731 research outputs found

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    Algoritmo bioinspirado a redes de robots para la asistencia en operaciones de busqueda y rescate

    Get PDF
    ilustraciones, diagramas, fotografíasThis thesis proposes a bio-inspired algorithm for robot networks assisting in the operations of search and rescue scenarios. We consider ants as social animals to study and abstract beha- viors that can be useful in the framework of search and rescue using robots. We consider three main topics to address when using robots to assist rescuers. First, the exploration and mapping of the disaster zones. For this, we consider the mecha- nisms and interactions of ants to explore their environment, look for food, avoid predators, and explore better places to establish a nest. Then, we deploy robots to explore the en- vironment and discourage robots from entering regions other robots have explored using pheromones as markers for the robots. We also abstract the randomness ants use to explore and implement a Q-learning algorithm that allows robots to explore unvisited regions. Second, the navigation and victim detection. Once the environment has been explored, we vi use Reynolds rules to allow the navigation of robots to create cohesion, attraction to target goals, and repulsion to obstacles and inter-agent collisions. Then, we use a neural network to determine whether what robots are detecting is a victim. Lastly, we use a consensus-like approach to classify victims or no victims based on distributed information. Lastly, ants have been famous for carrying loads that surpass their size and payload capacity by cooperating. We consider quadrotors to carry loads cooperatively that can be medical supplies or victims in search and rescue (Texto tomado de la fuente)Esta tesis propone un algoritmo bioinspirado para redes de robots que asisten en las operaciones de escenarios de busqueda y rescate. Consideramos a las hormigas como animales sociales para estudiar y abstraer comportamientos que pueden ser utiles en el marco de la busqueda y rescate mediante robots. Consideramos tres temas principales para abordar cuando se utilizan robots para ayudar a los rescatistas. Primero, la exploracion y mapeo de las zonas de desastre. Para esto, consideramos los mecanismos e interacciones de las hormigas para explorar su entorno, buscar comida, evitar depredadores y explorar mejores lugares para establecer un nido. Luego, desplegamos robots para explorar el entorno y disuadimos a los robots de ingresar a regiones que otros robots han explorado usando feromonas como marcadores para los robots. Tambien abstraemos la aleatoriedad que usan las hormigas para explorar e implementar un algoritmo Q-learning que permite a los robots explorar regiones no visitadas. En segundo lugar, la navegacion y deteccion de vıctimas. Una vez que se ha explorado el entorno, usamos las reglas de Reynolds para permitir que la navegacion de los robots cree cohesion, atraccion hacia los objetivos y repulsion hacia los obstaculos y las colisiones entre agentes. Luego, usamos una red neuronal para determinar si lo que detectan los robots es una vıctima. Por ultimo, utilizamos un enfoque de consenso para clasificar a las vıctimas o no vıctimas en funcion de la informacion distribuida. Por ultimo, las hormigas han sido famosas por llevar cargas que superan su tamano y capacidad de carga al cooperar. Consideramos quadrotors para transportar cargas de manera cooperativa que pueden ser suministros medicos o vıctimas en busqueda y rescate.MaestríaMagister en Ingenieria - Automatizacion IndustrialRobotic

    Adaptive Fault-Tolerant Formation Control for Quadrotors with Actuator Faults

    Get PDF
    In this paper, we investigate the fault-tolerant formation control of a group of quadrotor aircrafts with a leader. Continuous fault-tolerant formation control protocol is constructed by using adaptive updating mechanism and boundary layer theory to compensate actuator fault. Results show that the desired formation pattern and trajectory under actuator fault can be achieved using the proposed fault-tolerant formation control. A simulation is conducted to illustrate the effectiveness of the method

    Fault-tolerant formation driving mechanism designed for heterogeneous MAVs-UGVs groups

    Get PDF
    A fault-tolerant method for stabilization and navigation of 3D heterogeneous formations is proposed in this paper. The presented Model Predictive Control (MPC) based approach enables to deploy compact formations of closely cooperating autonomous aerial and ground robots in surveillance scenarios without the necessity of a precise external localization. Instead, the proposed method relies on a top-view visual relative localization provided by the micro aerial vehicles flying above the ground robots and on a simple yet stable visual based navigation using images from an onboard monocular camera. The MPC based schema together with a fault detection and recovery mechanism provide a robust solution applicable in complex environments with static and dynamic obstacles. The core of the proposed leader-follower based formation driving method consists in a representation of the entire 3D formation as a convex hull projected along a desired path that has to be followed by the group. Such an approach provides non-collision solution and respects requirements of the direct visibility between the team members. The uninterrupted visibility is crucial for the employed top-view localization and therefore for the stabilization of the group. The proposed formation driving method and the fault recovery mechanisms are verified by simulations and hardware experiments presented in the paper

    Tracking Control of Quadrotors

    Get PDF
    In this thesis, the tracking control problem of a 6 DOF quadrotor is considered, and different control method is proposed considering optimal control, parametric and nonparametric uncertainty, input saturation, and distributed formation control. An optimal control approach is developed for single quadrotor tracking by minimizing the cost function. For uncertainties of the dynamic system, a robust adaptive tracking controller is proposed with the special structure of the dynamics of the system. Considering the uncertainty and input constraints, a robust adaptive saturation controller is proposed with the aid of an auxiliary compensated system. Decentralized formation control method for quadrotors is presented using a leader-follower scheme using proposed optimal control method. Virtual leader is employed to drive the quadrotors to their desired formation and ultimately track the trajectory defined by the virtual leader. Sliding mode estimators have been implemented to estimate the states of the virtual leader. The control method is designed considering switching communication topologies among the quadrotors. Simulation results are provided to show the effectiveness of the proposed approaches
    corecore