16,002 research outputs found

    BitDew: A Programmable Environment for Large-Scale Data Management and Distribution

    Get PDF
    Desktop Grids use the computing, network and storage resources from idle desktop PC's distributed over multiple-LAN's or the Internet to compute a large variety of resource-demanding distributed applications. While these applications need to access, compute, store and circulate large volumes of data, little attention has been paid to data management in such large-scale, dynamic, heterogeneous, volatile and highly distributed Grids. In most cases, data management relies on ad-hoc solutions, and providing general approach is still a challenging issue. To address this problem, we propose the BitDew framework, a programmable environment for automatic and transparent data management on computational Desktop Grids. This paper describes the BitDew programming interface, its architecture, and the performance evaluation of its runtime components. BitDew relies on a specific set of meta-data to drive key data management operations, namely life cycle, distribution, placement, replication and fault-tolerance with a high level of abstraction. The Bitdew runtime environment is a flexible distributed service architecture that integrates modular P2P components such as DHT's for a distributed data catalog and collaborative transport protocols for data distribution. Through several examples, we describe how application programmers and Bitdew users can exploit Bitdew's features. The performance evaluation demonstrates that the high level of abstraction and transparency is obtained with a reasonable overhead, while offering the benefit of scalability, performance and fault tolerance with little programming cost

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    Adaptive scheduling in grids

    Get PDF

    Scalable dimensioning of resilient Lambda Grids

    Get PDF
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit
    • …
    corecore