2,714 research outputs found

    Towards Stabilization of Distributed Systems under Denial-of-Service

    Full text link
    In this paper, we consider networked distributed systems in the presence of Denial-of-Service (DoS) attacks, namely attacks that prevent transmissions over the communication network. First, we consider a simple and typical scenario where communication sequence is purely Round-robin and we explicitly calculate a bound of attack frequency and duration, under which the interconnected large-scale system is asymptotically stable. Second, trading-off system resilience and communication load, we design a hybrid transmission strategy consisting of Zeno-free distributed event-triggered control and Round-robin. We show that with lower communication loads, the hybrid communication strategy enables the systems to have the same resilience as in pure Round-robin

    Managing NFV using SDN and control theory

    Full text link
    Control theory and SDN (Software Defined Networking) are key components for NFV (Network Function Virtualization) deployment. However little has been done to use a control-theoretic approach for SDN and NFV management. In this paper, we describe a use case for NFV management using control theory and SDN. We use the management architecture of RINA (a clean-slate Recursive InterNetwork Architecture) to manage Virtual Network Function (VNF) instances over the GENI testbed. We deploy Snort, an Intrusion Detection System (IDS) as the VNF. Our network topology has source and destination hosts, multiple IDSes, an Open vSwitch (OVS) and an OpenFlow controller. A distributed management application running on RINA measures the state of the VNF instances and communicates this information to a Proportional Integral (PI) controller, which then provides load balancing information to the OpenFlow controller. The latter controller in turn updates traffic flow forwarding rules on the OVS switch, thus balancing load across the VNF instances. This paper demonstrates the benefits of using such a control-theoretic load balancing approach and the RINA management architecture in virtualized environments for NFV management. It also illustrates that GENI can easily support a wide range of SDN and NFV related experiments

    Deep Reinforcement Learning for Wireless Sensor Scheduling in Cyber-Physical Systems

    Full text link
    In many Cyber-Physical Systems, we encounter the problem of remote state estimation of geographically distributed and remote physical processes. This paper studies the scheduling of sensor transmissions to estimate the states of multiple remote, dynamic processes. Information from the different sensors have to be transmitted to a central gateway over a wireless network for monitoring purposes, where typically fewer wireless channels are available than there are processes to be monitored. For effective estimation at the gateway, the sensors need to be scheduled appropriately, i.e., at each time instant one needs to decide which sensors have network access and which ones do not. To address this scheduling problem, we formulate an associated Markov decision process (MDP). This MDP is then solved using a Deep Q-Network, a recent deep reinforcement learning algorithm that is at once scalable and model-free. We compare our scheduling algorithm to popular scheduling algorithms such as round-robin and reduced-waiting-time, among others. Our algorithm is shown to significantly outperform these algorithms for many example scenarios

    On a small-gain approach to distributed event-triggered control

    Full text link
    In this paper the problem of stabilizing large-scale systems by distributed controllers, where the controllers exchange information via a shared limited communication medium is addressed. Event-triggered sampling schemes are proposed, where each system decides when to transmit new information across the network based on the crossing of some error thresholds. Stability of the interconnected large-scale system is inferred by applying a generalized small-gain theorem. Two variations of the event-triggered controllers which prevent the occurrence of the Zeno phenomenon are also discussed.Comment: 30 pages, 9 figure

    Datacenter Traffic Control: Understanding Techniques and Trade-offs

    Get PDF
    Datacenters provide cost-effective and flexible access to scalable compute and storage resources necessary for today's cloud computing needs. A typical datacenter is made up of thousands of servers connected with a large network and usually managed by one operator. To provide quality access to the variety of applications and services hosted on datacenters and maximize performance, it deems necessary to use datacenter networks effectively and efficiently. Datacenter traffic is often a mix of several classes with different priorities and requirements. This includes user-generated interactive traffic, traffic with deadlines, and long-running traffic. To this end, custom transport protocols and traffic management techniques have been developed to improve datacenter network performance. In this tutorial paper, we review the general architecture of datacenter networks, various topologies proposed for them, their traffic properties, general traffic control challenges in datacenters and general traffic control objectives. The purpose of this paper is to bring out the important characteristics of traffic control in datacenters and not to survey all existing solutions (as it is virtually impossible due to massive body of existing research). We hope to provide readers with a wide range of options and factors while considering a variety of traffic control mechanisms. We discuss various characteristics of datacenter traffic control including management schemes, transmission control, traffic shaping, prioritization, load balancing, multipathing, and traffic scheduling. Next, we point to several open challenges as well as new and interesting networking paradigms. At the end of this paper, we briefly review inter-datacenter networks that connect geographically dispersed datacenters which have been receiving increasing attention recently and pose interesting and novel research problems.Comment: Accepted for Publication in IEEE Communications Surveys and Tutorial
    • …
    corecore