algorithm. Simulations were conducted to study 

the controller behavior under various external conditions (changes in weather and demand) to illustrate the 

theoretical context. Two renewable sources (Photovoltaic, PV, Wind turbine, WT) were, therefore, 

considered and examined separately. Hence, in order to evaluate the performance of the control system 

under consideration of the proposed micro-grid of Figure 5-1, three distinct generation scenarios (Sunny, 

windy, and cloudy) were implemented over 24 hours simulation period without including disturbances.  

The first case is based on a sunny day, which has high solar radiation values and sunshine period. The 

power that the photovoltaic array generates is mainly concentrated during mid-day. This generation profile 

corresponds to a sunny day, with high irradiance during the central hours of the day, getting surplus energy 

and deficit at night. The EMS controls all of the storage units (batteries and hydrogen) to meet demand. 

Thus, the battery is used during the night to meet the demand until electricity is abundant. The battery then 

begins charging, and since there is still a surplus of energy, it is stored using the electrolyser in the form of 

hydrogen and then sells electricity to the grid. If PV generation is unable to satisfy the demand, the battery 

will be used again until depleted, and then the fuel cell will continue to produce electricity with a small 

contribution to the grid. Note that within their operating limits, SOC and LOH evolve almost freely, since 

the weights utilized in the cost function for the reference tracking are small.  A state-space AMPC is 

obtained using the model from Equations (3-119) and (3-120) without the consideration of the disturbance 

term. Figure 5-3 depicts the MATLAB/Simulink representation of the micro-grid model without 

disturbance prediction. 

 

Figure 5-3: MATLAB/Simulink representation of scenario 1 without disturbance prediction (Sunny, 

windy, and cloudy). 
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Figure 5-4: The power flow profile during the sunny day (scenario 1) without disturbances 

 

Figure 5-5: The level of storage during the sunny day (scenario 1) without disturbances 

During the first hour of the day, as shown in Figures 5-4 and 5-5, there is a power deficit requiring the 

battery to compensate for the deficit in the micro-grid system. Hence, the control system realizes the 

impossibility of meeting the demand entirely only with the battery, at about 7:30, the generation exceeds 

the load, and then continue to supply the load. Meanwhile, the battery continues to charge until its SOC 

reached its upper limit (75%), at that point, the electrolyser was switched ON to control the SOC level due 

to excess energy because the irradiance was very high. Hence, the energy surplus had to be stored in the 

form of hydrogen. The electrolyser's power consumption grew gradually, as illustrated in Figure 5-4. Note 

that, during the first operation of the electrolyser, the controller simultaneously exports surplus energy to 

the grid to prevent intensive use of the electrolyser and slowly decreases as the electrolyser uses more 

electricity.  Therefore, the battery begins discharging at 10:00 until the SOC value is close to the lower 
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threshold (40%). Then the controller decides to switch ON the fuel cell while simultaneously taking power 

from the grid to reach the reference point. The grid and fuel cell shared the demand for cost function based 

on their weights at the end of the day. The weights utilized in the Cost function are determined by power-

sharing among battery, electrolyser, fuel cell, and external grid. In the middle of the day, a significant excess 

of power is generated. Once the batteries are fully charged, and the maximum electrolyser capacity is 

achieved, a small amount of surplus energy is sold to the host grid. Despite the extensive use of the 

electrolyser, as the batteries are used during the evening to cover the energy deficit, the final amount of 

hydrogen does not really meet its initial value [248]. 

 

Figure 5-6: The power flow profile during the cloudy day (scenario 1) without disturbances 

 

Figure 5-7: The level of storage during the cloudy day (scenario 1) without disturbances 

In this scenario, due to the cloudy weather resulting in minimal or no availability of sunlight, the PV 

generation is unable to meet the demand for most of the day (most often, the net power is below zero). 

Figures 5-6 and 5-7 depict the power flow profile during periods of surplus or deficit energy and the storage 

level during cloudy days, respectively. The available resources such as the battery, fuel cell, and grid must, 
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therefore, supply any energy deficit within the micro-grid network. Hence, the EMS decides to utilize the 

battery to meet the load demand. Subsequently, the controller decides to switch ON the fuel cell even though 

the SOC is far from its minimum value (around t = 12 hour in a smooth way), which is also supported by 

the grid. It is worth mentioning that the controller does not activate the electrolyser, as there is no extra 

energy in the form of hydrogen to store. Meanwhile, during the second half of the day, when the battery's 

minimum SOC has been reached, the fuel cell and the external grid feed the load. The fuel cell satisfies the 

load request for nearly 12 hours, and the batteries are only utilized to balance the power within the micro-

grid. Following that, the batteries commit to supplying the power deficit. The batteries, however, reach their 

minimum SOC after 12.5 hours and again use the fuel cell. Therefore, the fuel cell is unable to satisfy the 

load demand on its own because of the thresholds in the power rate and the voltage limits, and it is required 

to purchase electricity from the grid. 

 

Figure 5-8: The power flow profile during the windy day (scenario 1) without disturbances 

 

Figure 5-9: The level of storage during the windy day (case 1) without disturbances 
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In this scenario, a wind turbine is considered as a renewable energy source, which generates excess power 

in the micro-grid. As can be seen in Figures 5-8 and 5-9, the wind turbine produced a significant fluctuation 

in electricity. A predominantly stored energy, therefore, enabled the electrolyser to operate for most of the 

day, and some surplus energy is sold to the grid. It should be noted that the power rate constraints integrated 

into the controller design, irrespective of the high fluctuation in power produced by the wind turbine, 

instigated a smooth operation of the electrolyser, the behavior of which was thus quite satisfactory. Thus, 

the battery still stores energy, but it gets filled up early (from t= 2 hours to 16 hours), only injecting power 

into the bus several times during that period. As there is an energy surplus for most of the day, there is no 

need to switch ON the fuel cell. This is also not subject to substantial consumption, which would drastically 

shorten its lifespan. The AMPC controller has adjusted the set points slowly according to the optimum 

estimated cost function. Moreover, by evaluating the cost function of the case of no disturbance prediction, 

we can, therefore, observe the impact on the micro-grid performance. The cost function, 𝐽 = 18.685, for 

the case of no disturbance prediction. 

5.3.1.2 Scenario 2: The AMPC formulation with the integration of both constant and perfect 

disturbances predictions  

Similarly, in this section, the EMS-based energy optimization problem was solved in a renewable energy 

micro-grid, which comprises of generation sources (Photovoltaic, PV, Wind turbine, WT), lead-acid 

battery, fuel cell, PEM electrolyser, and an external grid using the AMPC control algorithm. Simulations 

were conducted to study the controller behavior under various external conditions (changes in weather and 

demand) to illustrate the theoretical context. Two renewable sources (Photovoltaic, PV, Wind turbine, WT) 

were, therefore, considered and examined altogether. More so, in order to evaluate the performance of the 

control system under consideration on the proposed micro-grid of Figure 5-1, three distinct generation 

scenarios (Sunny, windy, and cloudy) were implemented over 24 hours simulation period with the 

integration of both constant and perfect disturbances predictions.  More so, we investigated the situation 

when the disturbances are incorporated into the model. Still, the controller does not have any information 

about the future evolution of disturbances (constant disturbance prediction). This approach is often utilized 

in AMPC control scheme, since there is no future information about the disturbance’s prediction, the most 

appropriate assumption is that the disturbance will be the same across the horizon as in scenario 1. However, 

if the information of future disturbance evolution is available, it can be incorporated into the AMPC 

formulation, then, the disturbances prediction is perfect (this is an optimal case that offers the best results 

that can be compared). In this case study, the disturbance is given by the net power, i.e., the difference 

between generation and demand, 𝑑(𝑡) = 𝑃𝑔𝑒𝑛(𝑡) − 𝑃𝑑𝑒𝑚(𝑡), which can be estimated at the current 
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instant time, t. Evaluating the Matrix expression of Appendix A, for the case of the integration of 

disturbance prediction in the AMPC algorithm, it results in the matrix form in Appendix A.  

Therefore, the effects of these disturbance predictions on the micro-grid performance are also investigated. 

Therefore, in order to compare both predictive disturbance situations, we performed some simulation with 

a constant disturbance based on the parameters given in Table D-3, with a shift in time horizon (𝑁𝑝 = 50) 

and control horizon (𝑁𝑐 = 2), note that these horizons are long enough to realize the impact of predictive 

disturbances. Figure 5-10 depicts the MATLAB/Simulink representation of the micro-grid model with 

constant and perfect disturbance predictions. Consequently, the results obtained utilizing constant 

disturbance predictions along the horizon are shown in Figures 5-11 and 5-12. Thus, the disturbance is 

estimated in the current instant during the minimization process and is kept constant. 

 

Figure 5-10: MATLAB/Simulink representation of scenario 2 with constant and perfect disturbance 

predictions 

 

Figure 5-11: The power flow profile (scenario 2) for constant disturbances prediction 



106 

 

 

Figure 5-12: Storage levels (scenario 2) for constant disturbances prediction 

 

Figure 5-13: The power flow profile (scenario 2) for perfect disturbances prediction 

 

Figure 5-14: Storage levels (scenario 2) for perfect disturbances prediction 
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Figures 5-11 and 5-12 show the results of the power flows and storage level when the controller does not 

have enough information about the future evolution of disturbances (constant disturbance prediction). It is 

evident in the simulation results, most especially the power flows, which show more variations in the 

generation sources, which can result in the ill-performance of the micro-grid. The constant disturbance 

prediction is seldomly used in the control techniques. However, its incorporation does not effectively 

improve the performance of the micro-grid compared to the perfect disturbance predictions. Similarly, the 

power flows when future disturbances are identified and included in the free-response estimation, which is 

depicted in Figures 5-13 and 5-14. Since the micro-grid operation anticipates the progression of the 

disturbance, the power flows are steadier compared to when the disturbance is not predicted perfectively, 

which affects the micro-grid performance. Perfect disturbance prediction is useful when incorporated into 

the AMPC formulation, to prevent degradation and prolong micro-grid components’ lifetime. Moreover, 

by evaluating the cost function of both disturbance prediction cases, therefore, it is evident that there is an 

improvement in the micro-grid performance. The cost function, 𝐽 = 14.968, for the case of constant 

disturbance prediction and  𝐽 = 10.524 for perfect knowledge of disturbance prediction of the AMPC 

controller, which signifies a 29.7% improvement. Therefore, with the following illustration, it is shown 

that the micro-grid operation can be improved by the AMPC prediction capabilities, provided there is a 

good forecast. 

5.3.2 Micro-Grid Operation with Generation Sources and Hybrid Storage Systems (Lead Acid and 

Lithium-ion Batteries) 

A new lithium-ion battery bank is added in this case to the micro-grid system of case 1. For this 

configuration, a new AMPC algorithm must be formulated. The fuel cell is used as a DG, with a cost 

associated with hydrogen usage (which is not generated in the micro-grid) to demonstrate an example of 

the generators capable of dispatching. The micro-grid is composed of a PV plant, two different types of 

batteries, and a fuel cell, as illustrated in Figure 5-2. The power exchanged with the DC bus can be balanced 

using this Li-ion battery using its DC/DC converter; so that a new manipulated, 𝑃𝑏𝑎𝑡2,  variable will appear 

[5]. The Lithium-ion battery absorbs any unbalance in the network, thus minimizing the costs and improves 

reliability. The reason for choosing lithium-ion batteries as the primary storage device is that lithium-ion 

batteries have some fantastic advantages such as (1) High energy efficiency (2) Longer cycle life (3) 

Relatively high energy density, and (4) Improved resiliency. 

5.3.2.1 Scenario 1: The AMPC formulation without including disturbances prediction 

The cost function has the form given by Equation (5-2). The value of 𝛼4 has been chosen to be large, as 

shown in Table D-5, in order to impose that, the lead-acid battery is primarily utilized to sustain the DC but 



108 

 

at its operating voltage and does not contribute to the demand. The increments in power are weighted by 

the 𝛽 values given in Table D-5. The chosen horizons are the time horizon (𝑁𝑝 = 50) and control horizon 

(𝑁𝑐 = 2). The results shown in Figures 5-16 and 5-17 indicate that the DERs operate in a coordinated 

manner during the day to meet demand. As the fuel cell consumes hydrogen, it is switched off for most of 

the day and only operates at midday (t > 12 hours) when the energy stored in the Li-ion batteries is not 

sufficient to fulfill the load (note that it reaches its 30% lower limit). Note that the lead-acid battery was 

not utilized for a few durations during the simulation. Meanwhile, this could easily be modified by changing 

the cost function weights α and β [1, 5]. Figure 5-15 depicts the MATLAB/Simulink representation of 

scenario 1 without disturbances prediction. The cost function was similarly evaluated for the case without 

any disturbance’s prediction and  𝐽 = 15.625. Consequently, it is evident in the cost evaluation, a reduction 

in the cost to 57.4% of the baseline value, taking into account the disturbances in the prediction model. 

 

Figure 5-15: MATLAB/Simulink representation of scenario 1 without disturbance predictions 

 

Figure 5-16: The power flow profile with hybrid storage system (scenario 1) without disturbances 
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Figure 5-17: The level of storage with hybrid storage system (scenario 1) without disturbances 

5.3.2.2 Scenario 2: The AMPC formulation with the integration of both constant and perfect 

disturbances predictions  

Similarly, the AMPC formulation also integrates the disturbance predictions similar to case 1. The power 

flows and the storage level of both the batteries are more steady, which affects the performance of the 

micro-grid. As is evident in Figures 5-19 and 5-20, the micro-grid operation is improved due to the perfect 

disturbance prediction by the AMPC algorithm. The lead-acid battery was used for the first 4hrs to satisfy 

demand, and then the source of generation took over from 4hrs until 12 hrs of the simulation. The li-on 

battery maintained its State of Charge (SOC) of 50% until the 16 hours when the demand is quite high for 

only the lead battery to satisfy the demand. At this point, the li-ion battery continues to supply the demand 

until its SOC starts diminishing. Meanwhile, the grid tends to be ignored in meeting the available demand. 

Therefore, as the lead-acid battery charges up to SOC of 75%, it begins to meet the load demand. Hence, 

the li-ion battery starts to operate at 16hr until the SOC reaches its minimum limit of 40%. Figure 5-18 

depicts the MATLAB/Simulink representation of the effects of perfect disturbance prediction on the micro-

grid performance with hybrid storage systems. Moreover, by evaluating the cost function of both 

disturbance prediction cases, we can, therefore, quantify the improvement in the micro-grid performance. 

The cost function, 𝐽 = 9.426, for the case of constant disturbance prediction and  𝐽 = 6.654 for perfect 

knowledge of disturbance prediction of the AMPC controller, which signifies a 29.4% improvement. 

 

Figure 5-18: MATLAB/Simulink representation of scenario 2 with Perfect disturbances predictions 
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Figure 5-19: Power flows for perfect disturbance prediction with hybrid storage system (scenario 2) 

 

Figure 5-20: Storage levels for perfect disturbance prediction with hybrid storage system (scenario 2) 

5.4   Chapter Summary 

The availability of more reliable and effective energy management techniques is one of the main reasons 

for developing effective integrated systems based on distributed generations. In this context, the EMS-based 

AMPC algorithm was implemented for optimal management of micro-grids based on various energy 

storage systems. The AMPC solves an energy optimization problem with multiple types of energy storage 

systems in a renewable energy micro-grid, which exchanges electricity with the host grid. This problem of 

optimization is solved at each sampling time to determine minimum running costs while satisfying the 

demand and considering technical and physical constraints. The controller's proposed behavior has been 

observed under different external conditions, such as changes in weather and demand. Different scenarios 

and configurations were used to demonstrate the AMPC's versatility and applicability. The simulations, 

therefore, show how the AMPC was able to adjust to different scenarios, offering a reasonable solution for 
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power-sharing among the DERs and taking into account both the physical and operational constraints and 

the optimization of the operational criteria imposed on it. This chapter has further demonstrated how the 

use of an AMPC-based EMS can enhance micro-grid operation, provided there is effective forecasting. 

More so, it is evident in the cost function, 𝐽, obtained from the three scenarios conducted, the cost function 

was further minimized by introducing the lithium-ion battery storage into the micro-grid. Therefore, as it is 

evident from the results, the cost function obtained when the hybrid energy storage was used has a reduced 

cost compared to when just only one battery was used during the scenario of no disturbances. In addition, 

considering the case with and without the integration of the information of the disturbance prediction into 

the AMPC formulations, it is also evident from the cost function minimization that the perfect knowledge 

of the disturbance prediction is essential for effective micro-grid operations. In electrical networks, demand-

side management (DSM) is a critical feature that enables consumers to make decisions about their energy 

usage and helps operators to reduce peak load demand and reshape the load profile/consumption pattern. 

Therefore, there are several benefits associated with the incorporation of the DSM concept in the EMS 

systems of the micro-grid. Such benefits are, but are not limited to, the following; environmental impacts 

and reduction in the overall running costs; enhancement in the system performance; effective decrease in 

the investment pressure on power generation, transmission, and distribution. Furthermore, the DSM makes 

it possible to develop demand-side response measures, which reduce the overload of the system during peak 

consumption periods. Hence, the next chapter extends the energy management systems in micro-grid 

developed in this chapter by adopting the concept of demand-side management, and the utilization of the 

demand response technique (DRT) in the framework of DSM to adjust controllable loads during the peak 

consumption periods, in order to further minimize the running cost. 
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CHAPTER SIX 

DEMAND RESPONSE TECHNIQUES FOR ENERGY MANAGEMENT 

SYSTEM IN A STAND-ALONE MICRO-GRID 

6.1   Introduction 

In the previous chapter, the energy management system based adaptive model predictive control (AMPC) 

algorithm was implemented for optimal management of micro-grids based on various renewable energy 

sources and storage systems. The AMPC solved an energy optimization problem with multiple types of 

energy storage systems in a renewable energy micro-grid, which exchanged electricity with the host grid. 

This problem of optimization was solved at each sampling time to determine minimum running costs while 

satisfying the demand and considering technical and physical constraints. The proposed behavior of the 

controller has been observed under different external conditions, such as changes in weather and demand. 

Different scenarios and configurations were used to demonstrate the versatility and applicability of the 

adaptive model predictive controller. The simulations, therefore, showed how the AMPC was able to adjust 

to different scenarios, offering a reasonable solution for power-sharing among the distributed energy 

resources (DERs) and taking into account both the physical and operational constraints and the optimization 

of the operational criteria imposed on it. More so, the previous chapter has further demonstrated how the 

use of an AMPC controller is used to solve the energy management problems, can enhance the micro-grid 

operation, provided there is effective forecasting. Therefore, the application of demand response (DR) 

techniques to renewable energy-based micro-grid is discussed in this chapter. Thus, with DR techniques, 

specific loads can be modified (both in amplitude and in connection times) to help achieve the objectives 

of the micro-grid operation. For instance, in shiftable loads, their activation can be halted, restarted, or 

deferred to other time slots. Meanwhile, they can as well be deferred from peak to off-peak period 

considering the electricity tariffs or operational needs. Within the timespan, shiftable loads are adjustable, 

but their demands cannot be modified, so they cannot operate before the earliest start time and the latest 

finish time. More so, they cannot be interrupted before completion once their work is initiated. Conversely, 

in curtailable loads, the consumption behavior of loads can be adjusted to a lower level if necessary. 

Although these loads have a nominal level, their magnitude is flexible so that when required, the level of 

demand can be lowered (e.g., at peak hours or in islanded mode). Examples of adjustable loads are heating 

systems and, in general, thermal loads. Reducing the consumption pattern or deferring the load to some 

other point in time, however, will affect the satisfaction of the consumer, which can be assessed by the 

quality of experience (QoE). The adaptability incorporated by the demand response technique involves the 

implementation of new manipulated variables (both continuous and binary) in the problem formulation, 
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making the optimization problem more complicated [249], [216]. The aim of the demand response 

technique in the energy management system is to use the diversity of the load consumption patterns and the 

energy available from the distributed energy resources, the demand response, and the Energy Storage 

System (ESS) to reduce the peak load demand and minimize the operating/electricity costs of the micro-

grid system. Meanwhile, these techniques can be used in a grid-connected mode as well as in island mode. 

These can be used in both cases to enhance the economic benefit, but in the case of islanded mode, these 

can be critical because the grid is not available to supply the loads while power deficit occurs.  In this 

scenario, the number of curtailed loads required are selected based on the projected energy deficit. Although 

these can be used at various timescales and control levels, load shifting is generally more geared towards 

power-sharing scheduling and load curtailment. In this chapter, the energy management system discussed 

in the previous chapter is extended to the case in which the micro-grid comprises the controllable loads 

(curtailable loads). The micro-grid used in the previous chapter is grid-connected. Therefore, most of the 

power deficits are met by the main-grid. However, in this chapter, a stand-alone micro-grid is used, with 

both critical and curtailable loads connected, to investigate the benefits of adopting the concept of DR 

technique for energy management system in a stand-alone micro-grid. Hence, it is worth noting that the 

proper management of the consumption pattern of the load can significantly enhance the micro-grid 

operation. More so, the objective of the DR technique in this chapter is to use the available renewable 

energy resources optimally, maximizes the economic benefit, and reduces the peak load demand without 

affecting customer satisfaction. Hence, the formulations of the DR-Based AMPC Optimization Problem, 

cost function, dynamic system constraints, and the control-oriented linear model, which are to be solved 

(minimized) by the proposed algorithm (AMPC), have been presented in chapter 3. This chapter presents 

the results and the discussion obtained in the various cases conducted. 

6.2   Description of the System Model under Study 

In this section, the MATLAB/Simulink environment was used to model the system dynamics of a renewable 

energy-based micro-grid network consisting of renewable energy sources (Photovoltaic, PV, Wind Turbine, 

WT) and Battery Storage system. Moreover, two different kinds of load were considered, the critical and 

the curtailable loads [237]. Five loads are present in the micro-grid systems of Figs. 6-1 and 6-2 to mimic 

different loads in which three of the loads represent curtailable loads, and the other two represent critical 

loads. Similar to the previous chapter, two cases are investigated in this chapter; case 1 considers the micro-

grid operation using the sustainable generation sources (PV and Wind sources), the fuel cell, and the lead-

acid battery. Hence, in order to have a hybrid storage configuration, a lithium-ion battery was added in case 

2 [250]. It is necessary to note that, during the normal operation of the micro-grid, the energy generated 

does typically not meet the load demand. The battery bank is mainly utilized to store excess energy from 
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renewable sources, but can also be used by the electrolysis process to produce hydrogen. Moreover, when 

power from renewable sources is not accessible, the generation deficits can be compensated by a fuel cell 

using hydrogen. The hydrogen storage network consists of a proton exchange membrane (PEM) 

electrolyser for hydrogen production and a metal hydride tank for hydrogen storage. In addition, power 

electronics are used to connect the components to the current DC bus. More so, both the fuel cell and the 

PEM electrolyser units have their own local controllers, which execute the commands for power 

conversion. Moreover, two DC-DC converters associated with fuel cell and electrolyser enable the DC bus 

to transmit power [68], [251]. 

Conversely, the lead-acid battery bank is directly plugged into the DC bus. Thus, the battery bank maintains 

the bus voltage, thereby simplifying the configuration. The DC micro-grid should, therefore, adopt this 

configuration option in order to minimize costs and improve reliability, as the batteries absorb any 

unbalance in the network [220]. Figures 6-1 and 6-2 demonstrate the design overview of the proposed 

micro-grid electrical system and control signal system for cases 1 and 2. Case 1 and 2 solved the DR-based 

energy optimization problem using an AMPC algorithm in a renewable energy micro-grid of Figures 6-1 

and 6-2. The DR program is used to control the mismatch between the generations and loads. Therefore, 

since the micro-grid model used in this chapter is a stand-alone micro-grid, i.e., 𝑃𝑔𝑟𝑖𝑑(𝑡) = 0, the renewable 

energy sources should be optimally utilized to meet the operational objective of the micro-grid. Curtailment 

strategies are employed when the load demand is more than the generations in an AC/DC micro-grid system 

with critical and curtailable loads. The essence is to match the energy generations with the load profiles of 

the consumers [223], [14]. Therefore, if the renewable energy sources available can be optimally used and 

at the same time avoid drawing maximum power from the system, then we can reduce the peak expectations 

from the utility. More so, since the aim of conducting the DR activity is to facilitate the penetration of 

renewable energy sources to make the distribution system environmentally friendly and further reduces the 

dependency on the main-grid for power supply. It is evident from Figures 6-1 and 6-2 that the primary 

generation sources are solar and wind, which are intermittent in nature. Hence, these may not be enough to 

meet the peak demand of the customer. Therefore, it is expedient to store those energies with the storage 

devices during off-peak hours and discharge during the peak hours, so that the load characteristics can be 

flattened. More so, for reliable micro-grid operation, the consumers are expected to follow a given 

consumption pattern, as well as the time of the consumption pattern. Thus, this is implemented in such a 

way that the consumption patterns do match with the renewable generations available to avoid straining the 

storage devices and perhaps reduces the dependency on the main-grid for energy supply. Otherwise, it could 

result in loads curtailment to save the operation of the micro-grid [252]. 



115 

 

 

Figure 6-1: The model-based design description of the DR technique in the micro-grid system for case 1 

 

Figure 6-2: The model-based design description of the DR technique in the micro-grid system for case 2 
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6.3   Simulation Results and Discussions 

This section presents the MATLAB/Simulink simulation of a renewable energy-based micro-grid network 

composed of RESs (Photovoltaic, PV, Wind turbine, WT), battery energy system, and two different kinds 

of loads. This micro-grid network was utilized to test the control technique applied to its energy 

management system to show the benefits of incorporating the DR program in a micro-grid with renewable 

sources as the main generations. Therefore, two cases of separate generation scenarios were investigated in 

order to show the effectiveness of the proposed AMPC scheme. Case 1, therefore, considered micro-grid 

operation using generation sources (Photovoltaic, PV or Wind Turbine, WT), lead-acid battery, and fuel 

cell. In order to have a hybrid storage configuration, a lithium-ion battery was added in case 2. The proposed 

micro-grid system shown in Figures 6-1 and 6-2 were simulated on the MATLAB/Simulink environment 

[253].  

The EMS-based energy optimization problem in a renewable energy micro-grid with different types of 

energy storage systems was solved using AMPC control algorithms. Therefore, the DR-based optimization 

problem is solved at each sampling time to determine minimum running costs when satisfying the demand 

and respecting the technical and physical constraints. The behavior of the proposed controller was studied 

under various external conditions such as weather and demand changes. Subsequently, we considered two 

distinct kinds of renewable energy sources, which were studied independently (Photovoltaic and wind 

turbine generations). The results of the MATLAB simulation demonstrate how the AMPC can adapt to 

different generation scenarios, providing an optimized solution such as the reduction in the operation cost, 

peak demand, while considering both the physical and operational constraints, as well as optimizing the 

imposed operating criteria.  DR techniques can help manage the micro-grid most, especially when the 

external grid cannot supply energy. i.e., the micro-grid is operating in the isolated mode. If the loads are 

Heating, Ventilating, and Air Conditioning (HVAC) or home appliances, this curtailment can easily be 

assumed. The model-based design description of the DR technique in the micro-grid system in Figures 6-1 

and 6-2 are used, considering the possibility of operating in isolated mode. Under certain conditions, the 

load may be curtailed in order to maintain the micro-grid in operation even if the load demand is not fully 

met.                                           

The micro-grid operates in the islanded mode during the simulations, so, therefore, 𝑃𝑔𝑟𝑖𝑑(𝑡) = 0, and this 

variable could be eliminated in the model. Therefore, in order to evaluate the performance of the control 

system under consideration on the micro-grid, three distinct generation scenarios (Sunny, windy, and 

cloudy) were implemented over 24 hours simulation period. The first case is based on a sunny day, which 

has high solar radiation values and sunshine period. The power that the photovoltaic array generates is 

mainly concentrated during mid-day. This generation profile corresponds to a sunny day, with high 
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irradiance during the central hours of the day, getting surplus energy and deficit at night. The EMS controls 

all of the storage units (batteries and hydrogen) to meet demand. Thus, the battery is used during the early 

hours of the day and in the night to meet the demand until electricity is abundant. Note that within their 

operating limits, SOC and LOH evolve almost freely, since the weights utilized in the cost function for 

tracking the reference are small. Hence, the state considered in the optimization process is the level of the 

storage devices (batteries (SOC) and hydrogen (LOH)), and the control actions are the power exchanged 

with the generation sources and the power of the hydrogen storage network (including an electrolyser, a 

fuel cell, and hydrogen tanks). Consequently, a multi-objective function is used to accomplish the entirety 

of the DR-based micro-grid objectives, and the solver aims to minimize it.  

 

Figure 6-3: MATLAB/Simulink representation of scenario 1 with load curtailment (Sunny, windy, and 

cloudy). 

 

Figure 6-4: The power flow profile during the sunny day with load curtailment (scenario 1) 
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Figure 6-5: The level of storage during the sunny day with load curtailment (scenario 1) 

Simulation has been carried out for a sunny day. From the two Figures 6-1 and 6-2, the micro-grid is 

islanded; therefore, in order to keep it operating in the absence of grid generation, the load can be adjusted. 

The load profile can then be modified accordingly. A maximum curtailment of 50% is allowed. In islanded 

mode, load shedding is mainly used to balance the local supply. More so, the micro-grid can utilize only 

the DERs to serve the loads in the islanded operating mode of the micro-grid. Since the non-dispatchable 

renewable generations (i.e., PV and WT) in the micro-grid only serve for a small proportion of the loads. 

We can also observe the charging/discharging cycles of the battery from Figures 6-4 and 6-5. The battery 

is charged when the renewable generation is high and discharged when it is low, serving as the storage for 

the renewable energy sources in the micro-grid. It is evident from Figures 6-4 and 6-5 that, during the first 

hour of the day, a power deficit occurs, which requires the battery to compensate for the power deficit in 

the micro-grid system. Hence, the control system realizes the impossibility of meeting the demand 

completely only with the battery, at about 7:30 hours, the generation exceeds the load, and then continue to 

supply the load. Meanwhile, the battery continues to charge until its SOC reached its upper limit (75%), at 

that point, the electrolyser was switched ON to control the SOC level due to excess energy because the 

irradiance was very high. Hence, the energy surplus had to be stored in the form of hydrogen. Therefore, 

the battery begins discharging at 9:00 hours until the SOC value is close to the lower threshold, and then 

the controller decides to switch ON the fuel cell. In the middle of the day, a large excess of power is 

generated. Despite the extensive use of the electrolyser, as the batteries are used during the evening to cover 

the energy deficit, the final amount of hydrogen does not meet its initial value. As was previously 

mentioned, the load demand is often supplied by the battery with some contributions from the fuel cell. 

However, the principle of load curtailment is implemented in order to meet the objectives set for the micro-

grid operation when the storage units are about to reach their lower limits. It is worth noting that the extent 

of the load curtailment when the load demand eventually becomes higher than the supply will depend on 
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the weights of the cost function and the constraints. Nonetheless, if curtailment action is not carried out due 

to some reason that cannot be compromised, the simulation studies can as well be used to check the 

resiliency and reliability in the operation of the micro-grid. Although the load is supplied at 100% during 

the first hours of the day due to the presence of the sunlight. Therefore, since the micro-grid is operating in 

the islanded mode, later in the day, when the sun is no longer available, the stored energy by the battery is 

used to supply the load until the storage devices are depleted, and the load cannot be fed at all. 

Consequently, the micro-grid must be shut down in such a situation. 

 

Figure 6-6: The power flow profile during the cloudy day with load curtailment (scenario 1) 

 

Figure 6-7: The level of storage during the cloudy day with load curtailment (scenario 1) 

Similarly, simulation has been carried out for a cloudy (rainy) day. Therefore, due to the cloudy 

weather, which results in minimal or no availability of sunlight, the PV generation is unable to meet the 

demand for most of the day (most often, the net power is below zero). Hence, the available resources such 

as the wind generation, battery, and fuel cell must, therefore, supply any energy deficit within the micro-
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grid network. Thus, the battery is charged when the renewable energy generation (wind generation) is high 

and discharged when it is low. Therefore, the batteries serve as the storage for renewable energy sources in 

the micro-grid. In the same manner, the EMS decides to utilize the battery to meet the load demand during 

the early hour of the day, when a power deficit occurs, which requires the battery to compensate for the 

power deficit in the micro-grid system.  Subsequently, the controller decides to switch ON the fuel cell 

despite the fact that the SOC is far from its minimum value (around t = 10 hours in a smooth way), which 

is also supported by the wind generation. The controller does not activate the electrolyser during the first 

hour of the day, as there is no extra energy to store due to the non-availability of sunlight. Meanwhile, 

during the second half of the day, when the battery's minimum SOC has been reached, the fuel cell and the 

wind generation supply the load. Moreover, the fuel cell is unable to satisfy the load demand on its own 

because of the thresholds in the power rate and the voltage limits, and it requires the support of the wind 

generation. Furthermore, at around 17 hours of the day when the electricity demand continues to rise above 

the generation, there is a need to curtail some loads such as cooling and heating loads since the SOC of the 

batteries is minimum at that hour of the day in order to satisfy the demand and enhance the operation of the 

micro-grid. Therefore, at around 20 hours of the day, the fuel cell continues to meet the load demand for 

another 4 hours. Meanwhile, the batteries are only utilized to balance the power within the micro-grid. 

Following that, the batteries commit to supplying the power deficit. The batteries, however, reach their 

minimum SOC after 22 hours and again use the fuel cell. The simulation results of Figs. 6-6 and 6-7 show 

that the proposed DR technique has managed to bring the final consumption/demand close to the objective 

load curve. The proposed control algorithm (AMPC) has effectively regulated the consumption pattern of 

the controllable loads connected to the micro-grid system. 

 

Figure 6-8: The power flow profile during the windy day with load curtailment (scenario 1) 
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Figure 6-9: The level of storage during the windy day with load curtailment (scenario 1) 

A wind turbine is, therefore, considered as the renewable energy source, which generates excess power in 

the micro-grid. It is worth noting that the wind turbine produces a significant fluctuation in power, as is 

evident in Figures 6-8 and 6-9. Therefore, enormous stored energy enables the electrolyser to operate for 

most of the day, which makes the generation surplus during some hours of the day. More so, it should be 

noted that the power rate constraints integrated into the controller design, irrespective of the high fluctuation 

in power produced by the wind turbine, instigated a smooth operation of the electrolyser, the behavior of 

which was thus quite satisfactory. Thus, the battery still stores energy, but it gets filled up early (from t= 3 

hours to 16 hours), only injecting power into the bus several times during that period. It is worth mentioning 

that the objective of the demand response technique (DRT) in the energy management system (EMS) is to 

use the diversity of the load consumption patterns and the energy available from the distributed energy 

resources (DERs) and the energy storage system (ESS) to reduce the peak load demand and minimize the 

operating/electricity costs of the micro-grid system. As there is energy surplus during the day, there is no 

need to switch ON the fuel cell during these hours of the day. Furthermore, at around 15 hours of the day 

when the demand for electricity rises slightly above the generation, there is a need to curtail some loads 

such as cooling and heating loads. During the windy weather condition, a maximum curtailment of 40% is 

allowed, since generation is surplus during the day and has charged up the batteries up to 75% SOC. 

Similarly, the level of hydrogen also keeps increasing by up to 78%. Therefore, in order to alleviate the 

system fluctuation caused by increasing demand for electricity, a reasonable goal of demand-side 

management activities could be to adjust the pattern of the load demand curve by minimizing the overall 

load demand for the distribution system during peak hours in order to reduce the overall planning and 

operating costs of the network. The AMPC controller has adjusted the set points slowly according to the 

optimum estimated cost function. Furthermore, reduction in the peak load demand improves system 
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sustainability by simply reducing the overall cost as well as the carbon emission level. The renewable 

energy-based micro-grid system benefitted from this DR technique, as the reduction in the peak load 

demand results in substantial cost savings. More so, since the costly loads such as heating and cooling loads 

that are typically turned ON during the peak load demand are being curtailed, which yielded less overall 

cost as compared to the micro-grid system in the previous chapter. Moreover, by evaluating the cost 

function, the cost function, 𝐽 = 12.542 with load curtailment, as compared to the cost function obtained in 

the previous chapter without load curtailment, the cost function was 𝐽 = 18.685. 

In the second scenario, a new lithium-ion battery bank is added in this case to the micro-grid system of case 

1. Therefore, for this configuration, a new AMPC algorithm must be devised. The micro-grid is composed 

of a PV plant, two different types of batteries, and a fuel cell, as illustrated in Figure 6-2. The power 

exchanged with the DC bus can be balanced using this Li-ion battery using its DC/DC converter; so that a 

new manipulated 𝑃𝑏𝑎𝑡2,  variable will appear [5].  

Similarly, in this scenario, the micro-grid operates in the islanded mode during the simulations, so, 

therefore, 𝑃𝑔𝑟𝑖𝑑(𝑡) = 0, and this variable could be eliminated in the model. Therefore, in order to evaluate 

the performance of the control system under consideration on the micro-grid, three distinct generation 

scenarios (Sunny, windy, and cloudy) are implemented over 24 hours simulation period. Figure 6-10 is the 

MATLAB/Simulink of case 2 using Figure 6-2 as the micro-grid model-based design. The main generations 

in the micro-grid are solar and wind, which requires optimal utilization adopting the concept of DR 

technique to minimize the peak load demand and, at the same time, the electricity costs. The addition of 

Lithium-ion batteries further assists the micro-grid by storing energy during off-peak hours and discharge 

the energy during the peak hours of its operation. 

 

Figure 6-10: MATLAB/Simulink representation of scenario 2 with load curtailment (sunny, windy, and 

cloudy). 
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Figure 6-11: The power flow profile during the sunny day with load curtailment (scenario 2) 

 

Figure 6-12: The level of storage during the sunny day with load curtailment (scenario 2) 

Similarly, simulation has been carried out for a sunny day in scenario 2. Now, that 𝑃𝑔𝑟𝑖𝑑(𝑡) = 0, the micro-

grid is operating in the islanded mode. Therefore, in order to keep it operating in the absence of generation, 

the load can be adjusted. The lead-acid battery is used for the first 7 hours to satisfy demand in the early 

hour of the day, as shown in Figures 6-11 and 6-12. Consequently, the generation sources start to supply at 

that hour of the day since the SOC of the battery has reached its lowest value. More so, the lithium-ion 

battery maintained its State of Charge (SOC) of 50% until the 16 hours when the demand is quite high for 

only the lead battery to satisfy the demand. At this point, the SOC of the lithium-ion battery starts 

diminishing. Since the micro-grid is operating in the islanded mode, the DERs are used in meeting the 

available demand. Therefore, as soon as the lead-acid battery has charged up to SOC of 75%, then it starts 
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to meet the load demand, the lithium-ion battery starts its operation at the 16 hours until SOC remains 

constant at 50%. At this hour of the day, the electricity demand continues to rise, and in order to preserve 

the lifespan of the batteries and other storage devices, there is a need to curtail some loads during the peak 

load demand. At around 16 hours of the day, some loads are adjusted to enhance the reliability and 

performance of the micro-grid. In this case, due to the introduction of the lithium-ion battery, the maximum 

load curtailment is reduced to 30%.  

The Lithium-ion battery absorbs any unbalance in the network, thus minimizing the costs and improves 

reliability. The reason for choosing lithium-ion batteries as the primary storage device is that lithium-ion 

batteries have some fantastic advantages such as (1) High energy efficiency (2) Longer cycle life (3) 

Relatively high energy density, and (4) Improved resiliency. 

 

Figure 6-13: The power flow profile during the cloudy day with load curtailment (scenario 2) 

 

Figure 6- 14: The level of storage during the cloudy day with load curtailment (scenario 2) 



125 

 

Similar to scenario 1, due to the cloudy weather, which results in minimal or no availability of sunlight, the 

PV generation is unable to meet the demand for most of the day (most often, the net power is below zero). 

Hence, the available resources such as the wind generation, batteries, and fuel cell must, therefore, supply 

any energy deficit within the micro-grid network. As it is evident in Figures 6-13 and 6-14, the lead-acid 

battery is used for the first 3 hours to satisfy demand in the early hour of the day, and then the generation 

source (wind generation) start to supply at that hour of the day since the SOC of the battery has reached its 

lowest value of 40%. The li-on battery continues to meet the demand to supplement the supply from the 

lead-acid battery. Subsequently, the controller decides to switch ON the fuel cell despite the fact that the 

SOC is far from its minimum value (around t = 3 hours in a smooth way), which is also supported by the 

wind generation. The controller does not activate the electrolyser during the first hour of the day, as there 

is no extra energy to store. Meanwhile, during the second half of the day, when the battery's minimum SOC 

has been reached, the fuel cell and the wind generation supply the load. Although, the fuel cell is unable to 

satisfy the load demand on its own accord because of the thresholds in the power rate and the voltage limits, 

and it requires the support of the wind generation. Furthermore, at around 17 hours of the day when the 

electricity demand continues to rise above the generation, there is a need to curtail some loads such as 

cooling and heating loads since the SOC of the batteries is minimum at that hour of the day in order to 

satisfy the demand and enhance the operation of the micro-grid. Note that due to the introduction of lithium-

ion, which supplement the other storage devices, the maximum load curtailment is reduced to 30%. 

Therefore, from the simulation results of Figures 6-13 and 6-14, it is evident that the DR technique has 

successfully managed to bring the load consumption pattern to the objective load curve. 

 

Figure 6-15: The power flow profile during the windy day with load curtailment (scenario 2) 
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Figure 6- 16: The level of storage during the windy day with load curtailment (scenario 2) 

During the windy period, the primary source of generation is the wind generation, fuel cell, as the PV 

system contributes little or no power to the load demand. Since the wind turbine is considered as the 

renewable energy source, which generates excess power in the micro-grid, it, therefore, produces a 

significant fluctuation in power, as can be seen in Figures 6-15 and 6-16. Therefore, due to the power supply 

from the wind turbine, the lead-acid battery stored some energy, which is used to supply the load at the 

early hour of the day up until 7:00 hours, then its SOC gets reduced to 40%. At this point, the lithium-ion 

battery continues to meet the load demand. The stored energy enables the electrolyser to operate for most 

of the day, which makes the generation surplus during some hours of the day. As there is energy surplus 

during the day, there is no need to switch ON the fuel cell during these hours of the day. Therefore, at 

around 10 hours of the day when the electricity demand rises slightly above the generation, there is a need 

to curtail some loads, such as cooling and heating loads. During the windy weather condition, a maximum 

curtailment of 30% is allowed, due to the introduction of the lithium-ion, which supplements the other 

storage devices. The AMPC controller has adjusted the set points slowly according to the optimum 

estimated cost function. Furthermore, reduction in the peak load demand improves system sustainability by 

merely reducing the overall cost as well as the carbon emission level. The renewable energy-based micro-

grid system benefitted from this DR technique, as the reduction in the peak load demand results in 

substantial cost savings.  Since the costly loads, such as heating and cooling loads that are typically turned 

ON during the peak load demand, are being curtailed, which yielded less overall cost as compared to the 

micro-grid system in the previous chapter. The cost function was similarly evaluated for scenario 2 with 

the DR technique. We can, therefore, quantify the improvement in the micro-grid performance. The cost 

function, 𝐽 = 8.335 with load curtailment and hybrid energy storage, as compared to the cost function 
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obtained in the previous chapter without load curtailment (DR techniques), the cost function was 𝐽 = 15.625. 

Consequently, it is evident in the cost evaluation, a reduction in the cost to 57.4% of the baseline value, 

taking into account the benefit of using the DR technique for EMS in micro-grid. More so, it is evident in 

the cost function, 𝐽, obtained from the three scenarios conducted, the cost function was further minimized 

by introducing the lithium-ion battery storage into the micro-grid. Therefore, as it is seen from the results, 

the cost function obtained when we utilized hybrid energy storage was reduced compared to when we used 

just only one battery [254]. 

6.4   Chapter Summary 

Demand response techniques in the framework of demand-side management has the potential to provide 

many benefits to the entire renewable energy-based micro-grid system, particularly for micro-grid in 

islanded mode. This chapter investigated the demand response technique for the energy management 

system in micro-grid based on Adaptive Model Predictive Control. The proposed method is a generalized 

scheme based on load curtailment, which has been mathematically formulated as an optimization problem. 

The minimization problem obtained by using the DR technique for the Energy management system in a 

renewable energy-based micro-grid is solved using the AMPC algorithm. Simulations were carried out on 

the micro-grid, which contains renewable energy sources (PV and Wind), fuel cell, electrolyser, storage 

device, and different kinds of loads. (critical and curtailable loads). The AMPC solves an energy 

optimization problem with multiple types of energy storage systems in a renewable energy micro-grid. This 

problem of optimization is solved at each sampling time to determine minimum running costs while 

satisfying the demand and considering technical and physical constraints. The controller's proposed 

behavior has been observed under different external conditions, such as changes in weather and demand. 

The AMPC algorithm is proposed to optimally utilize the maximum power from the renewables by using 

hybrid storage systems. The simulation results have shown that the implementation of the DR technique 

for energy management in micro-grid reduces the peak load demand and, consequently, minimized the 

operation costs of the system.  It is evident in the cost function obtained when the micro-grid adopts the DR 

technique during single battery storage, the cost function, 𝐽 = 12.542 with load curtailment, as compared to 

the cost function obtained in the previous chapter without load curtailment, the cost function was, 𝐽 = 

18.685. More so, comparing the cost function when a hybrid storage system is used with the DR technique. 

The cost function, 𝐽 = 8.335 with load curtailment and hybrid energy storage, as compared to the cost 

function obtained in the previous chapter without load curtailment (DR techniques), the cost function was 

𝐽 = 15.625. The results of the simulation show that the proposed algorithm can regulate a vast number of 

the controllable devices of various types, and achieves substantial savings while reducing the peak load 

demand of the renewable energy-based micro-grid. The simulation results are extremely satisfactory and 
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can be generalized for implementation in real-time. The Electric Vehicles can act as loads when connected 

to the micro-grid. However, they can as well supply energy to the micro-grid during energy deficit due to 

their storage capability. Therefore, due to these functions, they can be considered as prosumers. Hence, 

proper management of the loads and EV charging can significantly enhance the micro-grid operation. The 

AMPC technique could be adapted to this framework, and the concept of Vehicle-to-Grid (V2G) is taken 

into considerations in the next chapter. Therefore, in order to demonstrate the V2G capabilities, the next 

chapter presents some simulations to illustrate the concept of load shifting, in a renewable energy-based 

micro-grid with EVs integration. The charging of EVs can be included in the DSM strategy (because EVs 

are loads for the micro-grid). Potentially, a significant number of idle EVs can theoretically be used to build 

a distributed energy storage network to support renewable generation. With the ever-increasing price of 

fossil fuel, continuous deterioration of the environment, and rapid growth of battery technology, EVs have 

become a significant field of micro-grid research and have attracted considerable interest. 
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CHAPTER SEVEN 

ENERGY MANAGEMENT SYSTEM OF A MICRO-GRID WITH THE 

INTEGRATION OF ELECTRIC VEHICLES 

7.1   Introduction 

The previous chapter investigated the benefits of adopting the concept of the demand response (DR) 

technique for the energy management system in a stand-alone micro-grid with both critical and curtailable 

loads. The proposed method was a generalized scheme based on load curtailment, which was 

mathematically formulated as an optimization problem. The minimization problem obtained by using the 

DR technique for the energy management system (EMS) in a renewable energy-based micro-grid was 

solved using the AMPC algorithm. Hence, the objective of the DR technique in the previous chapter was 

to use the available renewable energy resources optimally, maximizes the economic benefit, and reduces 

the peak load demand. Therefore, it is evident in the simulation results that the implementation of the DR 

technique for energy management in micro-grid reduced the peak load demand and, consequently, 

minimized the operation costs of the system. More so, it is evident from the results that the proper 

management of the consumption pattern of the loads significantly enhanced the micro-grid operation. 

Specifically, the combination of hydrogen storage with electrical batteries and supercapacitors appears to 

be an effective solution for erratic and volatile fluctuations in the generation of renewable energy. The use 

of energy storage compensates for the variability in the production of renewable energy and the random 

behavior of the consumer. In addition, the micro-grid may use EVs as a large amount of energy storage to 

provide local demand, compensate for the intermittent generation of RESs, or exchange power with the 

grid. Similarly, Electric Vehicles can act as loads when connected to the micro-grid. However, they can as 

well supply energy to the micro-grid during energy deficit due to their storage capability. Therefore, due to 

these functions, they can be considered as prosumers. Hence, proper management of the loads and EV 

charging can significantly enhance the micro-grid operation. This chapter extends the model-design of the 

energy management system in the micro-grid developed in the previous chapter to the case when electric 

vehicles (EVs) are integrated [254], [5]. This chapter addresses the problems of control and energy 

management in micro-grid with the incorporation of renewable energy generation, hybrid storage 

technologies, and the integration of the EVs with V2G technology. The AMPC control technique is used to 

optimize the charge/discharge of the EVs in a receding horizon manner in order to reduce operational cost 

in a renewable energy-based micro-grid. V2G systems integration can be a crucial element in the assurance 

of network reliability against variability in loads. In this context, the purpose of this chapter is to present an 

AMPC algorithm for the optimization of a micro-grid coupled with a V2G system consisting of six electric 



130 

 

vehicle charging stations. More so, the proposed algorithm effectively manages the use of renewable energy 

sources, vehicles charge, energy storage units, and the purchase and sale of electric power to the external 

network. Two scenarios are investigated in this chapter to examine the performance of the proposed 

controller to manage the renewable energy sources in the micro-grid system. Hence, the first case uses a 

load shifting mechanism to solve the charge management problem during a known interval of parking time. 

The second case is the introduction of EVs with V2G capabilities when connected with the micro-grid. In 

this case, the vehicle battery collaborates with the ESS of the micro-grid to maximize costs benefits and 

mitigate the intermittency of renewable generation. More so, to demonstrate the V2G capabilities, this 

chapter further presents some simulations to illustrate the concept of load shifting in a renewable energy-

based micro-grid with EVs integration [237]. Furthermore, other benefits of V2G concepts, such as voltage 

and frequency control for the micro-grid stability, are investigated. Therefore, it is evident from the obtained 

results that the proposed control algorithm was able to effectively manage the renewable energy sources, 

energy storage units, vehicles charge, and the purchase and sale of electric power with the grid. The 

formulations of the EMS-based adaptive MPC optimization problem, cost functions, dynamic system 

constraints, and the control-oriented linear model, which are to be solved (minimized) by the proposed 

algorithm (AMPC), have been presented in chapter 3. This chapter presents the results and the discussions 

obtained in the various cases conducted. 

7.2   Description of the Dynamic Modeling of the micro-grid System 

In this section, the MATLAB/Simulink environment was utilized to model the system dynamics of a 

renewable energy-based micro-grid network consisting of RESs (photovoltaic, wind turbine), battery 

storage system, ultra-capacitor, loads, and electric vehicle. It also includes a hydrogen storage system, 

comprising a PEM (proton exchange membrane) electrolyser to produce hydrogen, a metal hydride tank to 

store hydrogen, and a PEM fuel cell to produce energy [237], [253]. Figure 7-1 illustrates the model-based 

design description of micro-grid with the integration of electric vehicles. 

The Simulink model is used to simulate the dynamics of electric vehicles.  The EVs are interfaced with the 

micro-grid via the power supply and the loads. Two case studies are implemented in this chapter, and the 

first case is the management of EVs charging without V2G technologies, otherwise known as V1G (EV 

does not supply energy to the micro-grid). The second case is the management of EVs charging with V2G 

capabilities (EV can exchange energy with the micro-grid). The EV charging station can charge up to six 

cars simultaneously. It is worth mentioning that the energy produced during the normal operation of micro-

grid does not match the demand. Therefore, it is expedient to store the excess energy from the renewable 

sources in the batteries or, better still, to use it to produce hydrogen through the electrolysis process. Thus, 

the metal hydride tank is used to store the hydrogen produced by the electrolyser. The fuel cell uses the 
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hydrogen to supplement the mismatch between the supply and demand, should the power from the 

renewable sources not be accessible. More so, the micro-grid has a link to the main network, which allows 

the purchase and sale of energy. Hybrid storage enables two-stage operating strategies: the battery can 

absorb/provide small amounts of energy on fast transients, while hydrogen storage supplements the largest 

oscillations. In this context, car batteries can be used by the micro-grid to increase the buffer capacity of 

fast transients when the cars are parked [220], [149]. 

The load shifting mechanism is used for the charge management of the EVs. Therefore, where cars are 

parked over a period of time, the charging process can be optimized with regard to energy price levels and 

operating costs for micro-grids. Given that charging is carried out at a constant capacity, optimization can 

be accomplished by estimating the best charging interval (within the parking period of the car). Case 1 

describes the management of EVs charging without V2G technologies, i.e., EVs do not exchange energy 

with the micro-grid. The optimization gives the values of 𝛿𝑒𝑣, given a parking time interval, which indicates 

the best connection time. It is worth mentioning that the value of 𝛿𝑒𝑣 is 0 if the vehicle is not connected at 

instant 𝑡 and takes the value of 1 when it is connected at that instant. More so, the transition from 

disconnected to connected is indicated by 𝜎(𝑡)𝑒𝑣.  

 

Figure 7-1: The model-based design description of the micro-grid with electric vehicles 

On the other hand, the objective of case 2 is mainly to adapt the AMPC algorithm to optimize the micro-

grid with V2G technology, which consists of six charging points for the electric vehicles. The proposed 

algorithm performs the management of renewable energy sources, energy storage units, vehicles charge, 
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and the purchase and sale of electric power with the grid. This application is an extension of the case 1, 

which discusses the charging management of micro-grid without V2G technology. In this context, the 

micro-grid power exchange with the EV batteries is bidirectional. More so, provided the car is fully charged 

at the scheduled pickup time, the charging process can be interrupted when necessary. Similar to the micro-

grid used in the previous chapters, in this case, a charging station for six EVs is included, as shown in Figure 

7-1. Therefore, the main objective of the EMS is to evaluate the various powers such as 𝑃𝑔𝑟𝑖𝑑 , 𝑃𝑏𝑎𝑡 (the 

grid and battery bank power), 𝑃𝐻2
 (the power of the hydrogen storage), and 𝑃𝑒𝑣−𝑖 (the powers of the six-

vehicle batteries) such that the overall system performance is optimized. Two control layers are considered 

in the proposed solution, first is the upper layer, which comprises a scheduler that aims at the economic 

benefit of the charging station [252]. The second is the charging station management unit (CSMU), which 

manages the EV charging based on the type of charge (fast or slow) or the parking time. More so, the lower 

level is a fast power-sharing technique, which runs every second. Similarly, the upper layer considers load 

shifting and the electricity tariffs, and MIQP solves the formulation. Conversely, the fast QP algorithm is 

used to solve the formulation of the lower layer, which is responsible for tracking the power targets 

evaluated by the upper layer.  

7.3   Simulation Results and Discussions 

This section presents the MATLAB/Simulink simulation of a renewable energy-based micro-grid network 

consisting of RESs (photovoltaic, PV, wind turbine, WT), Battery Storage system, ultra-capacitor, loads, 

and electric vehicle. It also includes a hydrogen storage system, comprising a PEM (proton exchange 

membrane) electrolyser to produce hydrogen, a metal hydride tank to store hydrogen, and a PEM fuel cell 

to produce energy. The Simulink model is used to simulate the dynamics of the EVs and is therefore 

interfaced with the micro-grid through the power supply and the loads. Two case studies are investigated 

in this chapter, and the first case is the management of EVs charging without V2G technologies, otherwise 

known as V1G (EV does not supply energy to the micro-grid). The second case is the management of EVs 

charging with V2G capabilities (EV can exchange energy with the micro-grid). The EV charging station 

can charge up to six cars simultaneously. The AMPC algorithm is used to optimize the micro-grid for the 

two cases (with and without the V2G technology), which consists of six charging points for the electric 

vehicles. The proposed algorithm performs the management of renewable energy sources, energy storage 

units, vehicles charge, and the purchase and sale of electric power with the grid. More so, the EVs can act 

simultaneously as loads and as generators. Hence, due to these capabilities, they can be considered as 

prosumers. Therefore, the charging station can charge up to six vehicles due to the V2G technology and 

can also exchange energy with the micro-grid. Hence, depending on the electricity tariffs, the EVs can buy 
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or sell energy from/to the grid. Thus, during fast transients, the EVs batteries are used by the micro-grid to 

increase the buffer capacity when the cars are packed [18], [255]. 

For the sake of simplicity, this study considers the incorporation of six electric vehicles into the micro-grid. 

More so, the formulation can be extended to any number of electric vehicles, based on the number of 

charging points available to charge the EVs in the charging hub.  The number of EVs integrated into the 

micro-grid system in this study is limited to six, since only six charging points are available for the charging 

management scheme. The formulations of any number of EVs can be implemented by adding as many 𝛿 

(for the connection state) and 𝜎 (for transitions) as the number of EVs and the associated constraints. The 

solver finds an optimal solution for the micro-grid, providing a set of the control variables, which are logic 

and continuous, and the AMPC controller is formulated as a mixed-integer quadratic programming (MIQP) 

problem. The different operation modes in the micro-grid are modeled with the mixed logic dynamical 

(MLD) framework. The output signals which are generated by the solver are the values of exchange power 

with the main grid (𝑃𝑔𝑟𝑖𝑑), the power of electrolyser, fuel cell, and battery (𝑃𝑒𝑙𝑧, 𝑃𝑓𝑐, 𝑎𝑛𝑑 𝑃𝑏𝑎𝑡), the 

activation signals for the electrolyser and fuel cell (𝛿𝑒𝑙𝑧 𝑎𝑛𝑑 𝛿𝑓𝑐) and the activation and transition of the 

Electric Vehicle (𝛿𝑒𝑣 and 𝜎𝑒𝑣). Note that the sampling time is 1 hour, and the schedule horizon is 24 hours. 

In this section, three scenarios for a sunny day are investigated. The first scenario is the micro-grid operation 

without the integration of electric vehicles. The second scenario is when the electric vehicles are parked 

from mid-night to 8 a.m. (meanwhile, the EVs batteries have to be fully charged at 8 a.m.), and lastly, the 

EVs are parked all day and can be charged at any interval along the entire day. Hence, the net power is 

computed as the difference between solar generation and the loads connected to the micro-grid. Figure 7-2 

depicts the MATLAB/Simulink representation of a micro-grid with the integration of Electric Vehicles. 

 

Figure 7-2: MATLAB/Simulink representation of a micro-grid with electric vehicle integration 
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Figure 7-3: Power flows in the micro-grid without EV charge during a sunny day 

Figure 7-3 depicts the first scenario in which the micro-grid operates without the incorporation of the 

electric vehicles (Energy management of the renewable micro-grid without considering the incorporation 

of electric vehicles, i.e., there is no parking lot). Since the micro-grid is not equipped with the EVs parking 

lots, it is expedient that the micro-grid optimally utilizes the available renewable energy sources with the 

storage systems and purchase energy from the grid at a low price during off-peak hours to reduce the 

operational costs. More so, the proposed control algorithm does the micro-grid scheduling by adjusting the 

value of generation and purchased energy during the day from the renewable generations and the grid, 

respectively, to minimize its costs.  The results from the simulation-conducted show that the micro-grid 

operation is slightly different in the three scenarios, although the amount of power required to charge the 

electric vehicles is not too enormous compared to the other components of the micro-grid. The energy 

generated in the morning is surplus due to the abundance of the sun. It is evident from Figure 7-3 that the 

generated power by the PV system is very high in the morning and noontime owing to the availability of 

sunlight. Due to high irradiance from the sun, the power generated is surplus, and some of the power is 

stored in the battery to meet the load demand during the period of low irradiance, particularly at night. 

Therefore, the remaining of this surplus energy is sold to the grid since the electricity price is high. The 

power stored in the battery is used at 20 hours of the day to compensate for the power deficit. Moreover, 

the excess energy from the solar PV system (renewable source) is also used to produce hydrogen via the 

process known as electrolysis. This produced hydrogen is stored in the metal hydride tank, and it is used 

by the fuel cell to supplement the mismatch between the supply and demand when power from the 

renewable source is not available. Figure 7-3 illustrates the power flows in the micro-grid without 

implementing EVs charging mechanism during a sunny day. 
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Figure 7-4: Power flows in the micro-grid with EVs mid-night charge during a sunny day 

Figure 7-4 depicts the power flows in the micro-grid with EVs mid-night charge during a sunny day. In this 

scenario, the electric vehicles are parked at home parking lots from midnight to 8 a.m., and the EVs batteries 

have to be fully charged at 8 a.m. Hence, the micro-grid uses the capacity of the EVs batteries to store the 

low-cost power generation from renewable energy sources as well as the energy purchased from the grid. 

Similar to the first scenario, the energy generated by the PV system in the morning is surplus owing to the 

abundance of sunlight. As it is evident in Figure 7-4, the solar irradiance is high between 8-15 hours of the 

day; therefore, the solar energy produced is in excess, and some of the power is stored in the battery to 

compensate for any power shortage at night. The irradiance level at night is low or completely zero; 

therefore, the battery supplies the loads and EVs until its SOC is minimum. Similarly, the fuel cell uses the 

hydrogen produced by the electrolyser to supplement the energy supplied by the storage devices to meet 

the load demand and to charge the EVs batteries parked at the parking lot until its LOH is minimum. 

Consequently, there is a need to patronize the grid for energy purchases when the energy from the renewable 

sources and the energy stored in the storage systems have been exhausted to ensure reliability in the micro-

grid operation. Hence, this implies that most of the energy must be purchased from the grid in order to 

charge the EVs batteries during the night. The purpose of charging the EVs at midnight is because it is an 

off-peak period. During this period, most of the utility customers consume less energy, and the energy cost 

from the grid tends to be cheaper. Hence, load shifting activity in the charging management of EVs parked 

over a time-period optimizes the charging process with respect to the energy price level and the operating 

costs for micro-grids. The AMPC algorithm is applied to solve the optimization problem of the energy 

management system in micro-grid with EVs integration by estimating the best charging interval (within the 

parking period of the car). 
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Figure 7-5: Power flows in the micro-grid with flexible EVs charge during a sunny day 

Figure 7-5 illustrates the power flows in the micro-grid with flexible EVs charge during a sunny day. In the 

third scenario, EVs are parked all day and can be charged at any time of the day. Although the only weather 

condition considered in this section is a sunny day. Admittedly, sunlight is most of the time abundant in the 

morning till the noontime, as shown in Figure 7-5. Due to the high irradiance from the sun, the PV system 

generates enough energy to meet the load demand (EVs charging). Thus, it is expedient to shift most 

activities that require energy consumption to these hours of the day. Therefore, the optimizer around mid-

day shifts the loads to where a surplus of energy exists. Since the case is conducted during a sunny day, 

there would be an energy surplus during the mid-day, which results in a lower cost of energy. Similar to 

the second scenario, the fuel cell also uses the hydrogen produced by the electrolyser to supplement the 

energy supplied by the storage devices to meet the load demand and to charge the EVs batteries parked at 

the parking lots. The essence of the flexibility in the EVs charging is to utilize the available renewable 

energy sources optimally to avoid continuous grid patronage for energy, which minimizes the micro-grid 

running costs.  In conclusion, load shifting can be used to choose the best charging interval for EVs 

considering time constraints and optimizing operational costs. Therefore, the management of EVs charging 

without V2G technologies (EV does not supply energy to the micro-grid) has been addressed in this section. 

Table 7-1: Characteristics and the simulation results of different case studies.  

Case study Energy exchange 

(micro-grid and 

main-grid) 

Parking lots 

(EVs charging) 

DR program Operation Costs 

𝐽 

Scenario 1 ✓    18.215 

Scenario 2 ✓  ✓  ✓  13.250 

Scenario 3 ✓  ✓  ✓  10.125 
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Table 7-1 shows the characteristics and the simulation results of the different case studies that are 

considered. It is evident in the cost function, 𝐽, obtained from the three scenarios conducted that 

incorporating the electric vehicle into the micro-grid system has minimized the operation cost of the micro-

grid compared to when EVs are not integrated. 

This section addresses the second case, which is the management of EVs charging with V2G capabilities 

(EV can exchange energy with the micro-grid). It is worth noting that the EV charging station can charge 

up to six cars simultaneously. Therefore, the objective of the AMPC control algorithm is to utilize the RES 

optimally during EVs charging, facilitates the purchase and sale management of electricity to the grid. More 

so, it also coordinates the use of the battery bank and the hydrogen storage to minimize the mismatch 

between the generation and demand, and lastly, performs the charging of EVs while fulfilling the micro-

grid load demand at all times. 

 

Figure 7-6: 24 hours demand vector 

The 24 hours demand vector used in the simulation is depicted in Figure 7-6. It is evident that the demand 

rises in the morning to the highest level, that is, the consumption of energy is very high in the morning 

when everyone is still at home getting ready to leave for work. The energy consumption pattern levels out 

over the mid-day, since the majority of energy consumers are at their various workplaces, and then in the 

evening, it is seen that the energy consumption pattern rises to another level when everyone gets home from 

work. The simulations were carried out for a period of 24 hours to follow the energy consumption pattern 

of Figure 7-6. Three different simulations were performed in different scenarios to validate the controller 

performance. The first scenario considered was that of a sunny day. It is evident from the simulation results 

that three of the vehicles draw fast charges (1, 3, and 5), while the other three receives slow charge (2, 4, 

and 6). 
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Figure 7-7: Power flow profile of the energy sources during a sunny day 

 

Figure 7-8: Level of storage during a sunny day 

The behavior of the micro-grid ESSs, such as the battery and the hydrogen storage, changes throughout the 

day. It is clear from the Figures 7-7 and 7-8 that throughout the time of low sunlight irradiance (0-8 hours 

and 19-24 hours), storage systems operate during these hours to provide the energy required to satisfy 

demand and reduce the amount of electricity purchased from the external grid. On the other hand, during 

high sunlight irradiance (8-18 hours), there is an energy surplus from the PV system, part of the energy is 

sold to the grid, and the battery and hydrogen storage are charged with the rest of the energy through the 

electrolyser process. During the night hour of the day (18-19 hours), when there is less irradiance from the 

sun, the controller decides to switch between the fuel cell and electrolyser to supply the load, respecting the 

minimum operation time of each equipment for reliability in the micro-grid operation. It is seen that the 

AMPC algorithm provides an optimal power distribution between the battery, the electrolyser, and the 

energy sold to the grid. Furthermore, the EVs batteries are connected to the micro-grid to avoid any form 
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of fluctuation in the primary source of generation. Therefore, the energy stored in the EVs batteries during 

energy surplus is used by the micro-grid to meet the mismatch between generation and demand. 

 

Figure 7-9: Power flow profile of the EVs charging management during a sunny day 

 

Figure 7-10: Level of storage of the EVs charging management during a sunny day 

Figures 7-9 and 7-10 depict the power flow profile and the level of storage of the EVs charging management 

during a sunny day. The EV1 (that accepts fast charge) is parked at the parking lot to be charged at the 7 

hours of the day, and the EV battery is used by the micro-grid as a storage system. Therefore, due to the 

abundance of sunlight, the PV system generates enough solar energy, which is used to charge the EVs 

connected to the charging points of the energy hub. In this scenario, six electric cars are connected to the 

station to be charged, and they are connected simultaneously. The charging process is shifted to the period 

of surplus energy generation, and it is evident in Figure 7-9 that EV1 is fully charged at 9 hours of the day. 

It is seen that there are some oscillations in the power of the three EVs (1, 3, and 5) during the charging 

process, and this is due to the aggressive tuning of the controller parameters. More so, in order for the other 

three EVs (2, 4, and 6) to be ready for pickup, they are charged in the slow charge mode in the most 
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convenient way. The sharp decrease in the SOC curves after 15 hours of the day is due to the disconnection 

of the EVs from the charging station. 

 

Figure 7-11: Power flow profile of the energy sources during a cloudy day 

 

Figure 7-12: Level of storage during a cloudy day 

Similarly, a simulation was performed for a cloudy day scenario, where the irradiance from the sun is too 

low or equals to zero. As it is evident from Figures 7-11 and 7-12, the behavior of the micro-grid during a 

cloudy day scenario is slightly different. Hence, since the control has to cope with the high-power 

fluctuation in the generation, the cloudy day connotes a big challenge for renewable micro-grids. In this 

weather situation, the irradiance from the sun is not sufficient to meet the demand. Therefore, it is expected 

that the battery bank absorbs high-frequency oscillations while the hydrogen provides energy for a long 

time, as the micro-grid comprises a hybrid storage system. More so, reducing switching in hydrogen storage 

is another problem that could be triggered by oscillation conditions. During cloudy weather, between the 

hours of 12 hours and 18 hours, as shown in Figure 7-12, the EVs batteries and the battery bank absorb 

most of the power fluctuations of the energy generation. Due to irradiance oscillation, a short switching 
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between the electrolyser and the fuel cell is observed around 12 hours to 13.30 hours. The energy stored by 

the hydrogen storage during the day is used to supply the load at night. Hence, compared to the scenario of 

the sunny day, the difference between the initial and final LOH is enormous. This occurrence is anticipated 

since the irradiance from the sun during the day is not adequate to supplement the energy expended at the 

nighttime. The energy profile sold to the external grid, and the lifespan of the battery is directly affected by 

the irradiance oscillation, which is caused by the cloudy weather. Consequently, due to the fluctuation 

conditions, the number of charge/discharge cycles increases. 

 

Figure 7-13: Power flow profile of the EVs charging management during a cloudy day 

 

Figure 7-14: Level of storage of the EVs charging management during a cloudy day 

Figures 7-13 and 7-14 depict the power flow profile and the level of storage of the EVs charging 

management during a cloudy day. Similar to the scenario of a sunny day, the EVs were parked at the parking 

lots to be charged. Since the EVs are not in motion (idle), their batteries are used as sources of energy to 

the loads connected to the micro-grid. The micro-grid uses the EVs as a storage system to compensate for 
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the stochastic nature of RES generation, perform primary frequency control, and thus contribute to 

improving the dynamic behavior of the systems. Due to the cloudy weather, the irradiance from the sunlight 

is not sufficient to effectively charge the EVs, the other sources of energy in the electrical network (wind 

generation, fuel cell, and the external grid) are used to meet the demand. Hence, as shown in Figure 6-17, 

the EV1 is already charged at around 9 hours of the day. The batteries of the EVs, which allow fast charge 

(EV1, EV3, and EV5), are used to reduce the power fluctuations during the cloudy period of the day. Thus, 

a slow charge is applied in EV2, EV4, and EV6, similar to the scenario of a sunny day. 

 

Figure 7-15: Power flow profile of the energy sources during a windy day 

 

Figure 7-16: Level of storage during a windy day 

Simulation is conducted similarly for the scenario of a windy day using a wind turbine as the renewable 

energy source. More so, it is evident in Figures 7-15 and 7-16 that compared to the cloudy day, the 

fluctuations are not so abrupt. Nonetheless, the wind turbine generation still presents a high stochastic 

behavior in its power profile. Therefore, there are some switching occurrences in hydrogen storage, for 
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instance, at 10 hours of the day when there is wind fluctuation and also when the load demand is expected 

to be met around the 20 hours of the day. The electrolyser operates for most hours of the day, and, as a 

result, the LOH value of the hydrogen storage is higher than it was at the beginning of the day. 

 

Figure 7-17: Power flow profile of the EVs charging management during a windy day 

 

Figure 7-18: Level of storage of the EVs charging management during a windy day 

As shown in Figures 7-17 and 7-18, the EVs batteries are scarcely used by the micro-grid, although they 

are accessible for energy balancing between the supply and demand. The simulation adopted four switching 

mechanisms between the fuel cell and the electrolyser. The switching mechanisms are essential due to the 

impact of the proposed constraints and the penalty function in order for the operating time of the individual 

equipment to be minimized. Since the weather condition is windy, the energy from the wind turbine is used 

to charge the EVs for some hours. Due to the abundance of wind, the energy from the wind generation is 

surplus, which energizes the electrolyser to operate for most hours of the day. 
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Figure 7-19: System frequency without EVs 

 

Figure 7-20: System frequency with EVs 

Figures 7-19 and 7-20 illustrate the deviations in the system frequency without incorporating the electric 

vehicles and integrating EVs, respectively. The system frequency without EVs has more oscillations in the 

system response than when EVs are incorporated. The frequency when EVs are connected remains within 

the permissible limits. EVs are parked in the parking lots to store energy during the surplus energy from 

renewable energy sources, and the energy is used to compensate for any power imbalances between the 

generation and demand. It is seen from Figure 7-19 that the deviation of the frequency for the case without 

EVs is unable to restore to its nominal frequency until the renewable energy sources start generating at full 

power. The presence of the EVs was able to stabilize the grid frequency. It is evident in all the simulation 

results that the proposed controller has been able to manage the energy in the micro-grid, meet the load 

demand of the various loads connected to the micro-grid, and also efficiently charged the electric vehicles 

[26]. 



145 

 

7.4   Chapter Summary 

In this chapter, the problems of micro-grid control with the incorporation of renewable energy generation, 

hybrid storage technologies, and the integration of the EVs with V2G technology have been addressed. This 

chapter adopted the AMPC control technique to optimize the charge/discharge of the EVs in a receding 

horizon manner in order to reduce operational cost in a renewable energy-based micro-grid. Meanwhile, 

two scenarios were investigated; firstly, a load shifting mechanism was used to solve the charge 

management problem during a known interval of parking time. Secondly, the concept of EVs with V2G 

capabilities when connected with the micro-grid was introduced. In this case, the vehicle battery 

collaborated with the ESS of the micro-grid to maximize cost benefits and mitigate the intermittency of 

renewable generations. It is evident from the results when a load shifting mechanism was used to solve the 

charge management problem during a known interval of parking time that the cost function, 𝐽, obtained 

when the EVs were incorporated was drastically minimized compared to when EVs were not integrated as 

shown in Table 7-1. More so, the integration of the EVs was able to stabilize the grid frequency. The 

deviations in the system frequency when EVs were integrated quickly damped out. However, the system 

frequency response could not restore to its nominal value when EVs were not incorporated. It is evident 

from the obtained results that the proposed control algorithm was able to effectively manage the renewable 

energy sources, energy storage units, vehicles charge, and the purchase and sale of electric power with the 

grid. Frequency control is a central control concern in the design and operation of electrical power systems. 

It is becoming more and more important today due to the growing scale, the evolving structure, the advent 

of new distributed renewable energy sources and uncertainties, environmental and operational constraints, 

and the complexity of power systems. Therefore, to reduce the frequency deviation, the frequency control 

units can quickly compensate for the difference between the power supplies and power demand. The next 

chapter uses the adaptive model predictive control (AMPC) technique for load frequency control of a two-

area interconnected power system with a stand-alone micro-grid. The purpose of this study in the next 

chapter is to solve the problems of frequency deviation against variations in system parameters and load 

disturbance of a typical stand-alone micro-grid. 
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CHAPTER EIGHT 

LOAD FREQUENCY CONTROL OF A TWO-AREA POWER SYSTEM 

WITH A STAND-ALONE MICRO-GRID 

8.1   Introduction 

The previous chapter addressed the problems of control and energy management in micro-grid with the 

incorporation of renewable energy generation, hybrid storage technologies, and the EVs with V2G 

technology. The adaptive model predictive control (AMPC) technique was used to optimize the 

charge/discharge of six EVs in a receding horizon manner in order to reduce operational cost in a renewable 

energy-based micro-grid. Hence, the proposed algorithm effectively managed the renewable energy 

sources, vehicles charge, energy storage units, and the purchase and sale of electric power to the external 

network. More so, two scenarios were investigated in order to examine the performance of the proposed 

controller to manage the renewable energy sources in the micro-grid system. Furthermore, other benefits 

of V2G concepts, such as voltage and frequency control for the micro-grid stability, were investigated. 

Therefore, it is evident from the obtained results that the proposed control algorithm effectively managed 

the renewable energy sources, energy storage units, vehicles charge, and the purchase and sale of electric 

power with the grid. Frequency control is a central control concern in the design and operation of electrical 

power systems. It is becoming more important today due to the growing scale, the evolving structure, the 

advent of new distributed renewable energy sources and uncertainties, environmental and operational 

constraints, and the complexity of power systems. Therefore, to reduce the frequency deviation, the 

frequency control units can quickly compensate for the difference between the power supplies and power 

demand [256], [257]. It is worth noting that the traditional MPC controller is not reliable in the handling of 

changing dynamics, as the internal plant model used in the MPC for prediction is constant. The optimal 

result could not be obtained by an MPC controller with constant penalty weights while taking into account 

micro-grid complexities. This poses the need for an advanced control algorithm that takes the updated plant 

model at each time step for the current operating condition; thus, it makes accurate predictions for the new 

operating condition. Hence, in order to deal with changes in plant dynamics, the adaptive model predictive 

Control algorithm is utilized [26], [258]. The above analysis motivated the proposed advanced controller, 

adaptive model predictive load frequency control for a two-area power system with a stand-alone micro-

grid. This chapter uses the adaptive model predictive control technique for load frequency control of a two-

area interconnected power system with a stand-alone micro-grid. A generalized state-space model of a 

typical stand-alone micro-grid having controllable and uncontrollable generating power sources is derived. 

The same proposed control algorithm is used to predict the future output and control inputs for the micro-
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grid frequency control. The purpose of this study is to solve the problems of frequency deviation against 

variations in system parameters and load disturbance of a typical stand-alone micro-grid. Therefore, in 

order to achieve better system performance, it is expedient to understand the effects of system parameters 

on the control performance of the proposed controller, which is essential for the controller design process. 

Hence, the effects of system parameters variation on the control performance of the AMPC control 

technique for frequency control in a stand-alone micro-grid are investigated. More so, based on the various 

cases considered in this chapter, it is evident that the closed-loop response obtained by the AMPC algorithm 

has proven to be faster and adaptable. The effectiveness and robustness of the AMPC control technique are 

demonstrated for different load, solar power, and wind power perturbations and similarly evaluated by the 

computation of quantitative performance indices under the variation of the system parameters. Furthermore, 

to be more realistic in our analysis of the proposed system model, certain physical constraints affecting the 

power system performance were included. Such physical constraints are the reheat turbine (RT), the time 

delay (TD), the generation rate constraint (GRC), and the dead band (DB) for the steam turbine. The impacts 

of these physical constraints on the system dynamic performance were also investigated [5], [223]. The 

simulation results of the proposed model demonstrated good dynamic response, robustness, optimum 

performance, and superiority of the proposed AMPC technique to the MPC control technique. The dynamic 

modeling, state-space representation, and the AMPC controller design for the stand-alone micro-grid are 

presented in chapter 3. This chapter presents the results and the discussions obtained in the various cases 

conducted [26], [259]. 

8.2   Description of the Dynamic Modeling of the Stand-Alone Micro-grid  

A two-area interconnected power system, with control area 1 consisting of a multi-renewable energy-based 

micro-grid (PV generation system, fuel cell, wind turbine system, and battery) and control area 2 consisting 

of a thermal reheat turbine system, TD, DB, and GRC are shown in Figure 8-1. In addition, the simulation 

of the transfer function model carried out in this study used the governor's linearized models, thermal with 

reheat turbine, PV system, wind turbine system, fuel cell system, battery storage system, and UPFC 

connected along the AC-DC tie line as depicted in Figure 8-1. The deviation in frequency is caused by the 

mismatch between the power generated and the demand. Similarly, the micro-grid frequency is also 

deviated by the changes in solar irradiance and wind speed. The thermal generation (TG) with primary 

frequency control can generate power quickly to respond to changes in power demand or supply. The 

primary frequency control is based on the droop speed control technique, which results in a steady-state 

frequency error. Therefore, the secondary frequency control, which is based on the AMPC control 

technique, is applied to the ESS in order to restore the system frequency to its nominal value. Hence, the 

nominal power values of each micro-grid component (PV, WTG, TG, FC, ESS, and Load) are 100 kVA, 
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100 kVA, 160 kVA, 80 kVA, 90 kWh, and 200 kW, respectively [260]. The penetration of RESs, such as 

the generation of the Solar system and wind turbines in the microgrid, decreases overall device inertia and 

negatively affects the frequency and voltage stability of the microgrid. More so, it is highly anticipated that 

the LFC-based on the AMPC control technique to compensate for the active power imbalance in the stand-

alone microgrid. 

 

Figure 8-1: The model-based design description of the stand-alone micro-grid 

Figure 8-2 illustrates the linearized model of the stand-alone micro-grid system, which is commonly studied 

for evaluating the frequency response of the stand-alone micro-grid system. Control area 2 units has its 

participation factor, 𝐾𝑡 and regulation parameter, 𝑅, which determines their contributions to the nominal 

loading. In this study, two control techniques are being investigated in order to compare their control 

capacities in the minimization of area control error (ACE) of the control areas to nearly a zero value. Hence, 

to have a thorough insight into the AGC problem, it is imperative to integrate physical constraints in the 

dynamic model of the system to provide a more practical power system. Some of the generating units, 

therefore, have some essential physical constraints such as DB for the governor, TD, and GRC for the steam 

turbine. These non-linear characteristics have often been ignored in some literature [261], [262]. Thus, this 

chapter incorporates certain physical constraints to make up this defect in the proposed model. Also, the 

unified power flow controller (UPFC), a member of the flexible alternating currents transmission systems 

(FACTS) family, is used in series with a tie line further to improve the dynamic performance of the power 

system. Thus, frequency control in a two-area multi-renewable micro-grid source is achieved primarily by 

predicting control signals and future outputs, i.e., control actions and frequency deviations to the 
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controllable units. It is worthy of note that the renewable sources are presumed to operate at maximum 

power point [68]. The AMPC control design algorithm is used to accomplish the predictions where a state-

space system model is used. In area 1, as shown in Figure 8-2, the PV system consists of the PV panel, 

maximum power point tracking (MPPT), inverter, and filter. 𝐾𝑃1 is the gain of the PV system, 𝑎1 and 𝑐1 

are the negative values of poles, and 𝑎2 is the negative value of zero in the transfer function. Hence, it goes 

for all the generation sources in the system [14], [242]. The thermal system dynamic model comprises the 

speed control loop, steam turbine model, and the governor. Two types of wind turbine generators (fixed-

speed WTG-based on an induction generator and variable speed WTG based on a doubly fed induction 

generator) are considered in this chapter to show the influence of various WTG models on the control 

performances. 

 

Figure 8-2: Transfer function model of a two-area multi-renewable energy sources-based autonomous 

micro-grid. 

8.3   Simulation Results and Discussions 

This section presents the simulation results and discussions of various cases of the LFC problem in two-

area multi-renewable sources stand-alone micro-grid. Therefore, to demonstrate the effectiveness of the 

proposed AMPC scheme over the traditional MPC, we considered different cases, including variations in 

the system generation, load, and parameters. The two-area multi-source power network shown in Figure 8-
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2, with renewable energy sources, is simulated in Simulink/MATLAB. More so, some physical constraints 

such as reheat turbine, GRC, TD, and DB that affect the performance of the power system are investigated 

for more practical study. It is worth mentioning that power generation can only be adjusted at a specified 

maximum rate in a power system with a steam turbine. Two types of wind turbine generators (WTGs) are 

considered in this section to depict the influence of various WTG models on the control performance of the 

two control algorithms under investigation. The dynamic responses of both controllers (AMPC and MPC) 

are evaluated considering the micro-grid system of Figure 8-2 under the condition of load perturbation, 

solar, and wind power fluctuations. Communication delays are, therefore, a significant challenge in the 

analysis of LFC problems due to the increasing complexity of power systems in a deregulated environment. 

Thus, to be more realistic in analyzing the proposed model, these physical constraints are included in the 

system model. The reheat unit has a generation rate of 10% puMW/min, the maximum value of DB for 

governor is set as 0.05 𝑝. 𝑢, and the typical value of time delay is considered to be 2 𝑠𝑒𝑐 for the present 

study. The system parameters used in the model simulation are shown in Table D-6. 

 

Figure 8-3: Two-area multi-renewable sources isolated micro-grid with UPFC 

The simulations are implemented on MATLAB/Simulink 2018b software core i5 processor, 8th Gen, 

2.5GHz, 8GB RAM. Fig. 8-3 shows the schematic representation of the system under study. Comparison 

based on good dynamic response, robustness, optimal performance and the superiority of the proposed 

AMPC technique to the MPC control technique is investigated. Several scenarios are conducted to assess 

the dynamic response and robustness of the secondary frequency control based on the AMPC by 

considering the system uncertainties. More so, under the conditions of load change and wind power 

fluctuations, the dynamic responses of both controllers are assessed by examining the MG system. Table 

8-2 shows the various parameters setting of AMPC and MPC control techniques. 
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Table 8-1: The parameter settings of the AMPC and conventional MPC control schemes 

Control Algorithms Parameters Settings 

AMPC Prediction horizon, 𝑃 = 10, control horizon, 𝑀 =

5, weights on manipulated variables = 0.01, 

weights on manipulated variables rate = 0.02, 

weights on the output signals = 1.2, sampling 

interval = 0.0002 𝑠, Max. control action =

0.2 𝑝𝑢, Min. control action = 0.2 𝑝𝑢, Max. 

Frequency deviation= 1 𝑝𝑢, Min. frequency 

deviation= 1 𝑝𝑢, weight vectors, 𝑄 = 𝐸𝑃×𝑃, 𝑅 =

0.01𝐸𝑀×𝑀. 

Conventional MPC Prediction horizon, 𝑃 = 10, control horizon, 𝑀 =

5, weight vectors, 𝑄 = 𝐸𝑃×𝑃, 𝑅 = 0.01𝐸𝑀×𝑀. 

 

8.3.1 Case 1: Step load variation and dynamic system response 

In this case, the dynamic system response of the micro-grid with series step changes in the load is evaluated. 

The load changes are implemented with an increase in the value of ∆𝑃𝐿. The load connects to the stand-

alone micro-grid system at 5 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 with an amount of 0.02 𝑝. 𝑢 (2% step increase in load with AC tie 

line), as shown in Figure 8-4a, which results in the reduction of the frequency. The micro-grid frequency 

recovers to its nominal value due to the ESS with the secondary frequency control, which generates more 

active-power. It is evident in Figure 8-4b that the control performance of the micro-grid frequency with the 

AMPC control technique outperformed the MPC control technique. The frequency response using AMPC 

is better and faster, and the overshoot is quite lower than the MPC technique. The physical constraints (non-

linear features) affect the optimum values of the controller parameters and the dynamic transient response 

of the thermal system, which results in more oscillations when the controller is not incorporated. The 

physical constraints significantly impact the control performance of the conventional MPC algorithm 

compared to the proposed AMPC controller in the thermal system. Moreover, the inclusion of the UPFC in 

series with the tie-line further improves the dynamic response of the system and the control parameter 

values. The performance indices (Criteria) utilized in this study include the integral of time multiplied 

square error (𝐼𝑇𝑆𝐸), the integral of time multiplied absolute value of the error (𝐼𝑇𝐴𝐸), the integral of the 

absolute value of the error (𝐼𝐴𝐸), the integral of square error (𝐼𝑆𝐸), the overshoot of ∆𝐹1, ∆𝐹2 and ∆𝑃𝑡𝑖𝑒 

denoted as 𝑉𝑝1, 𝑉𝑝2 and 𝑉𝑝3, respectively, the rise time of ∆𝐹1, ∆𝐹2 and ∆𝑃𝑡𝑖𝑒 is denoted as 𝑡𝑟1, 𝑡𝑟2, and 
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𝑡𝑟3, respectively. More so, settling time of ∆𝐹1, ∆𝐹2 and ∆𝑃𝑡𝑖𝑒 is denoted as 𝑡𝑠1, 𝑡𝑠2, and 𝑡𝑠3, respectively, 

the steady-state error of ∆𝐹1, ∆𝐹2 and ∆𝑃𝑡𝑖𝑒 denoted as 𝐸𝑆𝑠1, 𝐸𝑠𝑠2, and 𝐸𝑠𝑠3, respectively. 

The performance indices utilized in this study are defined as follows [258], [263]:  

𝐼𝑇𝑆𝐸 = ∫ ((∆𝐹1)
2 + (∆𝐹2)

2 + (∆𝑃𝑡𝑖𝑒)
2)𝑡𝑑𝑡

𝑇𝑚𝑎𝑥

0
                              (8-1)                                                                             

𝐼𝑆𝐸 = ∫ ((∆𝐹1)
2 + (∆𝐹2)

2 + (∆𝑃𝑡𝑖𝑒)
2)𝑑𝑡

𝑇𝑚𝑎𝑥

0
                               (8-2)                                                                                                  

𝐼𝑇𝐴𝐸 = ∫ 𝑡(|∆𝐹1| + |∆𝐹2| + |∆𝑃𝑡𝑖𝑒|)𝑑𝑡
𝑇𝑚𝑎𝑥

0
                     (8-3)       

𝐼𝐴𝐸 = ∫ (|∆𝐹1| + |∆𝐹2| + |∆𝑃𝑡𝑖𝑒|)𝑑𝑡
𝑇𝑚𝑎𝑥

0
                             (8-4)        
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Figure 8-4: Dynamic response of the system for 2% step increase in load with AC tie-line: (a) Load 

disturbance (b) Area 1 frequency deviation (c) Area 2 frequency deviation (d) Tie-line power deviation 

Figure 8-5 shows the dynamic response of the power system for 2% step increase in load with AC-DC tie-

line. It is evident from Figure 8-5 that the dynamic responses of the system control parameters are better 

with the AC-DC tie compared to the results obtained with the AC tie-line, as shown in Figure 8-4.     

 

 

 



154 

 

 

Figure 8-5: Dynamic response of the system for 2% step increase in load with AC-DC tie-line: (a) Load 

disturbance (b) Area 1 frequency deviation (c) Area 2 frequency deviation (d) Tie-line power deviation 

8.3.2 Case 2: System dynamic response with dispatchable DERs 

 In this case, the frequency regulation in the power system is studied when there are just dispatchable units 

such as fuel cell, diesel units, and battery storage in the system. The load change of 0.02 p.u (∆𝑃𝐿1 = ∆𝑃𝐿2 =

0.2) is utilized. Therefore, a negative frequency and tie-line power deviation responses are obtained for the 

load change, as there are only two dispatchable generation units in the system. The simulation period and 

sampling time are taken as 30 seconds and 0.02s, respectively. Due to the absence of renewable sources, 

there are few oscillations in the system response of area 1. Similarly, due to the non-linear features in area 

2, more oscillations are seen in the dynamic response without a controller, and fewer oscillations with the 

conventional MPC control technique. The proposed AMPC control technique performs better than the 

conventional MPC based on the dynamic performance in case 2. The dynamic response of the tie-line is 

further improved due to the presence of UPFC, which is placed in series with the tie-line, as shown in Figure 

8-6. 
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Figure 8-6: Dynamic response of the system with only dispatchable DERs (a) Area 1 frequency deviation 

(b) Area 2 frequency deviation (c) Tie-line power deviation 

8.3.3 Case 3: System dynamic response with wind speed fluctuation of 2m/s 

This case introduces the wind gust component of magnitude 3m/s for 5 seconds in the wind velocity, and 

the wind mean-velocity is taken as 7m/s. The load change of 0.02p.u is used, and the change in solar power 

is maintained constant at 0.05p.u. The wind power increases from 0 p.u to the average power of 0.02p.u. It 

is evident in the frequency response of the micro-grid system under the conditions of load change and wind 

perturbation of 2 m/s, which is shown in Figure 8-7. The performance of the proposed control technique is 

better and faster than the MPC control technique. The type of WTG model used in this section is the fixed-

speed WTG-based on an induction generator. 
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Figure 8-7: Dynamic response of the system with wind perturbation of 2 m/s (a) Wind perturbation (b) Area 

1 frequency deviation (c) Area 2 frequency deviation (d) Tie-line power deviation 

8.3.4 Case 4: System dynamic response with series step changes in solar power 

In this case, a series step increase in solar power is considered. Meanwhile, the change in ∆𝑃𝑊wind power 

is taken as 0.05 p.u throughout the simulation, and the load change of 0.02 p.u (∆𝑃𝐿1 = ∆𝑃𝐿2 = 0.2) is used. 

It is evident in the frequency response of the micro-grid system under the conditions of load change and 

solar perturbation, which is shown in Figure 8-8. The performance of the proposed control technique is 

better and faster than the MPC control technique. 
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Figure 8-8: Dynamic response of the system with series of step changes in solar power (a) solar perturbation 

(b) Area 1 frequency deviation (c) Area 2 frequency deviation (d) Tie-line power deviation 

8.3.5 Case 5: System dynamic response with all the disturbances in the system (∆𝑷𝑳, ∆𝑷𝑾, and ∆𝑷𝑺 ) 

In this case, the dynamic response of the system is investigated, considering all the possible disturbances 

in the system. The disturbance studied in case-3, case-4, and case-5 are applied simultaneously. The 

performance comparison of the proposed AMPC control technique to the MPC control technique based on 

the performance indices (𝐼𝑇𝑆𝐸, 𝐼𝑇𝐴𝐸, 𝐼𝐴𝐸, 𝐼𝑆𝐸, 𝑉𝑝1, 𝑉𝑝2, 𝑉𝑝3, 𝑡𝑟1, 𝑡𝑟2, and 𝑡𝑟3) are assessed and have 

been tabulated in Table 8-7. It is evident in the dynamic response of Fig. 8-9 and the performance indices 

in Table 8-7 that the proposed control technique performs better and more efficiently for load frequency 

control. Therefore, due to all the disturbances in the systems, more oscillations are seen in the dynamic 

response of area 1. However, the proposed AMPC control technique performs better than the conventional 

MPC based on the dynamic performance in case 1. The dynamic response of the tie-line is further improved 

due to the presence of UPFC, which is placed in series with the tie-line. 
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Figure 8-9: Dynamic response of the system with all the disturbances (a) Area 1 frequency deviation (b) 

Area 2 frequency deviation (c) Tie-line power deviation. 

Table 8-2: Comparison of the system performance of the control techniques using the performance indices 

in CASE 1-A  

Algorithms AMPC MPC Without 

Controller 

Algorithms AMPC MPC Without 

Controller Performance-

indices 

Performance-

indices 

𝑰𝑻𝑨𝑬 7.35 19.28 134.39 𝑉𝑝2 0.002 0.007 0.012 

𝑰𝑻𝑺𝑬 0.44 0.96 9.87 𝑡𝑟2 6.0 10.0 13.0 

𝑰𝑨𝑬 9.58 14.13 39.52 𝑡𝑠2 6.0 17.0 23.0 

𝑰𝑺𝑬 0.32 0.98 8.65 𝐸𝑠𝑠2(10−5) 0.068 1.96 3.84 

𝑽𝒑𝟏 0.005 0.008 0.018 𝑉𝑝3 0.003 0.008 0.015 

𝒕𝒓𝟏 7.0 12.0 15.0 𝑡𝑟3 8.0 12.0 13.0 

𝒕𝒔𝟏 8.0 18.0 25.0 𝑡𝑠3 7.0 18.0 24.0 

𝑬𝒔𝒔𝟏(𝟏𝟎−𝟓) 0.41 1.80 3.68 𝐸𝑠𝑠3(10−5) 0.0052 0.083 0.091 

Table 8-3: Comparison of the system performance of the control techniques using the performance indices 

in CASE 1-B  

Algorithms AMPC MPC Without 

Controller 

Algorithms AMPC MPC Without 

Controller Performance-

indices 

Performance-

indices 

𝑰𝑻𝑨𝑬 8.25 20.36 141.35 𝑉𝑝2 0.001 0.003 0.008 

𝑰𝑻𝑺𝑬 0.57 0.89 8.97 𝑡𝑟2 6.0 9.0 13.0 

𝑰𝑨𝑬 10.51 16.83 42.52 𝑡𝑠2 7.0 15.0 20.0 

𝑰𝑺𝑬 0.46 0.88 10.65 𝐸𝑠𝑠2(10−5) 0.048 1.86 3.75 

𝑽𝒑𝟏 0.002 0.006 0.014 𝑉𝑝3 0.003 0.009 0.01 

𝒕𝒓𝟏 7.0 12.0 14.0 𝑡𝑟3 8.0 13.0 14.0 

𝒕𝒔𝟏 8.0 16.0 23.0 𝑡𝑠3 9.0 18.0 27.0 

𝑬𝒔𝒔𝟏(𝟏𝟎−𝟓) 0.43 1.85 3.58 𝐸𝑠𝑠3(10−5) 0.0063 0.090 0.098 
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Table 8-4: Comparison of the system performance of the control techniques using the performance indices 

in CASE 2  

Algorithms AMPC MPC Without 

Controller 

Algorithms AMPC MPC Without 

Controller Performance-

indices 

Performance-

indices 

𝑰𝑻𝑨𝑬 6.27 18.75 214.18 𝑉𝑝2 0.003 0.006 −0.035 

𝑰𝑻𝑺𝑬 0.48 0.83 16.52 𝑡𝑟2 4.0 5.0 4.0 

𝑰𝑨𝑬 8.54 12.15 48.95 𝑡𝑠2 6.0 14.0 19.0 

𝑰𝑺𝑬 0.35 0.74 10.37 𝐸𝑠𝑠2(10−5) 0.065 1.92 3.86 

𝑽𝒑𝟏 0.002 0.007 −0.03 𝑉𝑝3 0.004 0.016 -0.017 

𝒕𝒓𝟏 3.0 4.0 6.0 𝑡𝑟3 3.0 4.0 4.0 

𝒕𝒔𝟏 4.0 8.0 13.0 𝑡𝑠3 3.0 7.0 12.0 

𝑬𝒔𝒔𝟏(𝟏𝟎−𝟓) 0.37 1.77 3.62 𝐸𝑠𝑠3(10−5) 0.0054 0.085 0.093 

 

Table 8-5: Comparison of the system performance of the control techniques using the performance indices 

in CASE 3  

Algorithms AMPC MPC Without 

Controller 

Algorithms AMPC MPC Without 

Controller Performance-

indices 

Performance-

indices 

𝑰𝑻𝑨𝑬 6.32 18.26 245.42 𝑉𝑝2 0.002 0.007 0.018 

𝑰𝑻𝑺𝑬 0.36 0.83 16.75 𝑡𝑟2 3.0 3.0 4.0 

𝑰𝑨𝑬 8.54 13.17 46.92 𝑡𝑠2 4.0 12.0 23.0 

𝑰𝑺𝑬 0.27 0.85 11.58 𝐸𝑠𝑠2(10−5) 0.060 1.91 3.80 

𝑽𝒑𝟏 0.001 0.005 0.02 𝑉𝑝3 0.002 0.006 0.017 

𝒕𝒓𝟏 2.0 3.0 4.0 𝑡𝑟3 3.0 4.0 7.0 

𝒕𝒔𝟏 3.0 13.0 26.0 𝑡𝑠3 5.0 12.0 18.0 

𝑬𝒔𝒔𝟏(𝟏𝟎−𝟓) 0.40 1.66 3.85 𝐸𝑠𝑠3(10−5) 0.0042 0.075 0.081 

 

Table 8-6: Comparison of the system performance of the control techniques using the performance indices 

in CASE 4  

Algorithms AMPC MPC Without 

Controller 

Algorithms AMPC MPC Without 

Controller Performance-

indices 

Performance-

indices 

𝑰𝑻𝑨𝑬 9.46 45.67 261.30 𝑉𝑝2 0.002 0.013 0.022 

𝑰𝑻𝑺𝑬 0.88 1.69 19.61 𝑡𝑟2 2.0 3.0 3.0 

𝑰𝑨𝑬 13.54 18.43 57.38 𝑡𝑠2 5.0 8.0 15.0 

𝑰𝑺𝑬 0.66 1.78 14.83 𝐸𝑠𝑠2(10−5) 0.055 1.79 3.70 

𝑽𝒑𝟏 0.002 0.015 0.042 𝑉𝑝3 0.004 0.006 0.017 

𝒕𝒓𝟏 5.0 7.0 5.0 𝑡𝑟3 3.0 3.0 4.0 

𝒕𝒔𝟏 10.0 15.0 17.0 𝑡𝑠3 6.0 10.0 16.0 

𝑬𝒔𝒔𝟏(𝟏𝟎−𝟓) 0.37 1.69 3.60 𝐸𝑠𝑠3(10−5) 0.0049 0.078 0.084 
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Table 8-7: Comparison of the system performance of the control techniques using the performance indices 

in CASE 5  

Algorithms AMPC MPC Without 

Controller 

Algorithms AMPC MPC Without 

Controller Performance-

indices 

Performance-

indices 

ITAE 7.25 18.97 217.16 Vp2 0.002 0.015 0.024 

ITSE 0.52 0.88 16.92 tr2 2.0 3.0 4.0 

IAE 8.74 12.85 49.83 ts2 7.0 13.0 23.0 

ISE 0.39 0.77 7.87 Ess2(10−5) 0.069 1.99 3.80 

Vp1 0.004 0.022 0.045 Vp3 0.003 0.016 0.02 

tr1 3.0 5.0 5.0 tr3 1.0 2.0 3.0 

ts1 10.0 17.0 22.0 ts3 8.0 14.0 22.0 

Ess1(10−5) 0.42 1.85 3.66 Ess3(10−5) 0.0054 0.085 0.095 

 

Table 8-8: Comparison of the system performance of the control techniques using the performance indices 

in CASE 6  

Algorithms AMPC MPC Without 

Controller 

Algorithms AMPC MPC Without 

Controller Performance-

indices 

Performance-

indices 

ITAE 7.05 17.57 220.15 Vp2 0.014 0.02 0.041 

ITSE 0.68 0.90 18.62 tr2 2.0 3.0 4.0 

IAE 9.62 14.74 53.45 ts2 6.0 13.0 22.0 

ISE 0.47 0.92 9.50 Ess2(10−5) 0.078 1.98 3.89 

Vp1 0.015 0.024 0.044 Vp3 0.012 0.018 0.028 

tr1 2.0 3.0 4.0 tr3 2.0 3.0 3.0 

ts1 7.0 14.0 23.0 ts3 7.0 12.0 21.0 

Ess1(10−5) 0.46 1.87 3.79 Ess3(10−5) 0.0055 0.089 0.097 

 

In this study, the objective function is defined based on the desired specifications and constraints. Generally, 

the designed objective function utilized to tune the controller is based on the performance index that 

considers the entire closed-loop response. Specific outputs in the specifications in the time domain are 

settling time, peak overshooting, rise time, and steady-state error. Therefore, the four types of performance 

indices often considered in the control design are the integral of squared error (ISE), integral of time 

multiplied absolute error (ITAE), integral of absolute error (IAE) and integral of time multiplied squared 

error (ITSE). Hence, it is evident from Tables 8-2 to 8-8, that in terms of the dynamic response performance 

and the performance indices used as the objective function in this study, the proposed AMPC control 

technique performs better than the MPC control technique. The dynamic response and the values of the 

performance criteria obtained are further improved due to the UPFC connected in series with the tie-lie. 

The system performances could not have been these better should the UPFC is not included in the stand-

alone micro-grid system. Hence, to justify the superiority of the proposed controller scheme (AMPC) to the 
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other controller (MPC), the standard objective functions such as IAE, ITAE, ISE, and ITSE (steady-state 

errors of both the area frequency and the tie-line power interchange between neighboring control areas) are 

utilized. Therefore, it is evident from Tables 8-2 to 8-8 that the estimated steady-state errors using ITSE 

and ISE are very close to zero, which is the ultimate goal of utilizing the various control techniques in this 

chapter. 

8.3.6 Case 6: Robustness Analysis for Parametric Uncertainties 

The AMPC operation is based on the prediction of the model utilized to estimate the future state variables. 

The mismatch between the designed model parameters and the actual model parameters often affects the 

control performance of the controllers. The effect of variation in the loading conditions and system 

parameters on the system dynamic performances of the AGC problem received less attention in the 

literature. Therefore, in order to demonstrate the robustness of the proposed control techniques against 

parameter uncertainties, this case introduces the parametric variation in the system model and studies the 

system response by the proposed AMPC control technique to the MPC control technique. The variation of 

multiple system parameters that have a significant influence on the control performance is investigated. 

The parametric variations/uncertainties are incorporated as follows: Inertia time constant, H = +50%; 

Regulation constant, R= +30%; Turbine time constant, 𝑇𝑡=50%; Governor time constant, 𝑇𝑔 = +50%; Load 

damping, D = −40%; battery time constant, 𝑇𝑏=−45% and frequency bias factor, B= +30%. The wind 

velocity is kept at 6.5m/s, the change in solar power is maintained at 0.05 p.u, and the load is 0.02 p.u. 

It is evident in Figure 8-10 that AMPC performs the best in terms of the dynamic response and the 

performance indices stipulated in Table 8-8 under all of the conditions. More so, the dynamic responses of 

the AMPC control technique have fewer fluctuations, faster response, and better steady-state performance 

than the MPC control technique during parametric uncertainties. This validated the efficiency and 

robustness of the proposed AMPC algorithm against a wide range of parameter uncertainty. 
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Figure 8-10: Dynamic response of the system with parametric variations (a) Area 1 frequency deviation (b) 

Area 2 frequency deviation (c) Tie-line power deviation 

Table 8-9: Comparison of simulation results for different control techniques over 30 independent runs 

without physical constraints and UPFC  

Algorithms Maximum Minimum Standard deviation Average 

𝐀𝐝𝐚𝐩𝐭𝐢𝐯𝐞 𝐌𝐏𝐂 0.7564 0.4582 0.2061 0.6517 

𝐌𝐏𝐂 0.8251 0.5563 0.3294 0.7063 

𝐖𝐢𝐭𝐡𝐨𝐮𝐭 𝐜𝐨𝐧𝐭𝐫𝐨𝐥𝐥𝐞𝐫 1.5564 0.9968 0.7842 1.2567 

 

Table 8-10: Comparison of simulation results for different control techniques over 30 independent runs 

with physical constraints and UPFC  

Algorithms Maximum Minimum Standard deviation Average 

𝐀𝐝𝐚𝐩𝐭𝐢𝐯𝐞 𝐌𝐏𝐂 0.7315 0.4132 0.2023 0.6311 

𝐌𝐏𝐂 0.8020 0.5333 0.3225 0.7001 

𝐖𝐢𝐭𝐡𝐨𝐮𝐭 𝐜𝐨𝐧𝐭𝐫𝐨𝐥𝐥𝐞𝐫 1.5254 0.9622 0.7540 1.2267 

 

Tables 8-9 and 8-10 show the comparison of the simulation results for different control techniques over 30 

independent runs with and without physical constraint and UPFC in the micro-grid system. The maximum, 

minimum, standard deviation, and the average of the objective function values are stipulated in Tables 8-9 

and 8-10. Therefore, from the statistical analysis on Tables 8-9 and 8-10, it is seen that the minimum 

objective function values obtained with the proposed Adaptive MPC algorithm (𝐼𝑇𝐴𝐸 = 7.552, 𝐼𝑇𝑆𝐸 =

0.49, 𝐼𝐴𝐸 = 8.462, 𝐼𝑆𝐸 = 0.521) compared to MPC control technique (𝐼𝑇𝐴𝐸 = 15.512, 𝐼𝑇𝑆𝐸 =
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1.69, 𝐼𝐴𝐸 = 12.872, 𝐼𝑆𝐸 = 1.656), and without controller (I𝑇𝐴𝐸 = 137.512, 𝐼𝑇𝑆𝐸 = 16.26, 𝐼𝐴𝐸 =

48.312, 𝐼𝑆𝐸 = 12.753). Therefore, going by the statistical analysis shown in Tables 8-9 and 8-10 and the 

performance indices evaluation, the proposed adaptive MPC outperformed the other considered control 

techniques. 

Table 8-11: The system eigenvalues and minimum damping ratios with and without the proposed controller 

(AMPC) and UPFC  

𝐖𝐢𝐭𝐡  

𝐂𝐨𝐧𝐭𝐫𝐨𝐥𝐥𝐞𝐫 

𝐖𝐢𝐭𝐡 𝐂𝐨𝐧𝐭𝐫𝐨𝐥𝐥𝐞𝐫 

 𝐰𝐢𝐭𝐡𝐨𝐮𝐭 𝐔𝐏𝐅𝐂 

𝐖𝐢𝐭𝐡 𝐂𝐨𝐧𝐭𝐫𝐨𝐥𝐥𝐞𝐫 

 𝐢𝐧 𝐭𝐡𝐞 𝐩𝐫𝐞𝐬𝐞𝐧𝐜𝐞 

 𝐨𝐟 𝐔𝐏𝐅𝐂 

 −9.3251  −21.4051  −95.6351 

 −8.4327  −20.4751  −20.4821 

 −7.6320  −17.2108  −20.3581 

 −7.7211  −6.6217  −16.6521 

 −2.4351  −6.5808  −16.8157 

 −2.3842  −4.7185  −5.7581 

 −1.7358  −3.6172  −5.3885 

 −1.6654  −3.7251  −4.0531 ± 1.6706i 
 −1.2352  −2.6360  −3.5378 

 −1.0197  −2.3458  −3.5013 

 −0.2521 ± 0.8531i  −0.3351 ± 1.8457i  −2.8251 

 0.1427 ± 1.4530i  −0.8651 ± 0.7541i  −0.8241 ± 0.6845i 

 0.1672 ± 1.2538i  −0.8541  −0.9857 

 −0.4215  −0.3231  −0.5107 

 −0.2016  −0.0857  −0.2485 

 −0.05147  −0.0535  −0.0855 

 −0.04059  −0.0326  −0.0518 

 −0.03162  −6.0075  −0.0457 

 −6.6207  −6.3515  −5.6505 

 −6.2701  −  −6.5002 

 𝐌𝐃𝐑 = 𝟎.𝟎𝟕𝟑𝟓  𝐌𝐃𝐑 = 𝟎.𝟎𝟗𝟖𝟔  𝐌𝐃𝐑 = 𝟎.𝟏𝟒𝟐𝟓 

 

Table 8-11 shows the system eigenvalues and minimum damping ratio with physical constraints for all the 

cases. It can be seen that the system without controller (Adaptive MPC) is unstable, the reason being that 

not all the real parts of the eigenvalues are negative, and hence, some poles lie in the right half of the s-

plane, making the system unstable. More so, the system becomes stable with the proposed controller 

(Adaptive MPC) as all the real parts of the eigenvalues are negative, and thus, all the poles lie in the left 

half of the s–plane, hence, making the system stable, this is evident from Table 8-11. Furthermore, in the 

presence of UPFC with the proposed controller, the system becomes more stable as the negative real parts 

of the eigenvalues are shifted toward the left half of the s-plane. Similarly, Table 8-11 depicts the minimum 
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damping ratios (MDR) for all cases. Therefore, it is worth mentioning that the MDR ought to be high, 

should we require reducing the system oscillations. The optimum value of MDR is obtained with the 

proposed controller compared to the case without the controller. More so, the value of the MDR is further 

improved in the presence of UPFC; hence, we can conclude that the proposed method reduces the oscillating 

state. The system becomes unstable without a controller when the physical constraints such as dead band 

(DB), time delay (TD), reheat turbine, and generation rate constraints (GRC) are considered. Therefore, for 

proper capabilities of the proposed controller, the TD value is selected such that the system becomes 

unstable without the controller for a better illustration. Nonetheless, the primary controller alone may be 

enough in the realistic system to stabilize the system with some steady-state error. 

8.3.7 Impacts of the WTG Based on DFIG on the Performance of the Proposed Control Algorithms 

Due to the economic gains, the use of variable speed WTG based on a doubly fed induction generator 

(DFIG) has gained more popularity recently. This section further investigated the impacts of Wind Turbine 

Generator based on DFIG on the performance of the proposed control algorithms. The block representation 

of the WTG that includes the generator and the windmill is depicted in Figure 8-11. The equations that 

describe the characteristics of the generator and the windmill admit expressions as follows [264]: 

 𝑃𝜔𝑜 = 0.5𝐶𝑝(𝜆, 𝛽)𝜐𝜔
3𝜌𝐴𝜔              (8-5) 

 𝐶𝑝(𝜆, 𝛽) = 𝑐1(𝛽)𝜆2 + 𝑐2(𝛽)𝜆3 + 𝑐3(𝛽)𝜆4                (8-6)  

 𝑐1(𝛽) = 𝑐10 + 𝑐11𝛽 + 𝑐12𝛽
2 + 𝑐13𝛽

3 + 𝑐14𝛽
4                 (8-7) 

 𝑐2(𝛽) = 𝑐20 + 𝑐21𝛽 + 𝑐22𝛽
2 + 𝑐23𝛽

3 + 𝑐24𝛽
4                 (8-8) 

 𝑐3(𝛽) = 𝑐30 + 𝑐31𝛽 + 𝑐32𝛽
2 + 𝑐33𝛽

3 + 𝑐34𝛽
4            (8-9) 

 𝜆 =
𝑅𝜔𝜔

𝜐𝜔
                          (8-10) 

 𝜔 = ∫
2

𝐽
(𝑃𝜔𝑜 − 𝑃𝜔)𝑑𝑡             (8-11) 

 𝑠 =
𝜔𝑜−𝜔

𝜔𝑜
                                      (8-12) 

 𝑃𝜔 =
−3𝑉2𝑠(1+𝑠)𝑅2

(𝑅2−𝑠𝑅1)2+𝑠2(𝑋1+𝑋2)2
            (8-13) 

Where, 𝑐10 − 𝑐34 represent the windmill characteristics-constants. More explanations on the wind turbine 

generator can be found in ref [265]. 
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Figure 8-11: Block representation of the generator and windmill characteristics 

The power output of the WTG can be regulated slightly by the change of the pitch angle, 𝛽. The change of 

the blade pitch angle for frequency control in a micro-grid has been considered in several studies. The study 

is focused primarily on the AMPC-based ESS controller; hence, it is assumed that the pitch angle β is equal 

to zero. The configuration parameters of the wind turbine generator are shown in Table 8-12. 

Table 8-12: The configuration parameters of the wind turbine generator [265] 

Windmill 

Parameters 

Value Generator Value Generator Value 

 𝑅𝜔 14 𝑚 Rated power WTG  160 kW  𝑅2 0.00443 Ω 

 𝐽 62,993 𝑘𝑔𝑚2  𝑉  380 V  𝑋1 0.0376 Ω 

 𝜌 1.225 𝑘𝑔/𝑚3  𝑅1 0.00397 Ω  𝑋2 0.0534 Ω 

 

It is worth mentioning that the controller design process, in this case, is similar to the previous design 

procedures. The ESS power output has a limited value of ±0.5725 𝑝𝑢. Therefore, to obtain the controller 

output, 𝑢(𝑘/𝑘), the cost function is minimized, and it is subject to −0.5725 ≤ 𝑢(𝑘) ≤ 0.5725. The 

frequency response of the stand-alone micro-grid with WTG based-DFIG is depicted in Figure 8-11. The 

deviation in the frequency response of the micro-grid with a variable-speed WTG is marginally reduced 

compared to the frequency deviation obtained in Figure 8-7. The reason for this drastic reduction in the 

frequency deviation of WTG based on DFIG is that the WTG can smoothen its power output. Hence, due 

to the WTG complex model, the control performance of the AMPC is slightly affected. Nonetheless, based 

on the results shown in Figure 8-12, the AMPC-based frequency control outperformed the MPC-based 

frequency control based on the dynamic response performance and the performance indices. It is worth 

mentioning that the computation time of the AMPC is considered in order to implement AMPC in a realistic 

micro-grid system due to the advancement in the complexity of an overall micro-grid system. 
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Figure 8-12: Dynamic response of the system with wind perturbation of 2 m/s (a) Area 1 frequency 

deviation (b) Area 2 frequency deviation (c) Tie-line power deviation 

8.4   Chapter Summary 

In this chapter, an adaptive model predictive control (AMPC) technique is proposed for load frequency 

control of a multi-area interconnected power system with renewable energy sources with the UPFC along 

both the AC tie line and AC-DC tie line for optimal system performance. The main goal of this study is to 

solve the problems of frequency deviation against variations in system parameters and load disturbance. 

The essence of using an AMPC control algorithm is to vary the plant model in the on-line MPC structure 

to overcome the uncertainty due to the variation of the governor and turbine parameters. The effects of 

parametric uncertainties on the performance of the control techniques have been investigated in this study. 

It is evident in the results obtained that the robustness of the AMPC control technique against the system 

uncertainties is stronger than that of conventional MPC control technique. The response time of AMPC-

based micro-grid frequency regulation is faster than that of the MPC-based frequency control. Furthermore, 

due to the high penetration of renewable generations (wind power generation and Solar power generation), 
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the AMPC-based frequency control maintains the micro-grid frequency in the allowable frequency 

deviation range. From the six cases studied, it is observed that the proposed AMPC controller outperformed 

the conventional MPC in terms of the dynamic response performance and the performance indices. The 

proposed controller further demonstrated its superiority in the presence of physical constraints such as dead 

band (DB), time delay (TD), and generation rate constraint (GRC). The impact of the UPFC in series with 

the tie-line on the system dynamic performance was studied. Consequently, a significant improvement was 

observed in the dynamic response performance as well as in the performance indices. Furthermore, this 

chapter investigated further the impact of the WTG model on the dynamic performance of the proposed 

control algorithms in a stand-alone micro-grid using both fixed-speed and variable-speed WTGs. Thus, due 

to the WTG complex model of the variable-speed WTG, the control performance of the AMPC is slightly 

affected. Nonetheless, the AMPC-based frequency control outperformed the conventional MPC control 

algorithm based on dynamic response performance. 
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CHAPTER NINE 

CONCLUSIONS AND FUTURE STUDIES 

9.1   Closing Remarks 

Micro-grids, and the integration of DER units in general, pose a range of operational problems that must 

be tackled in the design and implementation of the control systems to ensure that the present levels of 

reliability are not significantly affected and the potential benefits of the distributed generations are fully 

harnessed. This work proposes and presents new control algorithms for renewable energy microgrids with 

hybrid energy storage systems, which can operate in both grid-connected and islanded modes. Hence, this 

study aims to use adaptive model predictive control (AMPC) to provide solutions to the micro-grids control 

problems for effective and reliable operation of the renewable energy-based microgrids. The availability of 

more reliable and effective energy management techniques is one of the main reasons for developing 

effective integrated systems based on distributed generations. Firstly, an optimal control strategy that 

efficiently manages a stand-alone residential micro-grid comprising of renewable and non-renewable 

energy sources was investigated. An adaptive model predictive control algorithm is implemented for 

choosing an optimal mode and set of inputs for the system to track both a constant and load-varying power 

demand profile. The AMPC control algorithm was implemented to track the power transmitted to residential 

micro-grid. Excellent results were obtained for tracking both a constant and a time-varying load reference 

power profile. The cost function was minimized, which guaranteed minimum usage of non-renewable 

energy sources as it maximizes the consumption of power delivered by a renewable energy source. In the 

subsequent chapter, the EMS-based adaptive MPC algorithm was implemented for optimal micro-grids 

management based on various energy storage systems. The AMPC algorithm solves an energy optimization 

problem with multiple types of energy storage systems in a renewable energy microgrid, which exchanges 

electricity with the host grid. This optimization problem is solved at each sampling time to determine 

minimum running costs while satisfying the demand and considering technical and physical constraints. 

The controller’s proposed behavior has been observed under different external conditions, such as changes 

in weather and demand. Different scenarios and configurations were used to demonstrate the AMPC’s 

versatility and applicability. The demand response technique for the energy management system in micro-

grid based on adaptive model predictive control was also investigated. The proposed method is a 

generalized scheme based on load curtailment, which has been mathematically formulated as an 

optimization problem. The minimization problem obtained by using the DR technique for the energy 

management system in a renewable energy-based micro-grid is solved using the AMPC algorithm. The 

AMPC algorithm is proposed to optimally utilize the maximum power from the renewables by using hybrid 
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storage systems. The simulation results have shown that implementing the DR technique for energy 

management in micro-grid reduces the peak load demand and, consequently, minimizes the system's 

operating costs. Therefore, to further investigate the significance and effectiveness of the proposed control 

algorithm, the AMPC control technique was used in the subsequent chapter to optimize the 

charge/discharge of the EVs in a receding horizon manner to reduce operational cost in a renewable energy-

based micro-grid. It is evident from the results when a load shifting mechanism was used to solve the charge 

management problem during a known interval of parking time that the cost function, 𝐽, obtained when the 

EVs were incorporated was drastically minimized compared to when EVs were not integrated. Lastly, the 

proposed control technique (AMPC) was used for load frequency control of a two-area interconnected 

power system with renewable energy sources with the UPFC along both the AC tie line and AC-DC tie line 

for optimal system performance. The effects of parametric uncertainties on the performance of the control 

techniques were investigated in this study. Hence, it is evident from the results obtained that the robustness 

of the AMPC control technique against the system uncertainties is stronger than that of the conventional 

MPC control technique. The response time of AMPC-based micro-grid frequency regulation is faster than 

that of the MPC-based frequency control. 

9.2   Recommendations for Future Studies 

This thesis has investigated the application of adaptive model predictive control (AMPC) technique in a 

micro-grid with distributed energy resources (DERs), including distributed generators, energy storage and 

demand response to achieve higher penetration of renewable energy. However, there are further areas in 

this field of micro-grid control systems to cope with the intermittent, stochastic, and distributed nature of 

the generation and with the new consumption patterns that still need to be investigated. The following are 

some recommendations for further work: 

• The proposed algorithm was mainly used as control system for microgrids integrated with PV 

systems, wind turbine, hydrogen storage systems and batteries. However, it can be applied to other 

system configurations based on the use of different renewable energy sources and different energy 

storage systems. 

• One of the main goals in micro-grid operation is the optimization of the final energy price. It, 

therefore, makes it very important to have an accurate energy prediction algorithm from generation 

and consumption that requires a suitable energy price forecasting system. The complexity of the 

associated control problem of the integration of micro-grids into the electrical market requires 

advanced control algorithms such as Stochastic and Economic MPC. Thus, a performance 

comparison of these control methods also requires more investigation. 
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• Understanding how variations in parameters affect the output of the model is another critical area 

that needs attention as renewables uncertainties are major problems in microgrid operations. 

Sensitivity analysis of a renewable-based micro-grid with hybrid energy storage systems with 

different kinds of scenarios is essential to increase reliability and robustness, reduces costs, and 

improves the performance of the micro-grid. 

• The energy management system (EMS) presented in this thesis could be extended to consider 

operational and degradation costs. It could further introduce a formulation to integrate the terms 

related to operational and degradation issues associated to hybrid storage systems in an MPC-based 

EMS. 

• Other ESSs could be introduced in the AMPC algorithm such as flywheel, SMES, molten salts or 

graphene batteries to further improve the operation of the micro-grid. 

• The single micro-grid EMS used in this thesis could be extended to the energy management 

problem of several interconnected micro-grids to determine the power flows inside each microgrid 

and with the main grid and also the energy interchange among them. 

• The practical validation of the findings of this study may be considered by implementing a scaled-

down laboratory research scheme. Prior to a full practical investigation, the hardware 

implementation of the micro-grid EMS can be initially considered in a hardware-in-loop test using 

the real time digital simulator (RTDS) to validate the results of this thesis. More so, the testing of 

AMPC using hardware in-loop simulation for the application of AMPC to a realistic micro-grid 

system could be considered. 

• More specifically, another challenge which should be addressed in practice is the plant/model 

mismatch which requires additional solutions to maintaining the SoC of the energy storage system 

with the given limits. 

• Finally, the load frequency control problem could be investigated using demand response and EV 

integration with micro-grid system. 

• The obtained results in this thesis could be compared with existing state-of-the-art control methods 

available in the literature. 

• Chapter 8 of this thesis could be further expanded by conducting a robustness analysis of the LFC 

system with more uncertainties in the model and, a detailed analysis can be carried out using a 

table. 
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APPENDICES 

Appendix A 

The mathematical descriptions of the matrix’s forms of the SOC and LOH used in chapters 5 are given as 

follows: 

For a sampling time of 𝑇𝑠 = 60𝑠, the model in matrix form is expressed as [164]: 

 [
𝑆𝑂𝐶(𝑡 + 1)

𝐿𝑂𝐻(𝑡 + 1)
] = [

𝑆𝑂𝐶(𝑡)

𝐿𝑂𝐻(𝑡)
] + [

−
𝜂𝑏𝑎𝑡𝑇𝑠

𝐶𝑚𝑎𝑥

𝜂𝑏𝑎𝑡𝑇𝑠

𝐶𝑚𝑎𝑥

𝜂𝑒𝑙𝑧𝑇𝑠

𝑉𝑚𝑎𝑥
0

] [
𝑃𝐻2

𝑃𝑔𝑟𝑖𝑑
] + [

−
𝜂𝑏𝑎𝑡𝑇𝑠

𝐶𝑚𝑎𝑥

0
] 𝑑(𝑡)                                  (A-1)                                                                 

Discretizing the overall continuous structure defined by Equation (A-1), the model in matrix form obtained 

for discrete-time is as follows: 

 [
𝑆𝑂𝐶(𝑘 + 1)

𝐿𝑂𝐻(𝑘 + 1)
] = [

𝑆𝑂𝐶(𝑘)

𝐿𝑂𝐻(𝑘)
] + [

−
𝜂𝑏𝑎𝑡𝑇𝑠

𝐶𝑚𝑎𝑥

𝜂𝑏𝑎𝑡𝑇𝑠

𝐶𝑚𝑎𝑥

𝜂𝑒𝑙𝑧𝑇𝑠

𝑉𝑚𝑎𝑥
0

] [
𝑃𝐻2

𝑃𝑔𝑟𝑖𝑑
] + [

−
𝜂𝑏𝑎𝑡𝑇𝑠

𝐶𝑚𝑎𝑥

0
]𝑑(𝑘)                                (A-2)                                                     

Evaluating the matrix expression of Eqn. (A-2) using the values given in the Table D-3, it results in Eqn. 

(A-3): 

 [
𝑆𝑂𝐶(𝑘 + 1)

𝐿𝑂𝐻(𝑘 + 1)
] = [

𝑆𝑂𝐶(𝑘)

𝐿𝑂𝐻(𝑘)
] + [ 1.564 × 10−3 1.564 × 10−3

−5.667 × 10−3 0
] [

𝑃𝐻2
(𝑘)

𝑃𝑔𝑟𝑖𝑑(𝑘)
] + [1.564 × 10−3

0
]𝑑(𝑘)(A-

3) 

Consequently, the system matrices admit expressions as: 

 𝐴 = 𝐼,  𝐵 = [ 1.564 × 10−3 1.564 × 10−3

−5.667 × 10−3 0
],   𝐵𝑑 = [1.564 × 10−3

0
],   𝐶 = 𝐼                   (A-4) 

For the case of the integration of disturbance prediction in the AMPC algorithm, a sampling time of 𝑇𝑠 =

60𝑠, then the evaluation of the matrix expression of Eqn. (A-2) using the values given in Table D-3, it 

results in Eqn. (A-5): 

 [
𝑆𝑂𝐶(𝑘 + 1)

𝐿𝑂𝐻(𝑘 + 1)
] = [

𝑆𝑂𝐶(𝑘)

𝐿𝑂𝐻(𝑘)
] + [93.67 × 10−3 93.67 × 10−3

−348 × 10−3 0
] [

𝑃𝐻2
(𝑘)

𝑃𝑔𝑟𝑖𝑑(𝑘)
] + [93.67 × 10−3

0
]𝑑(𝑘)(A-5) 

Consequently, the system matrices admit expressions as: 

 𝐴 = 𝐼,  𝐵 = [93.67 × 10−3 93.67 × 10−3

−348 × 10−3 0
],   𝐵𝑑 = [93.67 × 10−3

0
],  𝐶 = 𝐼                                    (A-6) 

During the micro-grid operation with hybrid energy storage (lithium and li-ion batteries), a new state 

variable is incorporated, 𝑆𝑂𝐶1(𝑡), corresponding to the new li-ion battery, so the state vector is given by: 

 𝑥(𝑡) = [𝑆𝑂𝐶1(𝑡) 𝑆𝑂𝐶2(𝑡) 𝐿𝑂𝐻(𝑡)]𝑇           (A-7) 
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And the manipulated variables are given as: 

 𝑢(𝑡) = [𝑃𝑓𝑐(𝑡) 𝑃𝑔𝑟𝑖𝑑(𝑡) 𝑃𝑏𝑎𝑡2
(𝑡)]𝑇            (A-8) 

The disturbance is similar to the preceding case: 

 𝑑(𝑡) = 𝑃𝑔𝑒𝑛(𝑡) − 𝑃𝑙𝑜𝑎𝑑(𝑡)             (A-9) 

This battery's SOC is constrained between 35 and 80%, with a maximum load/discharge capacity limited 

to 3000 W. The control-oriented model is given in this case as: 

𝑆𝑂𝐶1(𝑡 + 1) = 𝑆𝑂𝐶(𝑡) −
𝜂𝑏𝑎𝑡1𝑇𝑠

𝐶1𝑚𝑎𝑥
(−𝑃𝑓𝑐(𝑡) − 𝑃𝑔𝑟𝑖𝑑(𝑡) − 𝑑(𝑡))                                                          (A-10) 

𝐿𝑂𝐻(𝑡 + 1) = 𝐿𝑂𝐻(𝑡) −
𝑇𝑠

𝜂𝑓𝑐𝑉𝑚𝑎𝑥
𝑃𝑓𝑐(𝑡)                                  (A-11) 

𝑆𝑂𝐶2(𝑡 + 1) = 𝑆𝑂𝐶2(𝑡) −
𝜂𝑏𝑎𝑡2𝑇𝑠

𝐶2𝑚𝑎𝑥
𝑃𝑏𝑎𝑡2(𝑡)                                (A-12)   

Then, for a sampling time of 𝑇𝑠 = 30𝑠, the model in matrix form is given as: 

[

𝑆𝑂𝐶1(𝑡 + 1)

𝐿𝑂𝐻(𝑡 + 1)

𝑆𝑂𝐶2(𝑡 + 1)
] = [

 𝑆𝑂𝐶1(𝑡)

𝐿𝑂𝐻(𝑡)

𝑆𝑂𝐶2(𝑡)
] +

[
 
 
 
 

𝜂𝑏𝑎𝑡1𝑇𝑠

𝐶1𝑚𝑎𝑥

𝜂𝑏𝑎𝑡1𝑇𝑠

𝐶1𝑚𝑎𝑥

𝜂𝑏𝑎𝑡1𝑇𝑠

𝐶1𝑚𝑎𝑥

−
𝑇𝑠

𝜂𝑓𝑐𝑉𝑚𝑎𝑥
0 0

0 0
𝜂𝑏𝑎𝑡2𝑇𝑠

𝐶2𝑚𝑎𝑥 ]
 
 
 
 

[

𝑃𝑓𝑐(𝑡)

𝑃𝑔𝑟𝑖𝑑(𝑡)

𝑃𝑏𝑎𝑡2(𝑡)

] + [
𝜂𝑏𝑎𝑡1𝑇𝑠

𝐶1𝑚𝑎𝑥

0
]𝑑(𝑡)                  (A-13) 

Discretizing the overall continuous structure defined by Equation (A-13), the model in matrix form obtained 

for discrete-time is as follows: 

[

𝑆𝑂𝐶1(𝑘 + 1)

𝐿𝑂𝐻(𝑘 + 1)

𝑆𝑂𝐶2(𝑘 + 1)
] = [

 𝑆𝑂𝐶1(𝑘)

𝐿𝑂𝐻(𝑘)

𝑆𝑂𝐶2(𝑘)
] +

[
 
 
 
 

𝜂𝑏𝑎𝑡1𝑇𝑠

𝐶1𝑚𝑎𝑥

𝜂𝑏𝑎𝑡1𝑇𝑠

𝐶1𝑚𝑎𝑥

𝜂𝑏𝑎𝑡1𝑇𝑠

𝐶1𝑚𝑎𝑥

−
𝑇𝑠

𝜂𝑓𝑐𝑉𝑚𝑎𝑥
0 0

0 0
𝜂𝑏𝑎𝑡2𝑇𝑠

𝐶2𝑚𝑎𝑥 ]
 
 
 
 

[

𝑃𝑓𝑐(𝑘)

𝑃𝑔𝑟𝑖𝑑(𝑘)

𝑃𝑏𝑎𝑡2(𝑘)

] + [
𝜂𝑏𝑎𝑡1𝑇𝑠

𝐶1𝑚𝑎𝑥

0
] 𝑑(𝑘)                (A-14) 

Evaluating the Matrix expression of Eqn. (A-14), it results in Eqn. (A-15): 

[

𝑆𝑂𝐶1(𝑘 + 1)

𝐿𝑂𝐻(𝑘 + 1)

𝑆𝑂𝐶2(𝑘 + 1)
] = [

 𝑆𝑂𝐶1(𝑘)

𝐿𝑂𝐻(𝑘)

𝑆𝑂𝐶2(𝑘)
] + [

46.87 × 10−3 46.87 × 10−3 46.87 × 10−3

−225 × 10−3 0 0
0 0 −37.65 × 10−3

] [

𝑃𝑓𝑐(𝑘)

𝑃𝑔𝑟𝑖𝑑(𝑘)

𝑃𝑏𝑎𝑡2(𝑘)

] +

[
46.87 × 10−3

0
0

]𝑑(𝑘)                                                        (A-15)     

Consequently, the system matrices admit expressions as: 

𝐴 = 𝐼,  𝐵 = [
46.87 × 10−3 46.87 × 10−3 46.87 × 10−3

−225 × 10−3 0 0
0 0 −37.65 × 10−3

], 𝐵𝑑 = [
46.87 × 10−3

0
0

], 𝐶 = 𝐼        (A-16) 



195 

 

Appendix B 

The control-oriented model of the microgrid used in chapter 5 of this thesis is modified by including the 

power demanded by the load, 𝑃𝑙𝑜𝑎𝑑𝐶𝑢𝑟𝑡−𝑙𝑜𝑎𝑑, as a manipulated variable in chapter 6 to solve EMS problem 

using DR technique. Then, for a sampling time of 𝑇𝑠 = 30𝑠, the model in matrix form is given as: 

 [
𝑆𝑂𝐶(𝑘 + 1)

𝐿𝑂𝐻(𝑘 + 1)
] = [

𝑆𝑂𝐶(𝑘)

𝐿𝑂𝐻(𝑘)
] + [

0.046 0.046 −0.046
−0.169 0 0

] [

𝑃𝐻2
(𝑘)

𝑃𝑔𝑟𝑖𝑑(𝑘)

𝑃𝑙𝑜𝑎𝑑(𝑘)

] + [
0.046

0
]𝑃𝑔𝑒𝑛(𝑘)                (B-1) 

Hence, to model the hydrogen storage dynamics, it is expedient to define the variable which is related to 

charging/discharging of the hydrogen storage used in chapter 7 of this thesis: 

 𝑧𝐻2
(𝑡) = 𝑃𝐻2

(𝑡) ∗ 𝛿𝐻2
(𝑡)            (B-2) 

More so, different weights for purchase and sales were adopted to manage the purchase and sale of energy 

to the grid for the economical optimization. 

 𝑧𝑔𝑟𝑖𝑑(𝑡) = 𝑃𝑔𝑟𝑖𝑑(𝑡) ∗ 𝛿𝑔𝑟𝑖𝑑(𝑡)             (B-3) 

Mixed logic dynamic (MLD) constraints in ref [18] were also introduced to solve the optimization problem. 

It is expected that the microgrid battery has to balance the power at the bus, which needs to satisfies the 

power balance given in B-4: 

 𝑃𝑏𝑎𝑡(𝑡) = 𝑃𝑙𝑜𝑎𝑑(𝑡) + 𝑃𝑒𝑙𝑧(𝑡) − 𝑃𝑓𝑐(𝑡) − 𝑃𝑔𝑟𝑖𝑑(𝑡) − 𝑃𝑔𝑒𝑛(𝑡) + ∑ 𝑃𝑒𝑣𝑖(𝑡)
4
𝑖=1         (B-4) 

Where, 

 𝑑(𝑡) = 𝑃𝑔𝑒𝑛(𝑡) − 𝑃𝑙𝑜𝑎𝑑(𝑡)                         (B-5) 

B-5 is the measurable disturbance. 𝑃𝑏𝑎𝑡(𝑡) is a combination of the other variables but not a manipulated 

variable. Hence, the manipulated variable admits expression as: 

 𝑢 = [𝑃𝑔𝑟𝑖𝑑 𝑃𝐻2
𝑃𝑒𝑣1 𝑃𝑒𝑣2 𝑃𝑒𝑣3 𝑃𝑒𝑣4 𝑃𝑒𝑣5 𝑃𝑒𝑣6 𝛿𝐻2

𝛿𝑔𝑟𝑖𝑑 𝑧𝐻2
𝑧𝑔𝑟𝑖𝑑]      (B-6) 

Where the power supplied by the hydrogen storage system and the power that is charged into electric vehicle 

𝑖 are denoted by 𝑃𝐻2
 and 𝑃𝑒𝑣𝑖, respectively. 

Hence, note that the state vector is composed of the SOC of the batteries (both for micro-grid storage and 

the EVs) and the LOH of the hydrogen storage: 

 𝑥 = [𝑆𝑂𝐶 𝐿𝑂𝐻 𝑆𝑂𝐶𝑒𝑣1 𝑆𝑂𝐶𝑒𝑣2 𝑆𝑂𝐶𝑒𝑣3 𝑆𝑂𝐶𝑒𝑣4 𝑆𝑂𝐶𝑒𝑣5 𝑆𝑂𝐶𝑒𝑣6]
𝑇       (B-7) 

Therefore, the system matrices admit expressions as: 
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 𝐴 =

[
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 𝜖1 0 0 0 0 0
0 0 0 𝜖2 0 0 0 0
0 0 0 0 𝜖3 0 0 0
0 0 0 0 0 𝜖4 0 0
0 0 0 0 0 0 𝜖5 0
0 0 0 0 0 0 0 𝜖6]

 
 
 
 
 
 
 

  𝐵 =

[
 
 
 
 
 
 
 
𝜃1 0 −𝜃1 −𝜃1 −𝜃1 −𝜃1 0 0 0 0
0 𝜇1 0 0 0 0 0 0 𝜇2 0
0 0 𝜏1 0 0 0 0 0 0 0
0 0 0 𝜏2 0 0 0 0 0 0
0 0 0 0 𝜏3 0 0 0 0 0
0 0 0 0 0 𝜏4 0 0 0 0
0 0 0 0 0 0 𝜏5 0 0 0
0 0 0 0 0 0 0 𝜏6 0 0]

 
 
 
 
 
 
 

 

 𝐵𝑑 =

[
 
 
 
 
 
 
 
𝜃1

0
0
0
0
0
0
0 ]

 
 
 
 
 
 
 

,   𝜃1 =
𝜂𝑏𝑎𝑡𝑇𝑠

𝐶𝑚𝑎𝑥
, 𝜇1 =

𝜂𝑒𝑙𝑧𝑇𝑠

𝑉𝑚𝑎𝑥
, 𝜇2 =

(−
1

𝜂𝑓𝑐
−𝜂𝑒𝑙𝑧)

𝑉𝑚𝑎𝑥
, 𝜏𝑖 = 

𝜂𝐵𝑒𝑣𝑖𝑇𝑠

𝐶𝑚𝑎𝑥𝑖
                                    (B-8) 

Where 𝜂 is the charging/discharging efficiency of the storage unit, 𝑉𝑚𝑎𝑥 and 𝐶𝑚𝑎𝑥 are the maximum storage 

capacities, and 𝑇𝑠 is the sampling time. 

Appendix C 

The state-space models of the stand-alone micro-grid system used in chapter 8 are presented in this section. 

The state vector 𝑥(𝑡), the control vector 𝑢(𝑡), the disturbance vector 𝑢1(𝑡) and the system output vector 

𝑦(𝑡) are defined as follows: 

𝑥(𝑡) = [
∆𝐹1(𝑡) ∆𝐹2(𝑡) ∆𝑃1(𝑡) ∆𝑃𝑓𝐶1(𝑡) ∆𝑃𝑓𝑖𝑛𝑣1

(𝑡) ∆𝑃𝑓𝑓𝑖𝑙𝑡1
(𝑡)

 ∆𝑃𝑏𝑎𝑡1(𝑡) ∆𝑃𝑃𝑉1(𝑡) ∆𝑃2(𝑡) ∆𝑃3(𝑡) ∆𝑃4(𝑡) ∆𝑃𝑡𝑖𝑒(𝑡)
]

𝑇

                 (C-1) 

𝑢(𝑡) = [∆𝑃𝐶1(𝑡) ∆𝑃𝐶2(𝑡)]
𝑇,                      (C-2)                                                                                                                 

 𝑢1(𝑡) = [∆𝑃𝐿1(𝑡)  ∆𝑃𝐿2(𝑡)  ∆𝑃𝐿3(𝑡)]
𝑇                                       (C-3) 

 𝑦(𝑡) = [𝐴𝐶𝐸1(𝑡) 𝐴𝐶𝐸2(𝑡)]
𝑇                                                              (C-4)                                                                                                                             

The following set of equations express the state-space model of the two-area interconnected power system 

with renewable generation sources (autonomous micro-grid):  

𝑑𝑥(𝑡)

𝑑𝑡
= 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐵1𝑢1(𝑡),                                              (C-5) 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)                                                                (C-6)                                                                                                                     

Where 𝐴, 𝐵, 𝐵1, and 𝐶 are the parameter matrices of 𝑥(𝑡), 𝑢(𝑡), 𝑢1(𝑡), and 𝑦(𝑡), respectively. The discrete-

time space model of Eqn. (C-5) is obtained mainly by discretization with sample time 𝑇𝑠, which is given by 

the following equation: 

𝑥(𝑘 + 1) = 𝐴𝑑𝑥(𝑘) + 𝐵𝑑𝑢(𝑘) + 𝐵1𝑑𝑢1(𝑘)                                 (C-7) 
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𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝑢(𝑘)                                                                   (C-8)                                                                                                                       

Where 𝑥(𝑘 + 1), 𝑥(𝑘), 𝑢(𝑘), 𝑢1(𝑘), and 𝑦(𝑘) are the discrete-time forms of 𝑑𝑥(𝑡)/𝑑𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝑢1(𝑡), 

and 𝑦(𝑡), respectively, 𝐴𝑑 = 𝑒𝐴𝑇𝑠, 𝐵𝑑 = ∫ 𝑒𝐴𝑡𝐵𝑑𝑡
𝑇𝑠

0
, 𝐵1𝑑 = ∫ 𝑒𝐴𝑡𝐵1𝑑𝑡

𝑇𝑠

0
. The incremental form of Eqns. 

(C-7) and (C-8) are expressed as follows: 

∆𝑥(𝑘 + 1) = 𝐴𝑑∆𝑥(𝑘) + 𝐵𝑑∆𝑢(𝑘) + 𝐵1𝑑∆𝑢1(𝑘)                       (C-9) 

∆𝑦(𝑘) = 𝐶∆𝑥(𝑘) + 𝐷∆𝑢(𝑘)                                                     (C-10)                                                                                                                             

Where ∆𝑥(𝑘 + 1), ∆𝑥(𝑘), ∆𝑢(𝑘), ∆𝑢1(𝑘) and ∆𝑦(𝑘) are the incremental forms of 𝑥(𝑘 + 1), 𝑥(𝑘), 𝑢(𝑘), 

𝑢1(𝑘), and 𝑦(𝑘), respectively. 

The matrix’s forms of the system model of Figure 8-2 admit expressions as: 

𝐀 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 −

𝐃

𝟐𝐇
𝟎 𝟎 𝟎 𝟎

𝟏

𝟐𝐇
−

𝟏

𝟐𝐇
𝟎 𝟎 𝟎

𝟏

𝟐𝐇
𝟎

𝟎 −
𝟏

𝐓𝐏𝟐
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

𝐊𝐏𝟐

𝐓𝐏𝟐

𝐊𝐏𝟐

𝐓𝐏𝟐

𝟎 𝟎 −𝐚 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 −
𝟏

𝐓𝐟𝐜𝟏
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 𝟎
𝟏

𝐓𝐢𝐧𝐯𝟏
−

𝟏

𝐓𝐢𝐧𝐯𝟏
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝟎
𝟏

𝐓𝐟𝐢𝐥𝐭𝟏
−

𝟏

𝐓𝐟𝐢𝐥𝐭𝟏
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

𝟏

𝐓𝐛
𝟎 𝟎 𝟎 𝟎 𝟎 −

𝟏

𝐓𝐛
𝟎 𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 (𝐛𝟏 − 𝐚𝟏) 𝟎 𝟎 𝟎 𝟎 −𝐜𝟏 𝟎 𝟎 𝟎 𝟎

𝟎 −
𝐑

𝐓𝐠
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 −

𝟏

𝐓𝐠
𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟏

𝐓𝐭
−

𝟏

𝐓𝐭
𝟎 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝐊𝐫𝐓𝐫

𝐓𝐭𝐓𝐫
(
𝟏

𝐓𝐫
−

𝐊𝐫𝐓𝐫

𝐓𝐭𝐓𝐫
) −

𝟏

𝐓𝐫
𝟎

𝟎 −
𝟏

𝐓𝐔𝐏𝐅𝐂𝟏
𝟎 𝟎 𝟎

𝟐𝛑𝐓𝟏𝟐

𝐓𝐔𝐏𝐅𝐂𝟏
−

𝟐𝛑𝐓𝟏𝟐

𝐓𝐔𝐏𝐅𝐂𝟏

𝟐𝛑𝐓𝟏𝟐

𝐓𝐔𝐏𝐅𝐂𝟏
𝟎 𝟎 𝟎 −

𝟏

𝐓𝐔𝐏𝐅𝐂𝟏

 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

𝑩 =

[
 
 
 
 
 
 
 
 
 
 
 
 

𝟎 𝟎
𝟎 𝟎

𝑲𝑷𝟏 𝟎
𝟎 𝟎
𝟎 𝟎
𝟎 𝟎
𝟎 𝟎

𝑲𝑷𝟏 𝟎

𝟎
𝟏

𝑻𝒈

𝟎 𝟎
𝟎 𝟎
𝟎 𝟎]

 
 
 
 
 
 
 
 
 
 
 
 

 ,    𝑩𝟏 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 −

𝟏

𝟐𝑯
𝟎 𝟎

𝟎 −
𝑲𝑷𝟐

𝑻𝑷𝟐
𝟎

𝟎 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝟎

𝟎 𝟎
𝟏

𝑻𝒈

𝟎 𝟎 𝟎
𝟎 𝟎 𝟎

−
𝟐𝝅𝑻𝟏𝟐

𝑻𝑼𝑷𝑭𝑪𝟏
𝟎 𝟎]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

,        𝑪 = [
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 −

𝟏

𝑻𝑼𝑷𝑭𝑪𝟏

𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝑩 𝟎 𝟎
𝟏

𝑻𝑼𝑷𝑭𝑪𝟏

],       𝑫 = 𝟎 
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Appendix D 

Table D-1: System parameters used in chapter 4  

Parameters Values Parameters Values 

 Boltzmann constant, 𝐾 1.38𝑒−23 𝐽/𝐾  Emissivity of the ground, 휀𝑔𝑟𝑑 0.95 

 Planck constant, ℎ 6.62617𝑒−34𝐽. 𝑠  Emissivity of the module, 휀𝑚 0.94 

 Light speed, 𝑐 3𝑒8 𝑚/𝑠  Open circuit voltage, 𝑉𝑜𝑐 2.084 𝑉 

 Electron charge, 𝑞 1.60218𝑒−19𝐽 Short circuit current, 𝐼𝑠𝑐 4.28 𝐴 

Area of cell, 𝐴𝑗 148.25 𝑐𝑚2  Ideality factors, 𝑁1, 𝑁2 1.3812, 2.311 

Number of cells in series, 𝑀 4  Series resistance, 𝑅𝑠  0.0377 Ω 

Area of the PV module, 𝐴 655.36 𝑐𝑚2 Short circuit voltage 

coefficient, 𝐾𝑣 

−123𝑚𝑉/℃ 

 Tilt angle, 𝛽𝑠𝑢𝑟𝑓𝑎𝑐𝑒 650 Reference temperature, 𝑇𝑚𝑟 69.5℃ 

 Stefan Boltzmann, 𝜎 5.669 × 10−8𝑊
/𝑚2𝑘4 

Parallel resistance, 𝑅𝑝 2.630Ω 

Emissivity of the sky, 휀𝑠𝑘𝑦 0.95  Energy Bandgap, 𝐸𝑔 1.12 

 Reverse saturation current, 

𝐼01 
7.0125 × 10−8 𝐴  Cell internal quantum 

efficiency, IQE 

0.69005 

Open circuit current 

coefficient, 𝐾𝑖 

3.18 𝑚𝐴/℃ Reverse saturation current, 𝐼02 2.1038
× 10−3 𝐴 

 

 

Table D-2: System parameters used in case 2 of chapter 4  

Parameters Values Parameters Values 

 𝛿𝑠𝑠 0.04 %/ℎ𝑟  𝐼𝑠𝑐 8.21 𝐴 

 𝜂𝑐ℎ𝑟𝑔, 𝜂𝑑𝑖𝑠 0.9  𝐼𝑚𝑝 55 𝐴 

 𝜏𝑠𝑠 0.1 𝑠𝑒𝑐  𝐼𝑝𝑣 8.23𝐴 

 𝜏𝑑 0.3 𝑠𝑒𝑐 𝑉𝑚𝑝, 250 𝑉 

[𝐸𝑠𝑠
𝑚𝑖𝑛, 𝐸𝑠𝑠

𝑚𝑎𝑥] [400, 800]kWh  𝑉𝑜𝑐 32.9 𝑉 

[𝑃𝑠𝑠
𝑚𝑖𝑛, 𝑃𝑠𝑠

𝑚𝑎𝑥] [−200, 200]kW  𝐾𝑖  3.18𝑚𝐴/℃ 

[𝑃𝑑
𝑚𝑖𝑛, 𝑃𝑑

𝑚𝑎𝑥] [0, 150]kW  𝐾𝑣 −123𝑚𝑉/℃ 

 𝑁𝑠 30   𝐴 1.6 

 𝑅𝑠 0.34Ω  𝑅𝑝 168.5Ω 

Panel no 50  𝑁𝑝 1 

 𝑁𝑠 1  𝑇𝑝𝑣 300℃ 
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Table D-3: Main components and the micro-grid characteristics used in chapter 5, 6 and 7  

Datasheet and the estimated parameters of the two-diode model of the Photovoltaic system [Kyocera 

KG200GT]. 

Parameters Values   Parameters Values 

Panel peak power 𝑃𝑚𝑝𝑝 13.8 kW 𝐼𝑚𝑝, 𝐼𝑠𝑐, 𝐼𝑝𝑣 55 A, 8.21 A, 8.23 A, respectively 

Efficiency 20% 𝐾𝑖, 𝐾𝑣 3.18𝑚𝐴/℃,−123𝑚𝑉/℃ respectively 

 𝑁𝑠, 𝐴1, 𝐴2 30, 1.6, 2.53  𝑅𝑠, 𝑅𝑝 0.34Ω, 168.5Ω, respectively 

Panel number 36  𝐼𝑂1, 𝐼𝑂2  7.012 × 10−4 𝐴, 2.103 × 10−3 𝐴 

 𝑉𝑚𝑝, 𝑉𝑜𝑐 250 V, 32.9 V  𝑁𝑝, 𝑁𝑠,𝑇𝑝𝑣   1, 1, 300℃, respectively 

The wind turbine system parameters and specifications 

 Parameters Values Parameters Values 

Rated power 15 kW Rated wind speed 12 m/s 

Rated rotor speed 27.54 Rad/sec Air density 1.225 Kg/𝑚3 

Blade pitch angle  00 Rotor diameter 3 m 

Hub height 5.8 m Configuration 3 blades, vertical axis 

 𝐶𝑝 10 R 0.003873 m 

Fuel Cell Electrolyser 

Nominal power 1.5 KW 𝐻2 Net production 

rate 
1.05 𝑁𝑚3/ℎ 

 𝐻2 rated consumption 20 NI/min Nominal power 1 KW 

Nominal voltage 48 V Number of cells 20 

Nominal current 115 A  𝐸𝑒𝑙𝑧
0 , 𝐾𝑖𝑛, 𝑃𝐻2 1.25V, −0.9𝑒−3, 6.9, respectively 

 𝑉𝑓𝑐,0
𝑐𝑒𝑙𝑙, 𝐾1,𝑎𝑐𝑡 0.93, 0.00295  𝑃𝑂2, 𝐴𝑒𝑙𝑧,  2.4, 212.35 𝑐𝑚2, respectively 

 𝐾2,𝑎𝑐𝑡, 𝑅𝑜ℎ𝑚 0.0127, 0.292  𝑖𝑎0,𝑒𝑙𝑧, 𝑖𝑐0,𝑒𝑙𝑧  1.063𝑒−6, 1.0𝑒−3𝐴/𝑐𝑚2, resp. 

 𝐾1,𝑓𝑐
𝑐𝑜𝑛𝑐, 𝐾2,𝑓𝑐

𝑐𝑜𝑛𝑐 0.0284, 8.004  𝑇𝑒𝑙𝑧
0 , 𝑁𝑒𝑙𝑧

𝑐𝑒𝑙𝑙, 𝑃𝑒𝑙𝑧 298K, 6, 3000W, respectively 

 𝑇𝑓𝑐(𝑡), 𝑇𝑓𝑐
0  296, 296 K   

 𝐴𝑒𝑓𝑓, 𝑁𝑓𝑐 , 𝐼𝑓𝑐 65𝑐𝑚2, 60, 100A   

Batteries Metal hydride tank 

Nominal voltage 12 V Number 4 

Rated capacity 270 Ah Volume/tank 7 𝑁𝑚3 (storage capacity) 

 𝐶𝑚𝑎𝑥, 𝑅Ω 17.8 kWh, 0.08 Max. operating 

pressure 

5 bar 

Max. charge current 50 A  Ultracapacitor  

 𝐾𝑏𝑡, 𝐴𝑏𝑡  0.006215, 11.05 V  𝜂𝑐ℎ 0.97 

𝑉𝑏𝑡,0, 𝐶𝑚𝑎𝑥,𝑏𝑡 

 𝐵𝑏𝑡 

52.56 V, 368 Ah 

2453 𝐴ℎ−1 

 𝜂𝑐ℎ 0.99 

Electronic power source Electronic load (Critical and Curtailable) 
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Rated supply 10 KW Rated power 2.5 KW 

Channel 2 Channel 2 

 

Table D-4: Constraints imposed on the energy resources for safe operation used in chapter 5, 6 and 7  

Variables Power (W) 

𝑃𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑖(𝑡)

≤ 𝑃𝑖
𝑚𝑎𝑥 

Power slew rate (W/s) 

∆𝑃𝑖
𝑚𝑖𝑛 ≤ ∆𝑃𝑖(𝑡) ≤ ∆𝑃𝑖

𝑚𝑎𝑥 

State of Charge (%) 

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶(𝑡)
≤ 𝑆𝑂𝐶𝑚𝑎𝑥 

Generation 0 - 6000 -2500 - 6000  - 

Grid 0 - 2500 -1000 - 1000  - 

Fuel cell 100 - 1200 -20 - 20  - 

Electrolyser 100 – 900 -20 - 20  - 

𝐻2 Storage  -  - 10 - 19 

Battery 0 - 2500  (−4.13 − 4.16)10−3 40 - 75 

 

Table D-5: Weight values imposed on the multi-objective function to be solved by AMPC control 

Algorithm used in chapter 5, 6 and 7  

Algorithm Parameter Settings 

 

AMPC 

Control 

Algorithm 

Power variables weights 𝛼1 𝛼2 𝛼3 𝛼4 

5 × 10−3 5 × 10−3 8 × 10−3 100 

Power rate weights 𝛽1 𝛽2 𝛽3 𝛽4 

4 1.5 1 × 10−4 1
× 10−4 

Storage level weights 𝛾1 𝛾1 

10 60 

Time horizon  𝑁𝑝 60  

Control horizon 𝑁𝑐 2  

Sample time  𝑇𝑠 60 𝑠𝑒𝑐 

 Conversion 

coefficients 

(Mean-Values) 

Case 1 𝐾𝑏𝑎𝑡1 𝐾𝑒𝑙𝑧1 𝐾𝑓𝑐1 

1.053 × 10−3 3.205 × 10−3 8.024 × 10−3 

Case 2 𝐾𝑏𝑎𝑡2 𝐾𝑓𝑐2 𝐾𝐻2 

1.245 × 10−3 7.108 × 10−3 −5.56 × 10−3 

 

Table D-6: System model parameters used in chapter 8  

Parameter Value Parameter Value 

 𝑇𝑔  0.08 𝑠𝑒𝑐  𝐾𝑡  1 𝐻𝑧/𝑝. 𝑢𝑀𝑊 

 𝑇12  0.545 𝑝. 𝑢  𝐾𝑟  1 𝐻𝑧/𝑝. 𝑢𝑀𝑊 

 𝑇𝑝  20 𝑠𝑒𝑐  𝐵  0.08 𝑝. 𝑢𝑀𝑊/𝐻𝑧 

 𝑇𝑡  0.3 𝑠𝑒𝑐  𝑅  0.4 𝐻𝑧/𝑝. 𝑢𝑀𝑊 

 𝑇𝑟  10 𝑠𝑒𝑐  𝐾𝑟1  0.33 𝑝. 𝑢𝑀𝑊 
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 𝐾𝑃2  120 𝐻𝑧/𝑝. 𝑢𝑀𝑊  𝑎1  99.5 

 𝐾𝑔  1 𝐻𝑧/𝑝. 𝑢𝑀𝑊  𝑏1  −50 

 𝑐1  0.5  𝐾𝑃1  −18 

 2𝐻  0.1667𝑠𝑒𝑐  𝐷 0.015𝑝. 𝑢.MW/Hz 

 𝑇𝑓𝑐 0.26 𝑠𝑒𝑐  𝑇𝑖𝑛𝑣  0.04 𝑠𝑒𝑐 

 𝑇𝑓𝑖𝑙𝑡  0.004 𝑠𝑒𝑐  𝑇𝑏  0.1 𝑠𝑒𝑐 

 

Table D-7: Characteristics of each battery types used in this research work [236].  

Characteristics Lead-Acid Lithium-ion 

 Energy Density (Wh/L)  54 − 59  250−360 

 Specific Energy (Wh/kg)  30−40  110−175 

 Depth of Discharge (DOD)  50%  80% 

 Temperature Range of Charge  −40°𝐶 − 27°𝐶  −20°𝐶 − 55°𝐶 

 Efficiency  75%  97% 

 Replacement Timeframe (Year)  1. 5 − 2  5 − 7 

 Maintenance Cost  𝑆𝐿𝐴 = 2%,𝑉𝑅𝐿𝐴 = 10%  None 

 Battery Cost ($/kWh)  120 (3,840𝑏𝑎ℎ𝑡)  600 (19,200𝑏𝑎ℎ𝑡) 

 

Table D-8: Charging station management algorithms used in the EV integration 

 Charging Station Management Algorithm 

01 Input: 𝑇𝑎,, 𝑇𝑝, 𝐶ℎ𝑇, 𝜖, Time 

02 Output: 𝑄𝑥, 𝑄𝑁𝑓, 𝑃𝐵𝑒𝑣
𝑚𝑎𝑥 

03       For i=1 to 𝑁𝑒𝑣 do 

04           If 𝜖(𝑖) = 1{Test if there is a parked vehicle} then 

05             If 𝐶ℎ𝑇(𝑖) = 1{Fast Charge} then 

06               If 𝑇𝑖𝑚𝑒 ≥ 𝑇𝑎 + 𝑇𝑝 − 30 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 then 

07                  Set 𝑄𝑥(𝑖, 𝑖) to the fast charge value 

08                  Set 𝑄𝑁𝑓(𝑖, 𝑖) to the fast charge value 

09                  Set 𝑃𝐵𝑒𝑣
𝑚𝑎𝑥 to the fast charge value 

10              else {Use the battery as a grid storage} 

11                   Set 𝑄𝑥(𝑖, 𝑖) to zero 

12                   Set 𝑄𝑁𝑓(𝑖, 𝑖)  to zero 

13               end if  

14               else {Slow Charge} 

15                   Set 𝑄𝑥(𝑖, 𝑖) to the slow charge value 

16                   Set 𝑄𝑁𝑓(𝑖, 𝑖)   to the slow charge value 

17                   Set 𝑃𝐵𝑒𝑣
𝑚𝑎𝑥 to the slow charge value 

18              end if 
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19           end if 

20       end for 
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