784,898 research outputs found

    Decentralized energy management of power networks with distributed generation using periodical self-sufficient repartitioning approach

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper, we propose a decentralized model predictive control (MPC) method as the energy management strategy for a large-scale electrical power network with distributed generation and storage units. The main idea of the method is to periodically repartition the electrical power network into a group of self-sufficient interconnected microgrids. In this regard, a distributed graph-based partitioning algorithm is proposed. Having a group of self-sufficient microgrids allows the decomposition of the centralized dynamic economic dispatch problem into local economic dispatch problems for the microgrids. In the overall scheme, each microgrid must cooperate with its neighbors to perform repartitioning periodically and solve a decentralized MPC-based optimization problem at each time instant. In comparison to the approaches based on distributed optimization, the proposed scheme requires less intensive communication since the microgrids do not need to communicate at each time instant, at the cost of suboptimality of the solutions. The performance of the proposed scheme is shown by means of numerical simulations with a well-known benchmark case. © 2019 American Automatic Control Council.Peer ReviewedPostprint (author's final draft

    Distributed Information Management with Mobile Agents

    No full text
    With more users taking advantage of publicly accessible networks, such as corporate intranets and the Internet, larger amounts of information is becoming electronically distributed and disseminated. Distributed information management is an emerging technology for dealing with the problems of managing information that is spread across networks, users and applications. We present four categories that we consider being necessary to developing tools to undertake distributed information management tasks. To help model the dynamic and heterogeneous nature of a user's distributed information, we advocate the use of agents and agent technologies when building distributed information management applications. We present an agent-oriented architecture which is based around a concept of mobile agents, since they provide a convenient abstraction for modelling distributed applications

    Active local distribution network management for embedded generation

    Get PDF
    Traditionally, distribution networks have been operated as passive networks with uni-directional power flows. With the connection of increasing amounts of distributed generation, these networks are becoming active with power flowing in two directions, hence requiring more intelligent forms of management. The report into issues for access to electricity networks published by the Ofgem/DTI Embedded Generation Working Group in January 2001 called for new work in the area of active distribution network management. The report suggested an evolution from the present passive network control philosophy to fully active network control methods. In line with these recommendations Econnect is developing a new type of distribution network controller, called GenAVC. GenAVC is a controller for electricity distribution networks that aims to increase the amount of energy that can be exported onto the distribution networks by generating plants. The UK is leading the world in electricity de-regulation and one aspect of this is the increasing demand for the connection of distributed generation. Active distribution network management is seen to be essential for networks to accommodate the levels of distributed generation that are predicted for 2010. The work being undertaken as part of this project is therefore at the forefront of international network management technology

    Network-based business process management: embedding business logic in communications networks

    Get PDF
    Advanced Business Process Management (BPM) tools enable the decomposition of previously integrated and often ill-defined processes into re-usable process modules. These process modules can subsequently be distributed on the Internet over a variety of many different actors, each with their own specialization and economies-of-scale. The economic benefits of process specialization can be huge. However, how should such actors in a business network find, select, and control, the best partner for what part of the business process, in such a way that the best result is achieved? This particular management challenge requires more advanced techniques and tools in the enabling communications networks. An approach has been developed to embed business logic into the communications networks in order to optimize the allocation of business resources from a network point of view. Initial experimental results have been encouraging while at the same time demonstrating the need for more robust techniques in a future of massively distributed business processes.active networks;business process management;business protocols;embedded business logic;genetic algorithms;internet distributed process management;payment systems;programmable networks;resource optimization

    Recursive quantum repeater networks

    Full text link
    Internet-scale quantum repeater networks will be heterogeneous in physical technology, repeater functionality, and management. The classical control necessary to use the network will therefore face similar issues as Internet data transmission. Many scalability and management problems that arose during the development of the Internet might have been solved in a more uniform fashion, improving flexibility and reducing redundant engineering effort. Quantum repeater network development is currently at the stage where we risk similar duplication when separate systems are combined. We propose a unifying framework that can be used with all existing repeater designs. We introduce the notion of a Quantum Recursive Network Architecture, developed from the emerging classical concept of 'recursive networks', extending recursive mechanisms from a focus on data forwarding to a more general distributed computing request framework. Recursion abstracts independent transit networks as single relay nodes, unifies software layering, and virtualizes the addresses of resources to improve information hiding and resource management. Our architecture is useful for building arbitrary distributed states, including fundamental distributed states such as Bell pairs and GHZ, W, and cluster states.Comment: 14 page

    Distributed Game Theoretic Optimization and Management of Multichannel ALOHA Networks

    Full text link
    The problem of distributed rate maximization in multi-channel ALOHA networks is considered. First, we study the problem of constrained distributed rate maximization, where user rates are subject to total transmission probability constraints. We propose a best-response algorithm, where each user updates its strategy to increase its rate according to the channel state information and the current channel utilization. We prove the convergence of the algorithm to a Nash equilibrium in both homogeneous and heterogeneous networks using the theory of potential games. The performance of the best-response dynamic is analyzed and compared to a simple transmission scheme, where users transmit over the channel with the highest collision-free utility. Then, we consider the case where users are not restricted by transmission probability constraints. Distributed rate maximization under uncertainty is considered to achieve both efficiency and fairness among users. We propose a distributed scheme where users adjust their transmission probability to maximize their rates according to the current network state, while maintaining the desired load on the channels. We show that our approach plays an important role in achieving the Nash bargaining solution among users. Sequential and parallel algorithms are proposed to achieve the target solution in a distributed manner. The efficiencies of the algorithms are demonstrated through both theoretical and simulation results.Comment: 34 pages, 6 figures, accepted for publication in the IEEE/ACM Transactions on Networking, part of this work was presented at IEEE CAMSAP 201

    Towards time-varying proximal dynamics in Multi-Agent Network Games

    Get PDF
    Distributed decision making in multi-agent networks has recently attracted significant research attention thanks to its wide applicability, e.g. in the management and optimization of computer networks, power systems, robotic teams, sensor networks and consumer markets. Distributed decision-making problems can be modeled as inter-dependent optimization problems, i.e., multi-agent game-equilibrium seeking problems, where noncooperative agents seek an equilibrium by communicating over a network. To achieve a network equilibrium, the agents may decide to update their decision variables via proximal dynamics, driven by the decision variables of the neighboring agents. In this paper, we provide an operator-theoretic characterization of convergence with a time-invariant communication network. For the time-varying case, we consider adjacency matrices that may switch subject to a dwell time. We illustrate our investigations using a distributed robotic exploration example.Comment: 6 pages, 3 figure

    What lies beneath? The role of informal and hidden networks in the management of crises

    Get PDF
    Crisis management research traditionally focuses on the role of formal communication networks in the escalation and management of organisational crises. Here, we consider instead informal and unobservable networks. The paper explores how hidden informal exchanges can impact upon organisational decision-making and performance, particularly around inter-agency working, as knowledge distributed across organisations and shared between organisations is often shared through informal means and not captured effectively through the formal decision-making processes. Early warnings and weak signals about potential risks and crises are therefore often missed. We consider the implications of these dynamics in terms of crisis avoidance and crisis management
    corecore