62,985 research outputs found

    Frequency Regulation with Heterogeneous Energy Resources: A Realization using Distributed Control

    Full text link
    This paper presents one of the first real-life demonstrations of coordinated and distributed resource control for secondary frequency response in a power distribution grid. We conduct a series of tests with up to 69 heterogeneous active devices consisting of air handling units, unidirectional and bidirectional electric vehicle charging stations, a battery energy storage system, and 107 passive devices consisting of building loads and photovoltaic generators. Actuation commands for the test devices are obtained by solving an economic dispatch problem at every regulation instant using distributed ratio-consensus, primal-dual, and Newton-like algorithms. The distributed control setup consists of a set of Raspberry Pi end-points exchanging messages via an ethernet switch. The problem formulation minimizes the sum of device costs while tracking the setpoints provided by the system operator. We demonstrate accurate and fast real-time distributed computation of the optimization solution and effective tracking of the regulation signal by measuring physical device outputs over 40-minute time horizons. We also perform an economic benefit analysis which confirms eligibility to participate in an ancillary services market and demonstrates up to $53K of potential annual revenue for the selected population of devices

    GraphH: High Performance Big Graph Analytics in Small Clusters

    Full text link
    It is common for real-world applications to analyze big graphs using distributed graph processing systems. Popular in-memory systems require an enormous amount of resources to handle big graphs. While several out-of-core approaches have been proposed for processing big graphs on disk, the high disk I/O overhead could significantly reduce performance. In this paper, we propose GraphH to enable high-performance big graph analytics in small clusters. Specifically, we design a two-stage graph partition scheme to evenly divide the input graph into partitions, and propose a GAB (Gather-Apply-Broadcast) computation model to make each worker process a partition in memory at a time. We use an edge cache mechanism to reduce the disk I/O overhead, and design a hybrid strategy to improve the communication performance. GraphH can efficiently process big graphs in small clusters or even a single commodity server. Extensive evaluations have shown that GraphH could be up to 7.8x faster compared to popular in-memory systems, such as Pregel+ and PowerGraph when processing generic graphs, and more than 100x faster than recently proposed out-of-core systems, such as GraphD and Chaos when processing big graphs

    DAMNED: A Distributed and Multithreaded Neural Event-Driven simulation framework

    Full text link
    In a Spiking Neural Networks (SNN), spike emissions are sparsely and irregularly distributed both in time and in the network architecture. Since a current feature of SNNs is a low average activity, efficient implementations of SNNs are usually based on an Event-Driven Simulation (EDS). On the other hand, simulations of large scale neural networks can take advantage of distributing the neurons on a set of processors (either workstation cluster or parallel computer). This article presents DAMNED, a large scale SNN simulation framework able to gather the benefits of EDS and parallel computing. Two levels of parallelism are combined: Distributed mapping of the neural topology, at the network level, and local multithreaded allocation of resources for simultaneous processing of events, at the neuron level. Based on the causality of events, a distributed solution is proposed for solving the complex problem of scheduling without synchronization barrier.Comment: 6 page

    Scalable and Secure Aggregation in Distributed Networks

    Full text link
    We consider the problem of computing an aggregation function in a \emph{secure} and \emph{scalable} way. Whereas previous distributed solutions with similar security guarantees have a communication cost of O(n3)O(n^3), we present a distributed protocol that requires only a communication complexity of O(nlog⁥3n)O(n\log^3 n), which we prove is near-optimal. Our protocol ensures perfect security against a computationally-bounded adversary, tolerates (1/2−ϔ)n(1/2-\epsilon)n malicious nodes for any constant 1/2>Ï”>01/2 > \epsilon > 0 (not depending on nn), and outputs the exact value of the aggregated function with high probability
    • 

    corecore