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Towards time-varying proximal dynamics
in Multi-Agent Network Games

Carlo Cenedese1 Yu Kawano1 Sergio Grammatico2 Ming Cao1

Abstract— Distributed decision making in multi-agent net-
works has recently attracted significant research attention
thanks to its wide applicability, e.g. in the management and
optimization of computer networks, power systems, robotic
teams, sensor networks and consumer markets. Distributed
decision-making problems can be modeled as inter-dependent
optimization problems, i.e., multi-agent game-equilibrium seek-
ing problems, where noncooperative agents seek an equilibrium
by communicating over a network. To achieve a network
equilibrium, the agents may decide to update their decision
variables via proximal dynamics, driven by the decision vari-
ables of the neighboring agents. In this paper, we provide an
operator-theoretic characterization of convergence with a time-
invariant communication network. For the time-varying case,
we consider adjacency matrices that may switch subject to a
dwell time. We illustrate our investigations using a distributed
robotic exploration example.

I. INTRODUCTION

A. Motivation: Multi-agent decision making over networks

Multi-agent decision making over networks is currently a
vibrant research area in the systems-and-control community,
with application in several relevant domains, such as smart
grids [1], [2], traffic and information networks [3], [4], social
networks [5], [6], consensus and flocking groups [7], [8],
robotic and sensor networks [9], [10].

In distributed computation and communication, the main
advantage is that each decision maker, in short, agent, can
keep its own data private and exchange information with
selected agents only. Essentially, in networked multi-agent
systems, the state (or decision) variables of each agent evolve
as a result of local decision making, e.g. local constrained op-
timization, and distributed communication with some neigh-
boring agents, via a communication graph. Typically, the aim
of the agents is reaching a collective equilibrium state, where
no agent can benefit from further updating its state variables.

B. Literature overview: Multi-agent optimization and multi-
agent network games

Multi-agent dynamics for solving a set of inter-dependent
optimization problems arise naturally from distributed op-
timization and distributed equilibrium seeking in network
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games. Multi-agent convex constrained optimization has
been widely studied in the last decade: in [11] with uniformly
bounded subgradients, and either homogeneous constraint
sets or time-invariant, complete communication graphs with
uniform weights; in [12] with differentiable cost functions
with Lipschitz continuous and uniformly bounded gradients;
and, more generally, in [13], where convergence is proven
via vanishing step sizes. Network games among agents
with convex compact local constraints have been considered
before: in [14] with strongly convex quadratic cost functions
and time-invariant communication graph; in [15] [16], with
differentiable cost functions with Lipschitz continuous gra-
dient, strictly convex cost functions, and undirected, possibly
time-varying, communication graphs; and in [2] with general
local convex cost and quadratic proximal term, time-invariant
and time-varying communication graphs, subject to technical
restrictions. The common feature in multi-agent optimization
and games over networks is the presence of a structured,
possibly time-varying, communication graph. Therefore, it is
interesting to design multi-agent dynamics that involve dis-
tributed computation and structured information exchange.

C. Contribution of the paper

In this paper, we consider proximal dynamics in multi-
agent network games with both time-invariant and time-
varying communication graphs. In the time-invariant case,
we show that global convergence of proximal dynamics
holds if the adjacency matrix of the communication graph,
assumed strongly connected, is row stochastic and with
strictly-positive diagonal elements. Technically, we extend
the convergence result in [2, Th. 1]. The use of a row
stochastic matrix is highly relevant in applications: it allows
an agent to communicate with its neighbors without requiring
an adjustment of the rest of the network. In the time-varying
case, we consider switching adjacency matrices subject to a
certain dwell time and we show global convergence of the
proximal dynamics under switching with sufficiently large
dwell time. For testing the derived sufficient conditions, we
provide linear matrix inequalities.

D. Organization of the paper

The paper is organized as follows: Section II presents
an illustrative multi-robot exploration scenario; Section III
formalizes the problem setup. We introduce the convergence
result for time-invariant multi-agent proximal dynamics Sec-
tion IV and for time-varying, dwell-time switched, proximal
dynamics in Section V. A numerical simulations of the
considered dynamics is presented in Section VI. Finally, we



conclude the paper in Section VII, where we discuss future
research directions.

E. Basic notation

The set of real, positive, and non-negative are denoted by
R, R>0, R≥0, respectively; R := R∪{∞}. The set of natural
numbers is denoted by N, and for i, j ∈ N, i ≤ j, we define
N[i, j] := [i, j] ∩ N. For a square matrix A ∈ Rn×n, its
transpose is denoted by A>. The n × n identity matrix is
denoted by In. For x1, · · · , xN ∈ Rn, a collective vector
x := [x>1 , · · · , x>N ]> ∈ RnN is simply described as x =
[x1; · · · ;xN ]. For two matrices A and B, A⊗B denotes their
Kronecker product. For vectors x, y ∈ Rn and a symmetric
and positive definite n × n matrix Q � 0, the weighted
inner product and norm are denoted by 〈x|y〉Q and ‖x‖Q,
respectively; the induced matrix norm is denoted by ‖A‖Q.
For Q = In, the standard inner product, Euclidean norm, and
Frobenius norm are obtained. A real n dimensional Hilbert
space obtained by endowing H = (Rn, ‖·‖) with the product
〈x|y〉Q is denoted by HQ.

F. Operator-theoretic notation

For a function f : Rn → R, define dom(f) := {x ∈
Rn|f(x) < +∞}. The subdifferential ∂f : dom(f) ⇒ HQ
is defined by ∂f(x) = {u ∈ HQ|(∀y ∈ HQ) 〈y − x|u〉 +
f(x) ≤ f(y)}. The proximal operator proxQf (x) : HQ →
dom(f) is defined by proxQf (x) := argminy∈Rnf(y) +
1
2‖x− y‖

2
Q. The resolvent of an operator A : HQ → 2HQ is

JA := (Id+A)−1.The indicator function ιC : Rn → [0,+∞]
of C ⊂ R is defined as ιC(x) = 0 if x ∈ C; otherwise
+∞. The identity operator is defined by Id. The Euclidean
distance and the Euclidean distance weighted by Q of a point
x to C are respectively d(x, C), and dQ(x, C).

II. MOTIVATING, ILLUSTRATIVE SCENARIO:
MULTI-ROBOT EXPLORATION

We motivate the paper by the problem of distributed
exploration performed by N mobile robots. Let the two-
dimensional position of each robot i ∈ N[1, N ] at time k ∈ N
be xi(k) and denote its neighbors indexed by N i. To each
robot i, we associate a local cost function that is composed
by two separate terms: the local target function f it (xi(k))
and the aggregation term gi(xi(k), xN

i

avg), where xN
i

avg denotes
the weighted averaged positions of its neighboring N i. The
first term penalizes the distance of the robot from its target
position x∗,i, and, by construction, has its minimum at the
target position, see Fig. 1a, 1c. Instead, the second term
penalizes the distance of the position xi(k) from xNiavg, hence
it plays the role to induce the robots to stay together during
their motion, see Fig. 1b, 1d. Each robot is assumed to be
rational, namely, willing to determine its motion with the
aim to minimize its cost function. Overall, the robots shall
reach a collective equilibrium state, which we call network
equilibrium.

The resulting motion-planning problem can be intended as
a game between all the robots involved in the exploration.
In fact, the equilibrium points correspond to the trade-offs

(a) (b)

(c) (d)

Fig. 1: (a) Agent i (blue disk) and its target position x∗,i (red
star), and other robots (light blue circles); (b) N robots, the
neighbors N i of robot i and xNiavg (red square), (c) Level sets
of the cost function f it (xi(k)); (d) Level sets of the function
gi(xi(k), xN

i

avg).

between the target positions and closeness among robots. For
simplicity, in this illustrative example, the collision avoidance
between robots is not taken into account. One possible simple
structure for the (discrete-time) dynamics of each robot i in
the above setup is then

xi(k + 1) = argmin
y∈X i

f it (y) + gi(y,xNi) , (1)

where the set X i represents the motion constraints of the
robot. Whether or not the dynamics in (1) will converge
to an equilibrium is unclear a-priori, espacially if the set
of neighbors, N i(k), is time-varying. With this distributed
robotic setup in mind, in the following, we address the
convergence problem via an operator-theoretic perspective.

III. TECHNICAL SETUP AND PROBLEM FORMULATION

We consider a network of N agents, where the state
of each agent i ∈ N[1, N ] is denoted by xi ∈ X i ⊆
Rn and the set X i coincides with the feasible states of
agent i. To compute its next state variable, each agent i
relies on the states of some neighboring agents. In turn, a
network structure arises, described by a weighted digraph.
Let us represent the communication between agents by the
following N ×N weighted adjacency matrix:

P := [ai,j ] =

a1,1 · · · a1,N
...

. . .
...

aN,1 · · · aN,N

 , (2)

where ai,j ∈ [0, 1] is the weight that agent i assigns to the
state of agent j. If ai,j = 0, then the state of agent i is



independent from that of agent j. Furthermore, we assume
that each agent i aims at minimizing a cost function J i.

Throughout the paper, we assume compactness and con-
vexity of the local constraint set X i and convexity (not
necessarily strict convexity) of the local cost function J i.

Assumption 1 (Local constraints): For each agent i ∈
N[1, N ], the set X i ⊆ Rn is non-empty, compact and convex.

Assumption 2 (Local cost functions): For each agent i ∈
N[1, N ], the local cost function J i : Rn×Rn → R is defined
by

J i(y, z) := f i◦(y) + ιXi(y) + 1
2‖y − z‖

2
Qi
, (3)

for some matrix Qi � 0, where f i := f i◦ + ιXi : Rn → R is
a lower semi-continuous and convex function.

In (3), the function f i◦ is local to agent i. For example, it
can represent the distance from a desired state. The quadratic
term 1

2‖y − z‖2Qi penalizes the distance between the state
of agent i and the weighted average among the states of
its neighbors. We emphasize that Assumption 2 requires
neither the differentiability of the local cost function, nor
the Lipschitz continuity or boundedness of its gradient.

From the above problem setup, since we assume the agents
are rational, i.e., willing to minimize their individual cost
functions, we consider the following notion of collective
equilibrium state, called network equilibrium.

Definition 1 (Network equilibrium): A collective vector
x = [x1; · · · ;xN ] ∈ RnN is a network equilibrium (NWE)
if ∀i ∈ N[1, N ],

xi ∈ argmin
y∈X i

J i(y,
∑N
j=1 ai,jx

j) . (4)

We recall that if there are no self-loops in the adjacency
matrix, i.e., ai,i = 0 for all i ∈ N[1, N ], then an NWE
corresponds to a Nash equilibrium [2, Remark 1]. Under
Assumptions 1 and 2, an NWE always exists.

The problem studied in this paper is then seeking an
NWE (Definition 1), namely, convergence to an NWE from
any initial condition. Clearly, in the time-varying case, the
definition of NWE is more involved - let us postpone it to
Section V.

IV. TIME-INVARIANT PROXIMAL DYNAMICS

As mentioned in the previous section, we assume that each
agent is rational and noncooperative. Therefore, it is natural
to consider the following proximal dynamics for each agent
i ∈ N[1, N ]:

xi(k + 1) = proxQifi
(∑N

j=1 ai,j x
j
)
, ∀k ∈ N. (5)

In the collective vector form, namely, for the collective
vector

x(k) :=
[
x1(k); · · · ;xN (k)

]
,

the dynamics from (5) read as

x(k + 1) = proxQ
f (Ax(k)) , (6)

where Q stands for the block-diagonal matrix

Q := diag(Q1, Q2, · · · , QN ) , (7)

the matrix A := P ⊗ In represents the interactions among
agents, and the mapping proxQ

f is a block-diagonal proximal
operator, i.e.,

proxQ
f (z) := diag(proxQ1

f1 (z1), · · · ,proxQN
fN

(zN )). (8)

With the introduced notations, a collective vector x =
[x1; · · · ;xN ] is an NWE if and only if x ∈ fix(proxQf ◦
A), where fix(·) stands for the set of fixed points of the
operator in its argument. Under Assumptions 1 and 2,
fix
(
proxQ

f ◦A
)

is non-empty [17, Th. 4.1.5(b)], and the
convergence problem is well posed.

Therefore, from an operator-theoretic perspective, the
proximal dynamics in (6) are the so-called Picard–Banach
iteration for the mapping proxQ

f ◦A [18, Equ. 1.69].
We assume that the adjacency matrix is row-stochastic

with self-loops, and marginally stable, as formalized next.
Assumption 3 (Row-stochasticity and self-loops): The

communication graph is strongly connected. The matrix
P = [ai,j ] in (2) is row-stochastic, i.e., ai,j ≥ 0 for all
i, j ∈ N[1, N ], and

∑N
j=1 ai,j = 1 for any i ∈ N[1, N ].

Moreover, P has strictly-positive diagonal elements, i.e.
mini∈N[1,N ] ai,i =: a > 0.

Now, we are ready to introduce the first result of this paper
about the convergence of the proximal dynamics in (6).

Lemma 1 (Global convergence): Suppose that Assump-
tions 1–3 hold. There always exists a matrix Q̃ � 0 such
that, for any x(0) ∈ X , the sequence (x(k))

∞
k=0 generated

by (6) with Q = Q̃ converges to an NWE.

Remark 1: Lemma 1 extends [2, Th. 1], since A is only
assumed to be row-stochastic. Note that if the matrix Q̃

can be chosen block-diagonal, then the operator proxQ̃
f ◦A

defines fully distributed dynamics.
From the practical point of view, the matrix Q̃ in Lemma

1 can be computed as Q̃ = Q̃ ⊗ In, where the matrix Q̃
solves the following LMI:

A>Q̃A 4 (2η − 1)Q̃+ (1− η)(A>Q̃+ Q̃A) (9)

for some η ∈ (0, 1). We have in fact the following result.
Proposition 1: Let η ∈ (0, 1). If the LMI in (9) holds, then

the sequence (x(k))
∞
k=0 generated by (6) with Q = Q̃⊗ In,

and Q̃ solution to (9), converges to an NWE.
It follows from Remark 1 and Proposition 1 that, in order

to obtain fully distributed dynamics in (6), one shall solve
the LMI in (9) with diagonal matrix Q̃.

V. TOWARDS TIME-VARYING PROXIMAL DYNAMICS

A. Time-varying setup

In the previous section, we have assumed that the com-
munication network of the agents is the same for all time
instances k ∈ N. In practical situations, however, not all
agents can update their strategies at the same time instances.



More generally, the communication network can change
from time to time. To address time-varying scenarios, in
this subsection, we consider a time-varying communication
matrix, i.e.,

P (k) := [ai,j(k)] =

a1,1(k) · · · a1,N (k)
...

. . .
...

aN,1(k) · · · aN,N (k)

 , (10)

hence the collective adjacency matrix A(k) := P (k)⊗ In.
For simplicity, in the remainder of the paper, we assume

that the set of available communication networks is finite.

Assumption 4 (Finite number of adjacency matrices):
There exists M ∈ N such that P (k) ∈ P := {P1, . . . , PM}
for all k ∈ N, where each matrix Pi ∈ P satisfies
Assumption 3.

To describe the corresponding dynamics, we introduce a
switching signal σ : N → N[1,M ] that at each time step k
selects an adjacency matrix. Thus, in compact form, we have
the following switching dynamics:

x(k + 1) = prox
Qσ(k)

f

(
Aσ(k) x(k)

)
, (11)

where Qσ(k) := Qσ(k) ⊗ In, and

Qσ(k) ∈ Q := {Q1, . . . , QM � 0}

for all k ∈ N. Moreover, since we are interested in distributed
dynamics, we assume that the matrices Qi’s are diagonal.

Assumption 5: For each Pi ∈ P , there exists a diagonal
matrix Qi ∈ Q that satisfies Lemma 1. �

As anticipated in the previous section, for the time-varying
case, we need to generalize the concept of an NWE, to what
we call a persistent network equilibrium.

Definition 2 (Persistent network equilibrium): A persis-
tent network equilibrium (PNWE) is a collective vector in
the set

E :=
⋂M
i=1 fix

(
prox

Qi

f ◦Ai

)
. (12)

Assumption 6 (Existence of PNWE): The set of PNWE is
assumed to be non-empty, i.e., E 6= ∅.
We remind that, in general, even if all Pi’s are stable, i.e.,
correspond to averaged mappings, the switching system in
(11) can be unstable for some switching sequences. There-
fore, we shall use tools from switching systems to claim
convergence to a PNWE. In the next subsection, we focus
on the dwell-time approach to establish global convergence.

B. Proximal dynamics with dwell time

With the aim to study global convergence of time-varying
proximal dynamics, let us introduce the concept of dwell-
time [19], [20], [21].

Definition 3: A natural number τ is called a dwell time
if the switching times k̄1, k̄2, . . . satisfy k̄i+1 − k̄i > τ , for
all i ∈ N. �

Before we can establish convergence of the proximal
dynamics with switching, we impose two technical assump-
tions, namely that all operators are linearly regular [22,
Def. 2.1] and that the number of switchings is infinite.

Assumption 7: Assumptions 1, 2, 4 hold and for each i ∈
N[1,M ], the operator prox

Qi

f ◦ Ai is linearly regular on
HQi

.

Assumption 8 (Infinite switching): For all i ∈ N[1,M ],
the switching signal is such that σ(k) = i infinitely many
times as k →∞.

We are now ready to present a global convergence result
for the switching proximal dynamics in (11) to a PNWE,
provided that the dwell time is chosen large enough.

Theorem 1 (Global convergence under dwell-time): Let
Assumptions 6–8 hold. For any initial condition x(0) ∈ X ,
the sequence (x(k))∞k=0 generated by (11) converges to a
PNWE if the dwell time τ ∈ N is chosen large enough.

Remark 2: A lower bound for the dwell time can be
obtained in the form

τ ≥ τmin := log∏M
j=1 φj

(
1

2M

M∏
j=1

λmin,j

λmax,j

)
, (13)

where λmin,j and λmax,j are, respectively, the minimum
and the maximum eigenvalues of Qj . The parameters
φ1, . . . , φM > 0 are described in the Appendix.

VI. NUMERICAL SIMULATIONS

We resume the setting described in Section II, namely, the
problem of a distributed exploration performed by a network
of mobile robots. In the following, we verify the results of
Section IV to solve this task in the time-invariant case.

1) Simulation setup: We have N = 4 agents in the game,
where each agent i ∈ N[1, N ] is a moving mobile robot, and
the state xi(k) is its position in the plane at time k ∈ N,
hence n = 2. The robots are able to move in all directions
from their current positions, but the maximum range of
movement is limited inside a square X i(k), centred in xi(k)
and of edge r. The weighted adjacency matrices in (2) and
its collective counterpart are

P =

 1
2

1
2 0 0

4
10

1
2

1
10 0

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

 and A := P ⊗ In .

The value of a in Assumption 3 is 0.25. One can compute
the matrix Q by solving the LMI in (9) with η = 0.5 and
imposing a diagonal structure. The solution is

Q = diag(0.186 I2, 0.214 I2, 0.055 I2, 0.03 I2) . (14)

The cost function of each agent i is defined according to
Assumption 3, as

J i(xi,x−i) =
γi
2
‖xi − x∗i ‖2Qi + ιX i(x

i) +
1

2
‖xi −Ax‖2Qi ,

(15)
where Qi ∈ R2×2 is the block present in the diagonal of Q,
x∗,i the target position of the agent, γi ∈ R the “discover”



parameter and ‖xi − Ax‖2Qi the aggregative term. The
parameter γi defines how much a robot prefers to achieve
its goal position instead of staying close to the others.

From the collective dynamics in (6), the explicit update
rule is obtained applying a forward-backward splitting to the
operator, obtaining

x(k + 1) = projX
[
x(k)− ε

(
Q
(
γ(x(k)− x∗)

)
+D(x(k)−Ax(k)))

]
, (16)

where D = diag
(
(1− ai,i)Ni=1

)
, ai,i’s are the diagonal

elements of A, ε is the step size of the dynamics and projX
is the projection operator over the set X .

2) Simulation results: In the numerical simulation, we use
the following values:

• initial positions x10 = [50]>, x20 = [200]>, x30 = [500]>

and x40 = [10 0]>;
• desired final positions x∗,1 = [100 100]>, x∗,2 =

[60 100]>, x∗,3 = [0 50]> and x∗,4 = [100 50]>;
• edge of local constraint sets, X i, r = 5;
• the same discover parameter is used for all the agents,
γi = 2.5 for all i ∈ N[1, N ];

• small step size ε = 1.

The trajectories of the four robots are shown in Fig. 2,
where the desired position of each robot i ∈ N[1, N ] is
represented by dashed circles with the same color of the
robot i.

Fig. 2: Trajectories of the 4 robots generated by the dynamics
in (16). The initial and desired positions are xi0 and x∗,i,
respectively. The latter represented by concentric dashed
circles.

A closer look at the matrix P clarifies the behavior of
each robot. The first two robots weight mostly their relative
positions and, since their targets are relatively close each
other, they converge very close to the desired location. The
remaining two robots must instead adapt their motion also
with respect to that of robots 1 and 2, in order to reduce the
effect of the proximity term in their cost function. This leads
the final positions of these robots distant from their targets.

Fig. 3: Trajectories of the 4 robots generated by the dynamics
in (16), performing obstacle avoidance. The obstacle is
represented by the gray rectangle. The desired positions are
represented by concentric dashed circles.

3) Obstacle Avoidance: Next, we deal with an obstacle
avoidance problem, which can be handled via the same setup,
with the only difference that X i shall be modified. When
the agent i approaches the object, its local constraints set is
formulated such that the future robot position cannot collide
with the obstacle. More precisely, we define A as the set of
points covered by the obstacle, and X̂ i, the local constraint
set that the agent would have without the obstacle. Finally,
we define the set X i as the largest convex subset of X̂ i \A.

In Fig. 3, we show a resulting trajectory, run with the
same parameters of the previous simulation. Each agent
successfully avoids the obstacle, and the final positions
almost coincide with the ones of the previous simulation. In
our experience, expecially in the scenarios with obstacles, the
tuning of the γis is crucial to obtain satisfactory trajectories.

VII. CONCLUSION AND OUTLOOK

In this paper, we have studied the problem of a group of
robots performing a distributed exploration task. We have
shown that under weak condition on the communication,
the global convergence to an NWE or to a PNWE can still
be reached, respectively in the static and the time-varying
case, even though in this latter case the imposition of a
dwell time is necessary. Moreover we presented a practical
implementation of the algorithm and studied its performances
in different setups. This can be seen as a work towards
asynchronous proximal dynamics, which aims at highlighting
the potentials and the possible applications of this research
topic. Future research will investigate milder conditions and
different algorithms under which proximal dynamics are
guaranteed to be fully distributed.

APPENDIX

Proof of Lemma 1

From Assumption 3, A is marginally stable, with no
eigenvalues on the boundary of the unit disk but semi-simple
eigenvalues at 1. From [23, Lem. 4], the linear operator



A is averaged in some Hilbert space with norm Q̃ � 0.
From [18, Def. 4.33] and [23, Lem. 4], A is averaged in
the Hilbert space with norm Q̃ � 0. Then, the collective
proximal operator proxQ

f (z) := JQ−1∂f (z) is averaged in
the same Hilbert space [18, Prop. 23.34(i)]. Thus, by [18,
Prop. 4.44], the composition proxQ

f ◦A is also averaged in
HQ̃. The proof then follows from [18, Prop. 5.15]. �

Proof of Proposition 1

Follows directly from [18, Def. 4.33], [23, Lem. 4] and
Lemma 1. �

Proof of Theorem 1

For each i ∈ N[1,M ], define Ti := prox
Qi

f ◦Ai. From
[18, Prop. 4.44] we know that Ti, is averaged as well, say
ηi−averaged. Thus, without any switching, the sequence
(x(k))∞k=0 generated by the Banach–Picard iteration would
converge to some vector in fix(Ti).

Due to Assumptions 7, 8 and [22, Lemma 3.8, Fact 5.3(i)],
we have that, for all i ∈ N[1, N ],

dQi

(
x(k + n), E

)
≤ 2φki dQi

(
x(n), E

)
(17)

where we defined the parameters

φi :=

√
α−1i κ2i

1 + α−1i κ2i
∈ [0, 1), αi :=

1− ηi
ηi

.

Then the lower bound of the dwell time in (13) can be
computed via arguments similar to [24, Sec. 3.2.1]. Consider
M = 2, since the distance functions are norms, we have that

λmin,1d
(
x(k),E

)
≤dQ1

(
x(k),E

)
≤λmax,1d

(
x(k),E

)
λmin,2d

(
x(k),E

)
≤dQ2

(
x(k),E

)
≤λmax,2d

(
x(k),E

) . (18)

Now, suppose that σ(k) = 1 for all k ∈ N[k0, k1−1], and
σ(k) = 2 for all k ∈ N[k1, k2 − 1], where kj+1 − kj > τ .
By (17) and (18), we obtain

dQ2

(
x(k1), E

)
≤ 2

λmax,2

λmin,1
φτ1dQ1

(
x(k0), E

)
, (19)

and consequently

dQ1

(
x(k2), E

)
≤ 4

λmax,2λmax,1

λmin,1λmin,2
(φ2φ1)τdQ1

(
x(k0), E

)
.

(20)
By [24, Th. 3.1] and some manipulation, we conclude the
converge to a PNWE if the dwell time τ satisfies

τ ≥ logφ2φ1

(
λmin,1λmin,2

4λmax,2λmax,1

)
.

The proof for the general case when M ≥ 2 is analogous
and leads to the lower bound on the dwell time in (13). �

REFERENCES

[1] F. Dörfler, J. Simpson-Porco, and F. Bullo, “Breaking the hierarchy:
Distributed control and economic optimality in microgrids,” IEEE
Trans. on Control of Network Systems, vol. 3, no. 3, pp. 241–253,
2016.

[2] S. Grammatico, “Proximal dynamics in multi-agent network
games (in press),” IEEE Trans. on Control of Network Systems
doi.org/10.1109/TCNS.2017.2754358, 2018.

[3] R. Jaina and J. Walrand, “An efficient Nash-implementation mecha-
nism for network resource allocation,” Automatica, vol. 46, pp. 1276–
1283, 2010.

[4] J. Barrera and A. Garcia, “Dynamic incentives for congestion control,”
IEEE Trans. on Automatic Control, vol. 60, no. 2, pp. 299–310, 2015.

[5] J. Ghaderi and R. Srikant, “Opinion dynamics in social networks
with stubborn agents: Equilibrium and convergence rate,” Automatica,
vol. 50, pp. 3209–3215, 2014.
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