472 research outputs found

    Optimality Properties, Distributed Strategies, and Measurement-Based Evaluation of Coordinated Multicell OFDMA Transmission

    Full text link
    The throughput of multicell systems is inherently limited by interference and the available communication resources. Coordinated resource allocation is the key to efficient performance, but the demand on backhaul signaling and computational resources grows rapidly with number of cells, terminals, and subcarriers. To handle this, we propose a novel multicell framework with dynamic cooperation clusters where each terminal is jointly served by a small set of base stations. Each base station coordinates interference to neighboring terminals only, thus limiting backhaul signalling and making the framework scalable. This framework can describe anything from interference channels to ideal joint multicell transmission. The resource allocation (i.e., precoding and scheduling) is formulated as an optimization problem (P1) with performance described by arbitrary monotonic functions of the signal-to-interference-and-noise ratios (SINRs) and arbitrary linear power constraints. Although (P1) is non-convex and difficult to solve optimally, we are able to prove: 1) Optimality of single-stream beamforming; 2) Conditions for full power usage; and 3) A precoding parametrization based on a few parameters between zero and one. These optimality properties are used to propose low-complexity strategies: both a centralized scheme and a distributed version that only requires local channel knowledge and processing. We evaluate the performance on measured multicell channels and observe that the proposed strategies achieve close-to-optimal performance among centralized and distributed solutions, respectively. In addition, we show that multicell interference coordination can give substantial improvements in sum performance, but that joint transmission is very sensitive to synchronization errors and that some terminals can experience performance degradations.Comment: Published in IEEE Transactions on Signal Processing, 15 pages, 7 figures. This version corrects typos related to Eq. (4) and Eq. (28

    Técnicas de pré-codificação para sistemas multicelulares coordenados

    Get PDF
    Doutoramento em TelecomunicaçõesCoordenação Multicélula é um tópico de investigação em rápido crescimento e uma solução promissora para controlar a interferência entre células em sistemas celulares, melhorando a equidade do sistema e aumentando a sua capacidade. Esta tecnologia já está em estudo no LTEAdvanced sob o conceito de coordenação multiponto (COMP). Existem várias abordagens sobre coordenação multicélula, dependendo da quantidade e do tipo de informação partilhada pelas estações base, através da rede de suporte (backhaul network), e do local onde essa informação é processada, i.e., numa unidade de processamento central ou de uma forma distribuída em cada estação base. Nesta tese, são propostas técnicas de pré-codificação e alocação de potência considerando várias estratégias: centralizada, todo o processamento é feito na unidade de processamento central; semidistribuída, neste caso apenas parte do processamento é executado na unidade de processamento central, nomeadamente a potência alocada a cada utilizador servido por cada estação base; e distribuída em que o processamento é feito localmente em cada estação base. Os esquemas propostos são projectados em duas fases: primeiro são propostas soluções de pré-codificação para mitigar ou eliminar a interferência entre células, de seguida o sistema é melhorado através do desenvolvimento de vários esquemas de alocação de potência. São propostas três esquemas de alocação de potência centralizada condicionada a cada estação base e com diferentes relações entre desempenho e complexidade. São também derivados esquemas de alocação distribuídos, assumindo que um sistema multicelular pode ser visto como a sobreposição de vários sistemas com uma única célula. Com base neste conceito foi definido uma taxa de erro média virtual para cada um desses sistemas de célula única que compõem o sistema multicelular, permitindo assim projectar esquemas de alocação de potência completamente distribuídos. Todos os esquemas propostos foram avaliados em cenários realistas, bastante próximos dos considerados no LTE. Os resultados mostram que os esquemas propostos são eficientes a remover a interferência entre células e que o desempenho das técnicas de alocação de potência propostas é claramente superior ao caso de não alocação de potência. O desempenho dos sistemas completamente distribuídos é inferior aos baseados num processamento centralizado, mas em contrapartida podem ser usados em sistemas em que a rede de suporte não permita a troca de grandes quantidades de informação.Multicell coordination is a promising solution for cellular wireless systems to mitigate inter-cell interference, improving system fairness and increasing capacity and thus is already under study in LTE-A under the coordinated multipoint (CoMP) concept. There are several coordinated transmission approaches depending on the amount of information shared by the transmitters through the backhaul network and where the processing takes place i.e. in a central processing unit or in a distributed way on each base station. In this thesis, we propose joint precoding and power allocation techniques considering different strategies: Full-centralized, where all the processing takes place at the central unit; Semi-distributed, in this case only some process related with power allocation is done at the central unit; and Fulldistributed, where all the processing is done locally at each base station. The methods are designed in two phases: first the inter-cell interference is removed by applying a set of centralized or distributed precoding vectors; then the system is further optimized by centralized or distributed power allocation schemes. Three centralized power allocation algorithms with per-BS power constraint and different complexity tradeoffs are proposed. Also distributed power allocation schemes are proposed by considering the multicell system as superposition of single cell systems, where we define the average virtual bit error rate (BER) of interference-free single cell system, allowing us to compute the power allocation coefficients in a distributed manner at each BS. All proposed schemes are evaluated in realistic scenarios considering LTE specifications. The numerical evaluations show that the proposed schemes are efficient in removing inter-cell interference and improve system performance comparing to equal power allocation. Furthermore, fulldistributed schemes can be used when the amounts of information to be exchanged over the backhaul is restricted, although system performance is slightly degraded from semi-distributed and full-centralized schemes, but the complexity is considerably lower. Besides that for high degrees of freedom distributed schemes show similar behaviour to centralized ones

    Power allocation strategies for distributed precoded multicell based systems

    Get PDF
    Multicell cooperation is a promising solution for cellular wireless systems to mitigate intercell interference, improve system fairness, and increase capacity. In this article, we propose power allocation techniques for the downlink of distributed, precoded, multicell cellular-based systems. The precoder is designed in two phases: first the intercell interference is removed by applying a set of distributed precoding vectors; then the system is further optimized through power allocation. Three centralized power allocation algorithms with per-BS power constraint and diferente complexity trade-offs are proposed: one optimal in terms of minimization of the instantaneous average bit error rate (BER), and two suboptimal. In this latter approach, the powers are computed in two phases. First, the powers are derived under total power constraint (TPC) and two criterions are considered, namely, minimization of the instantaneous average BER and minimization of the sum of inverse of signal-to-noise ratio. Then, the final powers are computed to satisfy the individual per-BS power constraint. The performance of the proposed schemes is evaluated, considering typical pedestrian scenarios based on LTE specifications. The numerical results show that the proposed suboptimal schemes achieve a performance very close to the optimal but with lower computational complexity. Moreover, the performance of the proposed per-BS precoding schemes is close to the one obtained considering TPC over a supercell.Portuguese CADWIN - PTDC/ EEA TEL/099241/200

    Joint Beamforming and Power Control in Coordinated Multicell: Max-Min Duality, Effective Network and Large System Transition

    Full text link
    This paper studies joint beamforming and power control in a coordinated multicell downlink system that serves multiple users per cell to maximize the minimum weighted signal-to-interference-plus-noise ratio. The optimal solution and distributed algorithm with geometrically fast convergence rate are derived by employing the nonlinear Perron-Frobenius theory and the multicell network duality. The iterative algorithm, though operating in a distributed manner, still requires instantaneous power update within the coordinated cluster through the backhaul. The backhaul information exchange and message passing may become prohibitive with increasing number of transmit antennas and increasing number of users. In order to derive asymptotically optimal solution, random matrix theory is leveraged to design a distributed algorithm that only requires statistical information. The advantage of our approach is that there is no instantaneous power update through backhaul. Moreover, by using nonlinear Perron-Frobenius theory and random matrix theory, an effective primal network and an effective dual network are proposed to characterize and interpret the asymptotic solution.Comment: Some typos in the version publised in the IEEE Transactions on Wireless Communications are correcte

    Adaptive Spatial Intercell Interference Cancellation in Multicell Wireless Networks

    Full text link
    Downlink spatial intercell interference cancellation (ICIC) is considered for mitigating other-cell interference using multiple transmit antennas. A principle question we explore is whether it is better to do ICIC or simply standard single-cell beamforming. We explore this question analytically and show that beamforming is preferred for all users when the edge SNR (signal-to-noise ratio) is low (<0<0 dB), and ICIC is preferred when the edge SNR is high (>10>10 dB), for example in an urban setting. At medium SNR, a proposed adaptive strategy, where multiple base stations jointly select transmission strategies based on the user location, outperforms both while requiring a lower feedback rate than the pure ICIC approach. The employed metric is sum rate, which is normally a dubious metric for cellular systems, but surprisingly we show that even with this reward function the adaptive strategy also improves fairness. When the channel information is provided by limited feedback, the impact of the induced quantization error is also investigated. It is shown that ICIC with well-designed feedback strategies still provides significant throughput gain.Comment: 26 pages, submitted to IEEE J. Select. Areas Commun. special issue on Cooperative Communications in MIMO Cellular Networks, Sept. 200

    Performance evaluation of multicell coordinated beamforming approaches for OFDM systems

    Get PDF
    In this paper we propose and evaluate multicell coordinated beamforming schemes for the downlink of MISO-OFDM systems. The precoders are designed in two phases: first the precoder vectors are computed in a distributed manner at each BS considering two criteria, namely distributed zero-forcing and virtual signal-to-interference noise ratio. Then the system is optimized through distributed power allocation under per-BS power constraint. The proposed power allocation scheme is designed based on minimization of the average bit error rate over all the available subcarriers. Both the precoder vectors and the power allocation are computed by assuming that the BSs have only knowledge of local channel state information and do not share the data symbols. The performance of the proposed schemes are evaluated, considering typical pedestrian scenarios based on LTE specifications. The results have shown that the proposed distributed power allocation scheme outperform the equal power allocation approach
    corecore