8 research outputs found

    Spatial based Expectation Maximizing (EM)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Expectation maximizing (EM) is one of the common approaches for image segmentation.</p> <p>Methods</p> <p>an improvement of the EM algorithm is proposed and its effectiveness for MRI brain image segmentation is investigated. In order to improve EM performance, the proposed algorithms incorporates neighbourhood information into the clustering process. At first, average image is obtained as neighbourhood information and then it is incorporated in clustering process. Also, as an option, user-interaction is used to improve segmentation results. Simulated and real MR volumes are used to compare the efficiency of the proposed improvement with the existing neighbourhood based extension for EM and FCM.</p> <p>Results</p> <p>the findings show that the proposed algorithm produces higher similarity index.</p> <p>Conclusions</p> <p>experiments demonstrate the effectiveness of the proposed algorithm in compare to other existing algorithms on various noise levels.</p

    Retinotopic and lateralized processing of spatial frequencies in human visual cortex during scene categorization.

    Get PDF
    International audienceUsing large natural scenes filtered in spatial frequencies, we aimed to demonstrate that spatial frequency processing could not only be retinotopically mapped but could also be lateralized in both hemispheres. For this purpose, participants performed a categorization task using large black and white photographs of natural scenes (indoors vs. outdoors, with a visual angle of 24° × 18°) filtered in low spatial frequencies (LSF), high spatial frequencies (HSF), and nonfiltered scenes, in block-designed fMRI recording sessions. At the group level, the comparison between the spatial frequency content of scenes revealed first that, compared with HSF, LSF scene categorization elicited activation in the anterior half of the calcarine fissures linked to the peripheral visual field, whereas, compared with LSF, HSF scene categorization elicited activation in the posterior part of the occipital lobes, which are linked to the fovea, according to the retinotopic property of visual areas. At the individual level, functional activations projected on retinotopic maps revealed that LSF processing was mapped in the anterior part of V1, whereas HSF processing was mapped in the posterior and ventral part of V2, V3, and V4. Moreover, at the group level, direct interhemispheric comparisons performed on the same fMRI data highlighted a right-sided occipito-temporal predominance for LSF processing and a left-sided temporal cortex predominance for HSF processing, in accordance with hemispheric specialization theories. By using suitable method of analysis on the same data, our results enabled us to demonstrate for the first time that spatial frequencies processing is mapped retinotopically and lateralized in human occipital cortex

    Distributed local MRF models for tissue and structure brain segmentation

    No full text
    International audienceAccurate tissue and structure segmentation of magnetic resonance (MR) brain scans is critical in several applications. In most approaches this task is handled through two sequential steps. We propose to carry out cooperatively both tissue and subcortical structure segmentation by distributing a set of local and cooperative Markov random field (MRF) models Tissue segmentation is performed by partitioning the volume into subvolumes where local MRFs are estimated in cooperation with their neighbors to ensure consistency. Local estimation fits precisely to the local intensity distribution and thus handles nonuniformity of intensity without any bias field modelization. Similarly, subcortical structure segmentation is performed via local MRF models that integrate localization constraints provided by a priori fuzzy description of brain anatomy. Subcortical structure segmentation is not reduced to a subsequent processing step but joined with tissue segmentation: the two procedures cooperate to gradually and conjointly improve model accuracy. We propose a framework to implement this distributed modeling integrating cooperation, coordination, and local model checking in an efficient way. Its evaluation was performed using both phantoms and real 3 T brain scans, showing good results and in particular robustness to nonuniformity and noise with a low computational cost. This original combination of local MRF models, including anatomical knowledge, appears as a powerful and promising approach for MR brain scan segmentation

    Distributed Local MRF Models for Tissue and Structure Brain Segmentation

    No full text

    Statistical modeling and processing of high frequency ultrasound images: application to dermatologic oncology

    Get PDF
    Cette thèse étudie le traitement statistique des images d’ultrasons de haute fréquence, avec application à l’exploration in-vivo de la peau humaine et l’évaluation non invasive de lésions. Des méthodes Bayésiennes sont considérées pour la segmentation d’images échographiques de la peau. On y établit que les ultrasons rétrodiffusés par la peau convergent vers un processus aléatoire complexe de type Levy-Flight, avec des statistiques non Gaussiennes alpha-stables. L’enveloppe du signal suit une distribution Rayleigh généralisée à queue lourde. A partir de ces résultats, il est proposé de modéliser l’image ultrason de multiples tissus comme un mélange spatialement cohérent de lois Rayleigh à queues lourdes. La cohérence spatiale inhérente aux tissus biologiques est modélisée par un champ aléatoire de Potts-Markov pour représenter la dépendance locale entre les composantes du mélange. Un algorithme Bayésien original combiné à une méthode Monte Carlo par chaine de Markov (MCMC) est proposé pour conjointement estimer les paramètres du modèle et classifier chaque voxel dans un tissu. L’approche proposée est appliquée avec succès à la segmentation de tumeurs de la peau in-vivo dans des images d’ultrasons de haute fréquence en 2D et 3D. Cette méthode est ensuite étendue en incluant l’estimation du paramètre B de régularisation du champ de Potts dans la chaine MCMC. Les méthodes MCMC classiques ne sont pas directement applicables à ce problème car la vraisemblance du champ de Potts ne peut pas être évaluée. Ce problème difficile est traité en adoptant un algorithme Metropolis-Hastings “sans vraisemblance” fondé sur la statistique suffisante du Potts. La méthode de segmentation non supervisée, ainsi développée, est appliquée avec succès à des images échographiques 3D. Finalement, le problème du calcul de la borne de Cramer-Rao (CRB) du paramètre B est étudié. Cette borne dépend des dérivées de la constante de normalisation du modèle de Potts, dont le calcul est infaisable. Ce problème est résolu en proposant un algorithme Monte Carlo original, qui est appliqué avec succès au calcul de la borne CRB des modèles d’Ising et de Potts. ABSTRACT : This thesis studies statistical image processing of high frequency ultrasound imaging, with application to in-vivo exploration of human skin and noninvasive lesion assessment. More precisely, Bayesian methods are considered in order to perform tissue segmentation in ultrasound images of skin. It is established that ultrasound signals backscattered from skin tissues converge to a complex Levy Flight random process with non-Gaussian _-stable statistics. The envelope signal follows a generalized (heavy-tailed) Rayleigh distribution. Based on these results, it is proposed to model the distribution of multiple-tissue ultrasound images as a spatially coherent finite mixture of heavy-tailed Rayleigh distributions. Spatial coherence inherent to biological tissues is modeled by a Potts Markov random field. An original Bayesian algorithm combined with a Markov chain Monte Carlo method is then proposed to jointly estimate the mixture parameters and a label-vector associating each voxel to a tissue. The proposed method is successfully applied to the segmentation of in-vivo skin tumors in high frequency 2D and 3D ultrasound images. This method is subsequently extended by including the estimation of the Potts regularization parameter B within the Markov chain Monte Carlo (MCMC) algorithm. Standard MCMC methods cannot be applied to this problem because the likelihood of B is intractable. This difficulty is addressed by using a likelihood-free Metropolis-Hastings algorithm based on the sufficient statistic of the Potts model. The resulting unsupervised segmentation method is successfully applied to tridimensional ultrasound images. Finally, the problem of computing the Cramer-Rao bound (CRB) of B is studied. The CRB depends on the derivatives of the intractable normalizing constant of the Potts model. This is resolved by proposing an original Monte Carlo algorithm, which is successfully applied to compute the CRB of the Ising and Potts models

    Advanced Sensing and Image Processing Techniques for Healthcare Applications

    Get PDF
    This Special Issue aims to attract the latest research and findings in the design, development and experimentation of healthcare-related technologies. This includes, but is not limited to, using novel sensing, imaging, data processing, machine learning, and artificially intelligent devices and algorithms to assist/monitor the elderly, patients, and the disabled population

    Preprocessing methods for morphometric brain analysis and quality assurance of structural magnetic resonance images

    Get PDF
    Gegenstand der Dissertation ist die Neuentwicklung und Validierung von Verfahren zur Aufbereitung von anatomischen Daten, die mittels Magnetresonanztomographie gewonnen wurden. Ziel ist dabei die Erfassung von morphometrischen Kennwerten zur Beschreibung der Struktur und Form des Gehirns, wie beispielsweise Volumen, Fläche, Dicke oder Faltung der Großhirnrinde. Die Kennwerte erlauben sowohl die Erforschung individueller gesunder und pathologischer Entwicklung als auch der evolutionären Anpassung des Gehirns. Die zur Datenanalyse notwendige Vorverarbeitung beinhaltet dabei die Angleichung von Bildeigenschaften und individueller Anatomie. Die fortlaufende Weiterentwicklung der Scanner- und Rechentechnik ermöglicht eine zunehmend genauere Bildgebung, erfordert aber die kontinuierliche Anpassung existierender Verfahren. Die Schwerpunkte dieser Dissertation lagen in der Entwicklung neuer Verfahren zur (i) Klassifikation der Hirngewebe (Segmentierung), (ii) räumlichen Abbildung des individuellen Gehirns auf ein Durchschnittsgehirn (Registrierung), (iii) Bestimmung der Dicke der Großhirnrinde und Rekonstruktion einer repräsentativen Oberfläche und (iv) Qualitätssicherung der Eingangsdaten. Die Segmentierung gleicht die Bildeigenschaften unterschiedlicher Protokolle an, während die Registrierung anatomische Merkmale normalisiert und so den Vergleich verschiedener Gehirne ermöglicht. Die Rekonstruktion von Oberflächen erlaubt wiederum die Gewinnung einer Vielzahl weiterer morphometrischer Maße zur spezifischen Charakterisierung des Gehirns und seiner Entwicklung. Anhand von simulierten und realen Daten wird die Validität der neuen Methoden belegt und mit anderen Ansätzen verglichen. Die Verfahren sind Bestandteil der Computational Anatomy Toolbox (CAT; http://dbm.neuro.uni-jena.de/cat), deren Schwerpunkt die Vorverarbeitung von strukturellen Daten ist und die Teil des Statistical Parametric Mapping (SPM) Softwarepaketes in MATLAB ist.This Ph.D. thesis focuses on the development, optimization and validation of preprocessing methods of structural magnetic resonance images of the brain. The preprocessing describes the creation of morphometric data that support a statistical analysis of brain anatomy. Image interferences have to be removed to allow a tissue classification (segmentation). In order to compare different subjects a spatial normalization to an average-shaped brain (template) is required, where atlas maps allow identification of specific brain structures and regions of interest. Beside the analysis in a voxel-grid, the cortex can be represented by surfaces that allow further measures such as the cortical thickness or folding. The derived brain features (such as volume, area, and thickness) permit the individual study of normal and pathological development during the lifespan but also of the evolutionary adaption of the brain. The ongoing progress of imaging and computing technology demands continous enhancement of preprocessing tools but also facilitates the exploration of novel approaches and models. The basis of this thesis is the development of a method that uses a tissue segmentation to estimate the cortical thickness and the central surface in one integrated step. Further essential improvements of surface reconstruction algorithms were achieved by specific refinement of processing steps such as (i) the classification of brain tissue (segmentation), (ii) the spatial mapping of the individual brain to an average brain (registration), (iii) determining the thickness of the cerebral cortex and reconstructing a representative surface and (iv) the quality assurance of input data. The validity of the new methods is proven and compared with other approaches by simulated and real data. The procedures are part of the Computational Anatomy Toolbox (CAT; http://dbm.neuro.uni-jena.de/cat), which focuses on the preprocessing of structural data and is part of the Statistical Parametric Mapping (SPM) software package in MATLAB
    corecore