48 research outputs found

    OBPF: Opportunistic Beaconless Packet Forwarding Strategy for Vehicular Ad Hoc Networks

    Full text link
    [EN] In a vehicular ad hoc network, the communication links are unsteady due to the rapidly changing topology, high mobility and traffic density in the urban environment. Most of the existing geographical routing protocols rely on the continuous transmission of beacon messages to update the neighbors' presence, leading to network congestion. Source-based approaches have been proven to be inefficient in the inherently unstable network. To this end, we propose an opportunistic beaconless packet forwarding approach based on a modified handshake mechanism for the urban vehicular environment. The protocol acts differently between intersections and at the intersection to find the next forwarder node toward the destination. The modified handshake mechanism contains link quality, forward progress and directional greedy metrics to determine the best relay node in the network. After designing the protocol, we compared its performance with existing routing protocols. The simulation results show the superior performance of the proposed protocol in terms of packet delay and data delivery ratio in realistic wireless channel conditions.The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this research. The research is supported by Ministry of Education Malaysia (MOE) and conducted in collaboration with Research Management Center (RMC) at Universiti Teknologi Malaysia (UTM) under VOT NUMBER: QJ130000.2528.06H00.Qureshi, KN.; Abdullah, AH.; Lloret, J.; Altameem, A. (2016). OBPF: Opportunistic Beaconless Packet Forwarding Strategy for Vehicular Ad Hoc Networks. KSII Transactions on Internet and Information Systems. 10(5):2144-2165. https://doi.org/10.3837/tiis.2016.05.011S2144216510

    Beaconless Packet Forwarding Approach for Vehicular Urban Environment

    Full text link
    Existing wireless technologies provide communication and information services to all fields of life. The one of the emerging and popular field is vehicular ad hoc networks, with its unique characteristics and highly mobile environment. Different types of routing protocols have been proposed to address the routing issues in network and one of the most efficient types is geographical routing. In this type of protocols, the beacon messages are using to update the node locations and positions. However, these protoocls have been suffered with high channel congestion issue in the network. To this end, we propose a beaconless packet forwarding strategy based on modified handshake messages mechanism. The protocol uses some realistic metrics to select the next forwarder node such as forward progresss and link quality. The protocol performance is evaluated with existing beacon and beaconless geographical routing protocols. The simulation results showed the better performance of the proposed protocol in terms of packet delay and data delivery ratio in realistic wireless channel conditions

    Geographical Forwarding Methods in Vehicular Ad hoc Networks

    Get PDF
    Vehicular ad hoc networks are new and emerging technology and special class of mobile ad hoc networks that provide wireless communication between vehicles without any fixed infrastructure. Geographical routing has appeared as one of the most scalable and competent routing schemes for vehicular networks. A number of strategies have been proposed for forwarding the packets in geographical direction of the destination, where information of direct neighbors is gained through navigational services. Due to dynamically changing topologies and high mobility neighbor information become outdated. To address these common issues in network different types of forwarding strategies have been proposed. In this review paper, we concentrate on beaconless forwarding methods and their forwarding methods in detail

    Beaconless Packet Forwarding Approach for Vehicular Urban Environment

    Get PDF
    Existing wireless technologies provide communication and information services to all fields of life. The one of the emerging and popular field is vehicular ad hoc networks, with its unique characteristics and highly mobile environment. Different types of routing protocols have been proposed to address the routing issues in network and one of the most efficient types is geographical routing. In this type of protocols, the beacon messages are using to update the node locations and positions. However, these protoocls have been suffered with high channel congestion issue in the network. To this end, we propose a beaconless packet forwarding strategy based on modified handshake messages mechanism. The protocol uses some realistic metrics to select the next forwarder node such as forward progresss and link quality. The protocol performance is evaluated with existing beacon and beaconless geographical routing protocols. The simulation results showed the better performance of the proposed protocol in terms of packet delay and data delivery ratio in realistic wireless channel conditions

    Overhead-controlled contention-based routing for VANETs

    Get PDF
    Routing of VANETs is a challenging issue that has attracted many attentions of researchers recently. Contention based routing protocols have good congruity with high mobility of nodes in this kind of networks. Prevention from forwarding duplicate packets is an important challenge in such routing protocols. Indeed, such duplications can reduce scalability and efficiency of contention based routing protocols. On the other hand, the prevention method can affect advantages of such routing protocols. In this paper, we proposed 2 new routing protocols by adding 2 new methods to an existing contention based routing protocol to decrease overhead of duplications. Simulation results show that overhead decreases significantly while preserving end-to-end delay and delivery ratio in suitable values

    Position-based routing and MAC protocols for wireless ad-hoc networks

    Get PDF
    This thesis presents the Forecasting Routing Technique (FORTEL), a routing protocol for Mobile Ad-Hoc Networks (MANETs) based on the nodes' Location Information. FORTEL stores the nodes' location information in the Location Table (LT) in order to construct routes between the source and the destination nodes. FORTEL follows the source routing strategy, which has rarely been applied in position-based routing. According to the source routing strategy, the end-to-end route is attached to the packet, therefore, the processing cost, in regards to the intermediate nodes that simply relay the packet according to route, is minimized. FORTEL's key mechanisms include: first, the location update scheme, employed to keep the LT entries up-to-date with the network topology. Besides the mobility variation and the constant rate location update schemes applied, a window location update scheme is presented to increase the LT's information accuracy. Second, the switching mechanism, between "Hello" message and location update employed, to reduce the protocol's routing overhead. Third and most important is the route computation mechanism, which is integrated with a topology forecasting technique to construct up-to-date routes between the communication peers, aiming to achieve high delivery rate and increase the protocol robustness against the nodes' movement. FORTEL demonstrates higher performance as compared to other MANET's routing protocols, and it delivers up to 20% more packets than AODV and up to 60 % more than DSR and OLSR, while maintaining low levels of routing overhead and network delay at the same time. The effectiveness of the window update scheme is also discussed, and it proves to increase FORTEL's delivery rate by up to 30% as compared to the other update schemes. A common and frequently occurring phenomenon, in wireless networks, is the Hidden Terminal problem that significantly impacts the communication performance and the efficiency of the routing and MAC protocols. Beaconless routing approach in MANETs, which delivers data packets without prior knowledge of any sort `of information, suffers from packet duplication caused by the hidden nodes during the contention process. Moreover, the throughput of the IEEE MAC protocol decreases dramatically when the hidden terminal problem occurs. RTS/CTS mechanism fails to eliminate the problem and can further degrade the network's performance by introducing additional overhead. To tackle these challenges, this thesis presents two techniques, the Sender Suppression Algorithm and the Location-Aided MAC, where both rely on the nodes' position to eliminate packet duplication in the beaconless routing and improve the performance of the 802.11 MAC respectively. Both schemes are based on the concept of grouping the nodes into zones and assign different time delay to each one. According to the Sender Suppression Algorithm, the sender's forwarding area is divided into three zones, therefore, the local timer, set to define the time that the receiver has to wait before responding to the sender's transmission, is added to the assigned zone delay. Following the first response, the sender interferes and suppresses the receivers with active timer of. On the other hand, the Location-Aided MAC, essentially a hybrid MAC, combines the concepts of time division and carrier sensing. The radio range of the wireless receiver is partitioned into four zones with different zone delays assigned to each zone. Channel access within the zone is purely controlled by CSMA/CA protocol, while it is time-based amongst zones. The effectiveness of the proposed techniques is demonstrated through simulation tests. Location-Aided MAC considerably improves the network's throughput compared to CSMA/CA and RTS/CTS. However, remarkable results come when the proposed technique and the RTS/CTS are combined, which achieves up to 20% more throughput as compared to the standalone RTS/CTS. Finally, the thesis presents a novel link lifetime estimation method for greedy forwarding to compute the link duration between two nodes. Based on a newly introduced Stability-Aware Greedy (SAG) scheme, the proposed method incorporates the destination node in the computation process and thus has a significant advantage over the conventional method, which only considers the information of the nodes composing the link.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Position-based routing and MAC protocols for wireless ad-hoc networks

    Get PDF
    This thesis presents the Forecasting Routing Technique (FORTEL), a routing protocol for Mobile Ad-Hoc Networks (MANETs) based on the nodes' Location Information. FORTEL stores the nodes' location information in the Location Table (LT) in order to construct routes between the source and the destination nodes. FORTEL follows the source routing strategy, which has rarely been applied in position-based routing. According to the source routing strategy, the end-to-end route is attached to the packet, therefore, the processing cost, in regards to the intermediate nodes that simply relay the packet according to route, is minimized. FORTEL's key mechanisms include: first, the location update scheme, employed to keep the LT entries up-to-date with the network topology. Besides the mobility variation and the constant rate location update schemes applied, a window location update scheme is presented to increase the LT's information accuracy. Second, the switching mechanism, between "Hello" message and location update employed, to reduce the protocol's routing overhead. Third and most important is the route computation mechanism, which is integrated with a topology forecasting technique to construct up-to-date routes between the communication peers, aiming to achieve high delivery rate and increase the protocol robustness against the nodes' movement. FORTEL demonstrates higher performance as compared to other MANET's routing protocols, and it delivers up to 20% more packets than AODV and up to 60 % more than DSR and OLSR, while maintaining low levels of routing overhead and network delay at the same time. The effectiveness of the window update scheme is also discussed, and it proves to increase FORTEL's delivery rate by up to 30% as compared to the other update schemes. A common and frequently occurring phenomenon, in wireless networks, is the Hidden Terminal problem that significantly impacts the communication performance and the efficiency of the routing and MAC protocols. Beaconless routing approach in MANETs, which delivers data packets without prior knowledge of any sort `of information, suffers from packet duplication caused by the hidden nodes during the contention process. Moreover, the throughput of the IEEE MAC protocol decreases dramatically when the hidden terminal problem occurs. RTS/CTS mechanism fails to eliminate the problem and can further degrade the network's performance by introducing additional overhead. To tackle these challenges, this thesis presents two techniques, the Sender Suppression Algorithm and the Location-Aided MAC, where both rely on the nodes' position to eliminate packet duplication in the beaconless routing and improve the performance of the 802.11 MAC respectively. Both schemes are based on the concept of grouping the nodes into zones and assign different time delay to each one. According to the Sender Suppression Algorithm, the sender's forwarding area is divided into three zones, therefore, the local timer, set to define the time that the receiver has to wait before responding to the sender's transmission, is added to the assigned zone delay. Following the first response, the sender interferes and suppresses the receivers with active timer of. On the other hand, the Location-Aided MAC, essentially a hybrid MAC, combines the concepts of time division and carrier sensing. The radio range of the wireless receiver is partitioned into four zones with different zone delays assigned to each zone. Channel access within the zone is purely controlled by CSMA/CA protocol, while it is time-based amongst zones. The effectiveness of the proposed techniques is demonstrated through simulation tests. Location-Aided MAC considerably improves the network's throughput compared to CSMA/CA and RTS/CTS. However, remarkable results come when the proposed technique and the RTS/CTS are combined, which achieves up to 20% more throughput as compared to the standalone RTS/CTS. Finally, the thesis presents a novel link lifetime estimation method for greedy forwarding to compute the link duration between two nodes. Based on a newly introduced Stability-Aware Greedy (SAG) scheme, the proposed method incorporates the destination node in the computation process and thus has a significant advantage over the conventional method, which only considers the information of the nodes composing the link.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore