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Message Lower Bounds via Efficient Network Synchronization∗

Gopal Pandurangan† David Peleg‡ Michele Scquizzato§

Abstract

We present a uniform approach to derive message-time tradeoffs and message lower bounds for
synchronous distributed computations using results from communication complexity theory.

Since the models used in the classical theory of communication complexity are inherently asyn-
chronous, lower bounds do not directly apply in a synchronous setting. To address this issue, we show
a general result called Synchronous Simulation Theorem (SST) which allows to obtain message lower
bounds for synchronous distributed computations by leveraging lower bounds on communication com-
plexity. The SST is a by-product of a new efficient synchronizer for complete networks, called σ, which
has simulation overheads that are only logarithmic in the number of synchronous rounds with respect to
both time and message complexity, even in networks with limited bandwidth. Synchronizer σ is particu-
larly efficient in simulating synchronous algorithms which employ silence, a situation that occurs when
in some round no processor sends any message. In particular, a curious property of this synchronizer,
which sets it apart from its predecessors, is that it is time-compressing, and hence in some cases it may
result in a simulation that is faster than the original execution.

While the SST gives near-optimal message lower bounds up to large values of the number of allowed
synchronous rounds r (usually polynomial in the size of the input), it fails to provide meaningful bounds
when the synchronous algorithm to be simulated may comprise a very large number of rounds. To
complement the bounds provided by the SST, we then derive message lower bounds for the synchronous
message-passing model that are unconditional, that is, independent of r, by establishing novel lower
bounds for multi-party synchronous communication complexity.

We apply our approach to show (almost) tight message-time tradeoffs and message lower bounds for
several fundamental problems in the synchronous message-passing model of distributed computation.
These include sorting, matrix multiplication, and several graph problems. All these lower bounds hold
for any distributed algorithms, including randomized Monte Carlo algorithms.
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synchronizers
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1 Introduction

Message complexity, which refers to the total number of messages exchanged during the execution of a
distributed algorithm, is one of the two fundamental complexity measures used to evaluate the performance
of algorithms in distributed computing [46]. Although time complexity is the most important measure in
practice, message complexity is also significant. In fact, in practice the performance of the underlying com-
munication subsystem is influenced by the load on the message queues at the various sites, especially when
many distributed algorithms run simultaneously. Consequently, as discussed e.g. in [22], optimizing the
message (as well as the time) complexity in some models for distributed computing has direct consequences
on the time complexity in other models. Moreover, message complexity has also a considerable impact on
the auxiliary resources used by an algorithm, such as energy. This is especially crucial in contexts, such as
wireless sensor networks, where processors are powered by batteries with limited capacity. Besides, from
a physical standpoint, it can be argued that energy leads to more stringent constraints than time does since,
according to a popular quote by Peter M. Kogge, “You can hide the latency, but you can’t hide the energy.”

Investigating the message complexity of distributed computations is therefore a fundamental task. In par-
ticular, proving lower bounds on the message complexity has been a major focus in the theory of distributed
computing for decades (see, e.g., [36, 50, 46, 52]). Tight message lower bounds for several fundamental
problems such as leader election [28, 2, 30, 31], broadcast [5, 30], selection [17], sorting [35, 58], spanning
trees [27, 36, 52, 30], minimum spanning trees [28, 52, 36, 30, 22, 43], graph connectivity [22], maximal
independent set [40], and triangle enumeration [45] have been derived in various models for distributed
computing.

One of the most important distinctions among message passing systems is whether the mode of commu-
nication is synchronous or asynchronous. In this paper we focus on proving lower bounds on the message
complexity of distributed algorithms in the synchronous communication setting. Most of the synchronous
message lower bounds mentioned above (e.g., [27, 28, 5, 30, 22]) use ad hoc (typically combinatorial) ar-
guments, which usually apply only to the problem at hand. In this paper, on the other hand, the approach
is to use communication complexity [29] as a uniform tool to derive message lower bounds for a variety of
problems in the synchronous setting.

Communication complexity, originally introduced by Yao [57], is a subfield of complexity theory with
numerous applications in several markedly different branches of computer science (see, e.g., [29] for a
comprehensive treatment). In the basic two-party model, there are two distinct parties, usually referred to
as Alice and Bob, each of whom holds an n-bit input, say x and y. Neither knows the other’s input, and
they wish to collaboratively compute a function f(x, y) by following an agreed-upon protocol. The cost of
this protocol is the number of bits communicated by the two players for the worst-case choice of inputs x
and y. It is important to notice that this simple model is inherently asynchronous, since it does not provide
the two parties with a common clock. Synchronicity, however, makes the model subtly different, in a way
highlighted by the following simple example (see, e.g., [51]). If equipped with a common clock, the two
parties could agree upon a protocol in which time-coding is used to convey information: for instance, an
n-bit message can be sent from one party to the other by encoding it with a single bit sent in one of 2n

possible synchronous rounds (keeping silent throughout all the other rounds). Hence, in a synchronous
setting, any problem can be solved (deterministically) with communication complexity of one bit. This is
a big difference compared to the classical (asynchronous) model! Likewise, as observed in [22], k − 1
bits of communication suffice to solve any problem in a complete network of k parties that initially agree
upon a leader (e.g., the node with smallest identifier) to whom they each send the bit that encodes their own
input. However, the low message complexity comes at the price of a high number of synchronous rounds,
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which has to be at least exponential in the size of the input that has to be encoded, as a single bit within
time t can encode at most log t bits of information. The above observation raises some intriguing questions:
if one allows only a small number of rounds (e.g., polynomial in n) can such a low message complexity
be achieved? More generally, how can one show message lower bounds in the synchronous distributed
computing model vis-a-vis the time (round) complexity? This paper tries to answer these questions in a
general and comprehensive way.

As discussed before, in the synchronous setting, for message lower bounds it does not suffice to appeal
directly to lower bounds from communication complexity theory. This is unlike the situation when we are
interested in showing time lower bounds. In particular, the Simulation Theorem of [11], which is useful to
show time lower bounds, does not apply if we want to show message lower bounds in a synchronous setting.
Informally speaking, the reason is that “silence” (i.e., when in some round no party sends any message) does
not help to save time, as it consumes rounds anyway.

Our approach is based on the design of a new and efficient synchronizer that can efficiently simulate
synchronous algorithms that use (a lot of) silence, unlike previous synchronizers. Recall that a synchronizer
ν transforms an algorithm S designed for a synchronous system into an algorithm A = ν(S) that can
be executed on an asynchronous system. The goal is to keep TA and CA, the time and communication
complexities of the resulting asynchronous algorithmA, respectively, close to TS andCS , the corresponding
complexities of the original synchronous algorithm S. The synchronizers appearing in the literature follow
a methodology (described, e.g., in [46]) which resulted in bounding the complexities TA and CA of the
asynchronous algorithm A for every input instance I as

TA(I) ≤ Tinit(ν) + ΨT (ν) · TS(I),

CA(I) ≤ Cinit(ν) + CS(I) + ΨC(ν) · TS(I),

where ΨT (ν) (resp., ΨC(ν)) is the time (resp., communication) overhead coefficient of the synchronizer ν,
and Tinit(ν) (resp., Cinit(ν)) is the time (resp., communication) initialization cost. In particular, the early
synchronizers, historically named α [4], β [4], γ [4], and δ [48] (see also [46]), handled each synchronous
round separately, and incurred a communication overhead of at leastO(k) bits per synchronous round, where
k is the number of processors in the system. The synchronizer µ of [6] remedies this limitation by taking
a more global approach, and its time and communication overheads ΨT (µ) and ΨC(µ) are both O(log3 k),
which is at most a polylogarithmic factor away from optimal under the described methodology.

Note, however, that the dependency of the asynchronous communication complexity CA(I) on the
synchronous time complexity TS(I) might be problematic in situations where the synchronous algorithm
takes advantage of synchronicity in order to exploit silence, using time-coding to convey information while
transmitting fewer messages (e.g., see [22, 24]). Such an algorithm, typically having low communication
complexity but high time complexity, translates into an asynchronous algorithm with high time and com-
munication complexities. In this situation it is preferable that the asynchronous communication complexity
CA(I) be a function of only the communication complexity CS(I), and not of the time complexity TS(I)
(provided that the overhead coefficient ΨC(ν) is a slow-growing function of TS(I)). Hence, in this situation
we may prefer a simulation methodology that results in a communication dependency of the form

CA(I) ≤ Cinit(ν) + ΨC(ν) · CS(I),

and where ΨC(ν) is a slow-growing function of the number of rounds TS(I) of the synchronous algorithm.
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1.1 Our Contributions

We present a uniform approach to derive message lower bounds for synchronous distributed computations
by leveraging results from the theory of communication complexity. In this sense, this can be seen a com-
panion paper of [11], which leverages the connection between communication complexity and distributed
computing to prove lower bounds on the time complexity of synchronous distributed computations.

A New and Efficient Synchronizer. Our approach, developed in Section 3, is based on the design of
a new and efficient synchronizer for complete networks, which we call synchronizer σ,1 and which is of
independent interest. The new attractive feature of synchronizer σ, compared to existing ones, is that it is
time-compressing. To define this property, we say that a synchronous round is active (or communicative)
when at least one node of the network sends a message, and inactive (or quiet) otherwise. Synchronizer σ
compresses the execution time of the simulation by discarding the inactive rounds, and remaining only with
the active ones. This is in sharp contrast to all previous synchronizers, whereby every single round of the
synchronous execution is simulated in the asynchronous network.

The distinction between active and inactive rounds is achieved through the concept of tentative time, a
value that indicates, for each node, the next synchronous round on which that node plans to send a message.
These values are maintained by one designated node of the network, which orchestrates the whole simulation
by determining the next synchronous round to be simulated and by coordinating the start of such a round by
sending the corresponding announcements only to those nodes that will be active in that round. These values
are maintained and updated throughout the whole simulation, and cause an overhead of at most O(log TS)
bits for each message sent in the synchronous execution.

Table 1 compares the complexities of various synchronizers when used for complete networks.

Synchronizer Time Complexity TA Message Complexity CA
α [4] O(TS) O(k2) +O(CS) +O(TS k

2)
β [4] O(k) +O(TS) O(k log k) +O(CS) +O(TS k)
µ [6] O(k log k) +O(TS log3 k) O(k log k) +O(CS) +O(TS log3 k)

σ [this paper] O(T cS logk TS) O(CS logk TS)

Table 1: Comparison among different synchronizers for k-node complete networks. The message size is
assumed to be O(log k) bits, and CA is expressed in number of messages. T cS denotes the number of active
synchronous rounds. (Note that on a complete network, synchronizers γ [4] and δ [48] are out-performed
by β, hence their complexities are omitted from this table.)

Synchronous Simulation Theorem. As a by-product of synchronizer σ we have the Synchronous Simu-
lation Theorem (SST), which shows how message lower bounds for synchronous distributed computations
can be derived by leveraging communication complexity lower bounds for the asynchronous model. Specif-
ically, the SST provides a tradeoff between the communication complexity of a synchronous computation
and the maximum number of synchronous rounds TS allowed to the computation. This tradeoff reveals that
communication complexity in the synchronous model can differ from the communication complexity in its
asynchronous counterpart by a factor at most logarithmic in TS , and thus that a communication lower bound
for the asynchronous model can be applied, modulo such a factor, to its synchronous counterpart.

1We use σ as it is the first letter of the Greek word σιωπή, which means “silence”.
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Application: Message-Time Tradeoffs. In Section 4 we apply the SST to obtain message-time trade-
offs for several fundamental problems, such as sorting, Boolean matrix multiplication, graph connectivity,
diameter computation, and approximate maximum matching. These results assume that the underlying com-
munication network is complete, a case of interest in many settings (e.g., [34, 25]). Most of the resulting
message lower bounds are tight (up to factors polylogarithmic in the input size of the problem) when the
number of synchronous rounds TS is at most polynomial in the input size. All these lower bounds hold even
for randomized algorithms whose output may be incorrect with a small constant probability.

Unconditional Lower Bounds. While the SST gives essentially tight communication lower bounds up
to large values of TS , thees lower bounds vanish for larger values of TS . To complement the bounds pro-
vided by the SST, in Section 5 we derive message lower bounds in the synchronous message-passing model
which are unconditional, that is, independent of time, by establishing novel lower bounds for multi-party
synchronous communication complexity. These are all of the form Ω̃(k),2 Resorting to a multi-party case,
as opposed to two-party, is crucial since, as observed earlier, two-party problems can be solved, exploiting
clocks, with only one bit of communication.

1.2 Further Related Work

Peleg and Rubinovich [47] were the first to derive time lower bounds in a synchronous distributed setting by
applying communication complexity techniques (see, e.g., [29]). Specifically, by applying such techniques
to a new suitably constructed family of graphs, they proved a near-tight lower bound on the time complexity
of distributed minimum spanning tree construction in the CONGEST model. Elkin [15] extended this result
to approximation algorithms. The same technique was then used to prove a tight lower bound for minimum
spanning tree verification [26]. Das Sarma et al. [11] explored this connection between the theory of com-
munication complexity and distributed computing further by presenting almost tight time lower bounds for
a long list of problems, including inapproximability results. Leveraging communication complexity lower
bounds to derive time lower bounds for synchronous distributed computations has now become a standard
technique, and has been used in a number of subsequent papers, see e.g. [38, 19, 21, 14, 25, 42, 44, 8, 1], as
well as [39] and references therein.

Researchers have also investigated how to leverage results in communication complexity to establish
lower bounds on the message complexity of distributed computations. For example, Tiwari [53] shows
communication complexity lower bounds for deterministic computations over networks with some specific
topologies. Woodruff and Zhang [55] study the message complexity of several graph and statistical problems
in complete networks. Their lower bounds are derived through a common approach that reduces those
problems from a new meta-problem whose communication complexity is established. However, the models
considered in these two papers are inherently asynchronous, and therefore these lower bounds do not apply
when synchronized discrete clocks are additionally assumed.

To the best of our knowledge, the first rigorous connection between the classical communication com-
plexity theory and synchronized communication complexity has been established by Impagliazzo and Williams [24],
who consider the natural extension of the standard two-party communication complexity model where the
two parties are equipped with synchronized clocks. They show that for deterministic protocols these two
models are equivalent up to a factor roughly logarithmic in the number of synchronous rounds. Specifically,
they show that the communication complexity of deterministic protocols can be reduced by such a factor in

2Throughout this paper, notation Ω̃(·) hides polylogarithmic factors in the input size |I| and in k, i.e., Ω̃(f(|I|, k)) denotes
Ω(f(|I|, k)/(polylog|I| polylog k)).
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the synchronous model, but no more than such a factor. The latter result follows from a general simulation
of a synchronous protocol in the asynchronous model which shares some ideas with the simulation of this
paper (which, however, is more involved since it involves k parties instead of just two.) Ellen et al. [16]
claim simulation results among models for multi-party communication complexity. Their results are similar
to our synchronous simulation theorem. However, their simulations do not consider time, whereas ours is
time-efficient as well.

Interactive communication in a model where parties are allowed to remain silent is investigated in [12],
which considers the communication complexity of computing symmetric functions in the multiparty setting.
Other examples of distributed algorithms that make effective use of synchrony to reduce communication can
be found, e.g., in [10, 18, 33, 30].

2 Preliminaries: Models, Assumptions, and Notation

The message-passing model is one of the fundamental models in the theory of distributed computing, and
many variants thereof have been studied. It consists of a complete network of k nodes, represented as
a complete undirected simple graph where nodes correspond to the processors of the network and edges
represent bidirectional communication channels. Each node initially holds some portion of the input instance
I, and this portion is known only to itself and not to the other nodes. All nodes are initially awake, and
simultaneously start executing the algorithm. Each node can communicate directly with any other node by
exchanging messages. The goal is to jointly solve some given computational problem.

Nodes have a unique identifier of O(log k) bits. Before the computation starts, each node knows its own
identifier and also the identifiers of its neighbors. (This is usually referred to as the KT1 assumption [46].)
Each link incident to a node has a unique representation in that node. All messages received at a node are
stamped with the identification of the link through which they arrived. By the number of its incident edges,
every node knows the value of k before the computation starts. All the local computation performed by the
processors of the network happens instantaneously, and each processor has an unbounded amount of local
memory. It is also assumed that both the computing entities and the communication links are fault-free.

A key distinction among message-passing systems is whether the mode of communication is syn-
chronous or asynchronous. In the synchronous mode of communication, a global clock is connected to
all the nodes of the network. The time interval between two consecutive pulses of the clock is called a
round. The computation proceeds in rounds, as follows. At the beginning of each synchronous round, each
node sends (possibly different) messages to its neighbors. Each node then receives all the messages sent to
it in that round, and performs some local computation, which will determine what messages to send in the
next round. In the asynchronous mode of communication, there is no global clock. Messages over a link
incur finite but arbitrary delays (see, e.g., [20]). This can be modeled as each node of the network having
a queue where to place outgoing messages, with an adversarial global scheduler responsible of dequeuing
messages, which are then instantly delivered to their respective recipients. Communication complexity, the
subfield of complexity theory introduced by Yao [57], studies the asynchronous message-passing model.

We now formally define the complexity measures studied in this paper. Most of these definitions can
be found in [29]. The communication complexity of a computation is the total number of bits exchanged
across all the links of the network during the computation (or, equivalently, the total number of bits sent
by all parties). The communication complexity of a distributed algorithm A is the maximum number of
bits exchanged during the execution of A over all possible inputs of a particular size. The communication
complexity of a problem Π is the minimum communication complexity of any algorithm that solves Π.
Message complexity refers to the total number of messages exchanged, where the message size is bounded
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by some value B of bits. Clearly, a lower bound on the communication complexity becomes a valid lower
bound on the message complexity when divided by B.

In this paper we are interested in lower bounds for Monte Carlo distributed algorithms. A Monte Carlo
algorithm is a randomized algorithm whose output may be incorrect with some probability. Formally, algo-
rithm A solves a problem Π with ε-error if, for every input I , A outputs Π(I) with probability at least 1− ε,
where the probability is taken only over the random strings of the players. The communication complexity of
an ε-error randomized algorithm A on input I is the maximum number of bits exchanged for any choice of
the random strings of the parties. The communication complexity of an ε-error randomized algorithm A is
the maximum, over all possible inputs I , of the communication complexity ofA of input I . The randomized
ε-error communication complexity of a problem Π is the minimum communication complexity of any ε-
error randomized algorithm that solves Π. In a model with k ≥ 2 parties, this is denoted with Rk,ε(Π). The
same quantity can be defined likewise for a synchronous model, in which case it is denoted with SRk,ε(Π).
Throughout the paper we assume ε to be a small constant and therefore, for notational convenience, we will
drop the ε in the notation defined heretofore.

We say that a randomized distributed algorithm uses a public coin if all parties have access to an infinitely
long common random string. In this paper we are interested in lower bounds for public-coin randomized
distributed algorithms. Clearly, lower bounds of this kind also hold for private-coin algorithms, in which
parties do not share a common random string, since allowing a public coin only gives more power to the
algorithms.

Another complexity measure of interest in distributed computing is the time complexity. In the syn-
chronous mode of communication, it is defined as the (worst-case) number of synchronous rounds until all
the required outputs are produced, or until the processes all halt. It is additionally referred to as round com-
plexity. Following [11], we define the randomized r-round ε-error communication complexity of a problem
Π in a synchronous model to be the minimum communication complexity of any algorithm that solves Π
with error probability ε when it runs in at most r rounds.3 We denote this quantity with SRk,ε,r(Π). In the
asynchronous case, the time complexity of a computation is the (worst-case) number of time units that it
comprises, assuming that each message incurs a delay of at most one time unit [46, Definition 2.2.2]. Thus,
in arguing about time complexity, a message is allowed to traverse an edge in any fraction of the time unit.
This assumption is used only for the purpose of time complexity analysis, and does not imply that there is a
bound on the message transmission delay in asynchronous networks.

Throughout this paper, we shall use interchangeably node, party, or processor to refer to elements of the
network, whereas we will use vertex to refer to a node of the input graph when the problem Π is specified
on a graph.

3 Efficient Network Synchronization and the Synchronous Simulation The-
orem

3.1 The Simulation

We present synchronizer σ, an efficient (deterministic) simulation of a synchronous algorithm S, designed
for a complete network of k nodes, in the corresponding asynchronous counterpart. The main idea under-
lying the simulation is to differentiate between active and inactive synchronous rounds, via the use of the
concept of tentative time, in conjunction with the use of acknowledgments as a method to avoid congestion

3In this paper we interchangeably denote the number of synchronous rounds with TS and r.
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and thus reduce the time overhead in networks whose links have limited bandwidth. All messages are re-
quired to be self-delimiting, i.e., no one is a prefix of another, so that it is possible to uniquely determine
when one message has been sent or received completely.

One of the k nodes is designated to be a coordinator, denoted with C, which organizes and synchronizes
the operations of all the processors.4 Since, by assumption, nodes have initial knowledge of the identity
of their neighbors, the coordinator can be agreed upon (e.g., the node with smallest identifier) before the
simulation begins. The coordinator starts the simulation by sending to each node a message START(1),
instructing them to start the simulation of round 1.

At any given time each node v maintains a tentative time estimate TT(v), defined as the next synchronous
round in which v plans to send a message to one (or more) of its neighbors. This estimate may change at a
later point, i.e., v may send out messages earlier than time TT(v), for example in case v receives a message
from one of its neighbors, prompting it to act. However, assuming no such event happens, v will send its
next message on round TT(v). (In case v currently has no plans to send any messages in the future, it sets
its estimate to TT(v) = ∞.) The coordinator C maintains k local variables, which store, at any given time,
the tentative times of all the nodes of the network.

We now describe the execution of phase t of the simulation, which simulates the actions of the processors
in round t of the execution ξS of algorithm S in the synchronous network. Phase t of the simulation starts
when the coordinator realizes that the current phase, simulating some round t′ where t′ < t, is completed,
in the sense that all messages that were supposed to be sent and received by the processors on round t′ of ξS
were sent and received in the simulation on the asynchronous network. The phase proceeds as follows.

(1) The coordinator C determines the minimum value of TT(v) over all processors v, and sets t to that
value. (In the first phase, the coordinator sets t = 1 directly.) If t =∞ then the simulation is completed and
it is possible to halt. By definition of tentative time, if t > t′+1 then the synchronous rounds t′+1, . . . , t−1
are inactive rounds, that is, in which all processors are silent. Thus, the system conceptually skips all rounds
t′ + 1, . . . , t − 1, and goes straight to simulating round t. Since only the coordinator can detect the halting
condition, it is also responsible for informing the remaining k− 1 nodes by sending, in one time unit, k− 1
additional HALT messages to each of them.

(2) The coordinator (locally) determines the set of active nodes, defined as the set of nodes whose
tentative time is t, that is,

A(t) = {v | TT(v) = t},

and sends to each of them a message START(t) instructing them to start round t. (In the first phase, all
nodes are viewed as active, i.e., A(1) = V ).

(3) Upon the receipt of this message, each active node v sends all the messages it is required by the
synchronous algorithm to send on round t, to the appropriate subsetN (v, t) of its neighbors. This subset of
neighbors is hereafter referred to as v’s clan on round t, and we refer to v itself as the clan leader. We stress
that these messages are sent directly to their destination; they must not be routed from v to its clan via the
coordinator, as this might cause congestion on the links from the coordinator to the members of N (v, t).

(4) Each neighbor w ∈ N (v, t) receiving such a message immediately sends back an acknowledgment
directly to v. Note that receiving a message from v may cause w to want to change its tentative time TT(w).
However, w must wait for now with determining the new value of TT(w), for the following reason. Note
that w may belong to more than one clan. Let Aw(t) ⊆ A(t) denote the set of active nodes which are

4The coordinator should not be confused with the notion of coordinator in the variant of the message-passing model introduced
in [13]. In the latter, (1) the coordinator is an additional party, which has no input at the beginning of the computation, and which
must hold the result of the computation at the end of the computation, and (2) nodes of the network cannot communicate directly
among themselves, and therefore they can communicate only with the coordinator.
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required to send a message to w on round t (namely, the clan leaders to whose clans w belongs). At this
time, w does not know the set Aw(t), and therefore it cannot be certain that no additional messages have
been sent to it from other neighbors on round t. Such messages might cause additional changes in TT(w).

(5) Once an active node v has received acknowledgments from each of its clan members w ∈ N (v, t),
v sends a message SAFE(v, t) to the coordinator C.

(6) Once the coordinator C has received messages SAFE(v, t) from all the active nodes inA(t), it knows
that all the original messages of round t have reached their destinations. What remains is to require all the
nodes that were involved in the above activities (namely, all clan members and leaders) to recalculate their
tentative time estimate. Subsequently, the coordinator C sends out a message ReCalcT to all the active
nodes of A(t) (which are the only ones C knows about directly), and each v ∈ A(t) forwards this message
to its entire clan, namely, its N (v, t) neighbors, as well.

(7) Every clan leader or member x ∈ A(t) ∪
⋃
v∈A(t)N (v, t) now recalculates its new tentative time

estimate TT(x), and sends it directly to the coordinator C. (These messages must not be forwarded from
the clan members to the coordinator via their clan leaders, as this might cause congestion on the links from
the clan leaders to the coordinator.) The coordinator immediately replies each such message by sending an
acknowledgment directly back to x.

(8) Once a (non-active) clan member w has received such an acknowledgment, it sends all its clan
leaders in Aw(t) a message DoneReCalcT. (Note that at this stage, w already knows the set Aw(t) of its
clan leaders—it is precisely the set of nodes from which it received messages in step (3).)

(9) Once an active node v has received an acknowledgment from C as well as messages DoneReCalcT
from every member w ∈ N (v, t) of its clan, it sends the coordinator C a message DoneReCalcT, repre-
senting itself along with all its clan.

(10) Once the coordinator C has received an acknowledgment from every active node, it knows that the
simulation of round t is completed.

3.2 Analysis of Complexity

Theorem 1. Synchronizer σ is a synchronizer for complete networks such that

TA = O

((
1 +

log TS
B

)
T cS

)
, (1)

CA = O(CS log TS), (2)

where T cS is the number of synchronous rounds in which at least one node of the network sends a message,
k is the number of nodes of the network, and B is the message size of the network, in which at most one
message can cross each edge at each time unit.

Proof. For any bit sent in the synchronous execution ξS , the simulation uses dlog2 TSe additional bits to
encode the values of the tentative times, and a constant number of bits for the acknowledgments and for
the special messages START(t), SAFE(v, t), ReCalcT, and DoneReCalcT. Observe, finally, that no
congestion is created by the simulation, meaning that in each synchronous round being simulated each node
sends and receives at most O(1 + dlog2 TSe) bits in addition to any bit sent and received in the synchronous
execution ξS .

Observe that a somewhat surprising consequence of its time-compressing nature is that synchronizer σ
may in certain situations result in a simulation algorithm faster than the original synchronous algorithm.
Specifically, TA can be strictly smaller than TS when the number of synchronous rounds in which no node
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communicates is sufficiently high. (In fact, the time compression may occur even when simulating the
original synchronous algorithm on another synchronous network, in which case the resulting simulation
algorithm may yield faster, albeit more communication-intensive, synchronous executions.)

3.3 The Synchronous Simulation Theorem

Theorem 2 (Synchronous Simulation Theorem (SST)). Let SCCD
k,r(Π) be the r-round communication

complexity of problem Π in the synchronous message-passing complete network model with k nodes, where
D is the initial distribution of the input bits among the nodes. Let CCD′

k′ (Π) be the communication complex-
ity of problem Π in the asynchronous message-passing complete network model with k′ ≤ k nodes where,
given some partition of the nodes of a complete network of size k into sets S1, S2, . . . , Sk′ , D′ is the initial
distribution of the input bits whereby, for each i ∈ {1, 2, . . . , k′}, node i holds all the input bits held by
nodes in Si under the distribution D. Then,

SCCD
k,r(Π) = Ω

(
CCD′

k′ (Π)

1 + log r + d(k − k′)/ke log k

)
.

Proof. We leverage the communication complexity bound for synchronizer σ in Theorem 1. More precisely,
we can use synchronizer σ to simulate any synchronous algorithm for problem Π to obtain an asynchronous
algorithm for Π whose message complexity satisfies Equation (2) of Theorem 1. We first consider the case
when k′ = k. Rearranging Equation (2), and by substituting TS with r, CA with CCD

k (Π), and CS with
SCCD

k (Π), and by setting B = 1 (since (S)CC is expressed in number of bits), we obtain the claimed
lower bound on SCCD

k,r(Π).
Now we consider the case k′ < k. In this case, we need to make a minor modification to the simulation

of Section 3.1: since we do not assume that messages contain the identifiers of sender and receiver, when
the network carrying the simulation has fewer nodes than the network to be simulated, in each message
the identifiers of both the source and the destination of that message (which, by the KT1 assumption of
Section 2, are initially known to the sender of the message) have to be appended to it. This is the sole
alteration needed for the simulation to handle this case. This entails d(k − k′)/ke · 2dlog ke additional bits
to be added to each message. In this case, the communication complexity of synchronizer σ is increased by
a factor of O(d(k − k′)/ke log k). This gives the claimed result.

Observe that CC and SCC can be either both deterministic or both randomized. In the latter case, such
quantities can be plugged in Theorem 2 according to the definition of ε-error r-round algorithm given in
Section 2.

4 Message-Time Tradeoffs for Synchronous Distributed Computations

In this section we apply the Synchronous Simulation Theorem to obtain lower bounds on the communication
complexity of several fundamental problems in the synchronous message-passing model.

4.1 Sorting

We now derive a lower bound on the communication complexity of comparison-based sorting algorithms.
Initially, each of the k parties holds n elements of O(log n) bits each. At the end, the i-th party must hold
the (i− 1)n+ 1, (i− 1)n+ 2, . . . , (in)-th order statistics. We have the following result.
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Theorem 3. For k = Ω(log n), the randomized r-round ε-error communication complexity of sorting in the
synchronous message-passing model with k parties all connected to each other is Ω(nk/ log k log r) bits.

Proof. We use a simple reduction from k-party set disjointness. Given an instance of k-party DISJ(n) =
{Xi = xi,1, xi,2, . . . , xi,n s.t. i ∈ [k] = {1, 2, . . . , k}}, for any of such nk bits xi,j , let I = {(j, xi,j) s.t. i ∈
[k], j ∈ [n]} be the set of nk inputs for the sorting problem. Once these nk pairs are ordered with respect
to the first of the two elements, then X1, X2, . . . , Xk are disjoint if and only if there exists one party i ∈ [k]
whose n output pairs are all (i, 1). Then, with k − 1 additional bits of communication all the k parties get
to know the output to the k-party DISJ problem. For k = Ω(log n), the k-party communication complexity
of DISJ(n) in the coordinator model [13] is Ω(nk) bits [7], and this implies a lower bound of Ω(nk/ log k)
in the classical message passing-model where all nodes can communicate directly with each other [7, 16].
The theorem follows by applying Theorem 2.

This result implies that Lenzen’sO(1)-round sorting algorithm for the Congested Clique model [32] has
optimal message complexity (to within small logarithmic factors).

4.2 Matrix Multiplication

We now consider Boolean matrix multiplication, that is, the problem of multiplying two matrices over the
semiring ({0, 1},∧,∨). We will use the following result [54, Theorem 4]: suppose Alice holds a Boolean
m×nmatrixA, Bob holds a Boolean n×mmatrixB, and the Boolean product of these matrices has at most
z non-zero entries; then the randomized communication complexity of matrix multiplication is Ω̃(n

√
z). To

apply Theorem 2 we then just need to identify a partition of the k parties into two disjoint sets, one initially
holding matrix A and one initially holding matrix B, immediately obtaining the following.

Theorem 4. Let A and B be two Boolean m × n and n × m matrices distributed across k parties in
such a way that no party holds entries from both matrices. The randomized r-round ε-error communication
complexity of Boolean matrix multiplication in the synchronous message-passing model with k parties all
connected to each other is Ω̃(n

√
z/ log rk) bits.

Proof. Since, by assumption, it is possible to identify a partition of the k parties into two disjoint sets, one
initially holding matrix A and one initially holding matrix B, the claim follows by applying Theorem 4
of [54] and Theorem 2.

4.3 Problems on Graphs

In the asynchronous setting, good sources of communication lower bounds for problems on graphs are [55]
and [23]. These papers present nearly-tight lower bounds on the communication complexity of a number of
fundamental graph problems in the asynchronous message-passing model with coordinator [13], assuming
that the input graph is given as edges initially (and adversarially) distributed, possibly with duplication,
among the k parties. We shall seamlessly apply the SST to all of their results, obtaining the following.

Theorem 5. Let G be an undirected graph with n vertices and m edges, and let its edges be initially
distributed, possibly with duplication, among k parties, where Ω(log n) ≤ k ≤ min{n,m}. Then the ran-
domized r-round ε-error communication complexity of the following problems in the synchronous message-
passing model where the k parties are all connected to each other satisfies the following bounds:

• testing cycle-freeness, testing connectivity, testing bipartiteness: Ω(nk/ log2 k log r) bits;
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• testing triangle-freeness: Ω(mk/ log2 k log r) bits;

• diameter computation: Ω(mk/ log k log r) bits;

• α-approximate maximum matching: Ω(α2nk/ log k log r) bits.

Proof. These bounds follow by applying Corollaries 5, 7, 9, 11, Theorem 5 of [55], Theorem 1 of [23],
respectively, and Theorem 2, along with the fact that the message-passing model can be simulated by the
variant with coordinator with an overhead of O(log k) bits [16].

Since all the communication lower bounds in [55, 23] have matching (up to polylogarithmic factors)
upper bounds in the asynchronous message-passing model, and since an upper bound which applies to the
asynchronous model applies also to the synchronous model, it follows that when r is polynomial in the size
of the input all the communication lower bounds in Theorem 5 are tight up to polylogarithmic factors.

We stress that the bounds in Theorem 5 hold under the edge-partitioning assumption, that is, when the
input graph is encoded in edges which are initially distributed among the parties; instead, with the vertex-
partitioning assumption, whereby each vertex of the graph is initially placed at one party along with all its
incident edges, some problems such as connectivity can be solved with only Õ(k+n) bits of communication,
even in the asynchronous setting [55, Remark 3]. We conclude this section by presenting a communication
lower bound for a graph problem under the vertex-partitioning assumption.

Graph Diameter, with Vertex-Partitioning. We consider the problem of determining the diameter of an
n-vertex graph which initially is distributed among the k parties with respect to its vertices, that is, each
party initially stores a subset of the vertices together with all their incident edges. Working in the regime
n = k where at each party corresponds exactly one vertex, Frischknecht et al. [19] show a reduction for this
problem from the 2-party set disjointness problem of size Θ(n2) bits. This implies that the communication
complexity of this problem is Ω(n2) bits in the asynchronous setting. Our SST immediately gives the
following result.

Theorem 6. The randomized r-round ε-error communication complexity of computing the diameter of an
n-vertex graph in the synchronous message-passing model with n parties all connected to each other, with
vertex-partitioning, is Ω(n2/ log rn) bits.

5 Unconditional Message Lower Bounds for Synchronous Distributed Com-
putations

All the lower bounds in Section 4 become vanishing as r increases. Hence it is natural to ask whether
there are problems that can be solved by exchanging, say, only a constant number of bits when a very large
number of rounds is used. In this section we discuss problems for which this cannot happen. Specifically,
we show that Ω̃(k) bits is a lower bound for several important problems in a synchronous complete network
of k nodes, assuming that initially each node knows its own identifier but not the identifiers of its neighbors
(this is usually referred to as the clean network model, or KT0 assumption [46]). This lower bound is
unconditional, that is, it holds irrespective of the number of rounds r of the computation.

When the communication mode is asynchronous, for an algorithm to meaningfully compute a function
on k inputs, its communication complexity must be Ω(k) bits, for otherwise not all the input elements would
be examined. This argument does not extend to the case of synchronous communication, where players can
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convey information by not sending any bits in a given round. In the synchronous case, the key idea to
establish an Ω(k) lower bound is to argue that otherwise, for every input instance, there is always a constant
fraction of the nodes that remain silent during the computation independently of their own input. Hence
these nodes cannot convey any information about their own inputs to the rest of the network.

5.1 Selection

In the distributed selection problem the input is a set of n ≥ k elements, drawn from a totally ordered
domain and initially distributed among the k nodes of a network, and an integer 1 ≤ i ≤ n. The goal is to
return the i-th smallest element in the set.

If the communication mode is asynchronous, it is straightforward to argue that Ω(k) bits must be ex-
changed. Frederickson [17, Theorem 6] presented an adversarial argument to derive a tight Ω(k log(2n/k))
message lower bound for deterministic algorithms. However, these arguments do not extend to the case of
synchronous communication.

To prove a lower bound for randomized ε-error algorithms, we use Yao’s Lemma [56]. We first prove a
bound for deterministic algorithms, showing that any algorithm that does not exchange enough bits fails with
probability at least ε over inputs chosen randomly from a distribution µ. This implies, by Yao’s Lemma,5

that any randomized algorithm with roughly the same communication bound fails on some input in the
support of µ with probability at least ε/2 over the algorithm’s random choices.

We now define the distribution of the inputs. All the possible input elements are integer numbers. Let
x be an integer, and call an integer big if it is greater than x, and small otherwise. Consider the input
distribution µ that chooses index 1 ≤ i ≤ k uniformly at random, and that chooses integer x uniformly at
random assigning, one to each node,

• k random big integers with probability 1/3,

• k random small integers with probability 1/3,

• k/2 random big integers and k/2 random small integers with probability 1/3.

Lemma 1. The expected deterministic 1/24-error communication complexity of selection in the synchronous
message-passing model for input distribution µ is at least k/48 bits.

Proof. Let A be any deterministic algorithm for the distributed selection problem whose expected com-
munication complexity on input distribution µ is less than k/48 bits. Hence the expected communication
complexity of algorithm A on input integers that are half big and half small is less than k/16 bits. In turn,
this implies that there are at least one sixth of all possible inputs from distribution µ which consist of half
big integers and half small integers, and for which the communication complexity of algorithm A is less
than k/8 bits. Therefore, with probability 1/6 there are at least k/4 nodes that initially hold both big and
small integers and that do not send or receive any bit.

Let X be a set of k/4 of such nodes, and let Y be the set of the remaining 3k/4 nodes of the network.
Let U ⊂ Y be a set of k/4 nodes in Y initially holding both big and small integers. By construction, no node
in X sends any bit to any node in Y , and vice-versa. This means that in this case the k nodes of the network
can be divided in two sets,X and Y , both of which contain k/4 nodes that do not send any bit to nodes in the
other set and that initially hold both big and small integers. Hence nodes in X or U do not send anything to
nodes in the other set independently of their input elements, and thus, because of the KT0 assumption, their

5Yao’s Lemma for randomized Monte Carlo algorithms can also be found in [37, Proposition 2.6].
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silence cannot convey any information. Thus, in this case, algorithm A errs with probability at least 1/4.
We conclude that algorithmA errs with probability at least 1/24 on distribution µ. Thus, in the synchronous
message-passing model, the expected communication complexity of any deterministic algorithm for the
selection problem that errs with probability at most 1/24 on input distribution µ is at least k/48 bits.

We can now apply Yao’s Lemma to the distribution µ to obtain a lower bound for randomized Monte
Carlo algorithms.

Theorem 7. The randomized 1/48-error communication complexity of selection in the synchronous message-
passing model is at least k/96 bits.

Proof. The claim follows from Lemma 1 and Yao’s Lemma [56, Theorem 3].

5.2 Graph Problems, with Vertex-Partitioning

To show unconditional lower bounds for graph problems in the vertex-partitioning model, we use a reduction
from a novel multiparty problem, called input-distributed disjointness (ID-DISJ) and defined as follows.

Definition 1. Given k parties, each holding one input bit, partitioned in two distinct subsets S1 = {1, 2, . . . , k/2}
and S2 = {k/2 + 1, k/2 + 2, . . . , k} of k/2 parties each, the input-distributed disjointness function ID-
DISJ(k) is 0 if there exists some index i ∈ {1, 2, . . . , k/2} such that both the input bits held by parties i and
i+ k/2 are 1, and 1 otherwise.

Notice that this problem is, loosely speaking, “in between” the classical 2-party set disjointness and the
k-party set disjointness: as in the latter, there are k distinct parties, and as in the former, the input can be
seen as two vectors of (k/2) bits.

We now prove that the communication complexity of ID-DISJ(k) in the synchronous message-passing
model is Ω(k). As before in this section, we will argue that the expected cost of any deterministic algorithm
over an adversarially chosen distribution µ of inputs is Ω(k), and then apply Yao’s Lemma. The argument
is similar to the one used for the selection problem.

Theorem 8. The randomized 1/16-error communication complexity of ID-DISJ(k) in the synchronous
message-passing model is at least k/32 bits.

Proof. Given any initial partition of the k parties between S1 and S2, the values of the k bits in S1 and S2
(that is, the two k/2-bit vectors associated with S1 and S2) are fixed using the following input distribution µ,
which was first used in [49]. With probability 1/4, the two vectors are chosen uniformly at random subject
to (i) both have exactly k/4 1’s, and (ii) there is exactly one index i ∈ {1, 2, . . . , k/2} such that both party
i and party i + k/2 hold a 1 (hence ID-DISJ = 0); and with probability 3/4, the two vectors are chosen
uniformly at random subject to (i) both have exactly k/4 1’s, and (ii) there is no index i ∈ {1, 2, . . . , k/2}
such that both party i and party i+ k/2 hold a 1 (hence ID-DISJ = 1).

Let A be any deterministic algorithm for ID-DISJ(k) whose expected communication complexity on
input distribution µ is less than k/16 bits. This means that there are at least one half of all possible inputs
from distribution µ for which the communication complexity of algorithmA is less than k/8 bits. Therefore,
since under input distribution µ half of the input bits are 1’s and half are 0’s, with probability 1/2 there are
at least k/4 nodes that do not send or receive any bit and that initially hold half 1’s and half 0’s.

Let X be a set of k/4 of such nodes, and let Y be the set of the remaining 3k/4 nodes of the network.
Let U ⊂ Y be a set of k/4 nodes in Y initially holding half 1’s and half 0’s. By construction, no node in X
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sends any bit to any node in Y , and vice-versa. This means that the k nodes of the network can be divided
in two sets, X and Y , both of which contain k/4 nodes that do not send any bit to nodes in the other set and
that initially hold half 1’s and half 0’s. Hence nodes in X or U do not send anything to nodes in the other set
independently of their input bits, and thus, because of the KT0 assumption, their silence cannot convey any
information. Therefore, in both cases under µ, algorithm A errs with probability at least 1/4. We conclude
that algorithm A errs with probability at least 1/8 on distribution µ. Thus, in the synchronous message-
passing model, the expected communication complexity of any deterministic algorithm for ID-DISJ(k) that
errs with probability at most 1/8 on input distribution µ is at least k/16 bits.

The claim then follows by applying Yao’s Lemma [56, Theorem 3] to the distribution µ.

In the rest of this section we assume k = n, that is each party is assigned exactly one vertex, along with
all its incident edges.

5.2.1 Connectivity

We now leverage Theorem 8 to show an Ω(n) lower bound for graph connectivity, and thus for all the graph
problems that can be reduced from it.

Theorem 9. The randomized ε-error communication complexity of graph connectivity in the synchronous
message-passing model, with vertex-partitioning, is Ω(n) bits.

Proof. We reduce the connectivity problem from ID-DISJ, as follows.6 Given a generic instance of ID-
DISJ(n/2), denoted S1 = {s1, s2, . . . , sn/4} and S2 = {t1, t2, . . . , tn/4}, with party si holding bit xi
and party ti holding bit yi, we shall define the n-vertex graph G as shown in Figure 1, where each vertex
corresponds to a distinct party, and parties si’s and ti’s hold the bit associated with the instance of ID-
DISJ(n/2). For any i ∈ [n/4] there is an edge between si and ui (resp., between ti and vi) if and only if
xi = 0 (resp., yi = 0). Additionally, there is an edge between sn/4 and tn/4, and for every i ∈ [n/4] there
is an edge between ui and vi.

The key property of G is that it is connected if and only if ID-DISJ(n/2) = 1. Parties si’s and ti’s
simulate the distributed algorithm for their respective nodes. Then the claim follows from Theorem 8.

5.2.2 Diameter

Here we consider the problem of determining the diameter of an unweighted graph in the synchronous
message-passing model, where the vertices of the graph are initially partitioned across the parties. We show
that determining a (10/9− δ)-approximation of the diameter requires Ω(n/ log n) bits of communication.

Theorem 10. For any constant δ > 0, the randomized ε-error communication complexity of comput-
ing a (10/9 − δ)-approximation of the diameter in the synchronous message-passing model, with vertex-
partitioning, is Ω(n/ log n) bits.

Proof. We shall reduce the task of computing the diameter of a given graph from ID-DISJ, as follows.
Assume, without loss of generality, that n/4 is a power of two. Given a generic instance of ID-DISJ(n/2),
denoted S1 = {s1, s2, . . . , sn/4} and S2 = {t1, t2, . . . , tn/4}, with party si holding bit xi and party ti
holding bit yi, we shall define a graph similar to the one in Figure 1, with the following changes. All the
edges connecting the si’s nodes with each other and the ti’s nodes with each other are removed. A complete

6This reduction is inspired by the reduction from 2-party set disjointness to connectivity in [25].
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Figure 1: The reduction used in the proof of Theorem 9. Dashed edges represent missing edges.

binary tree with the si’s as leaf nodes is added. Observe that the height of this binary tree is ` = log2(n/4),
and thus any node si is always reachable from any other node sj through a path of length at most 2`. The
same is done on the t side of the graph. If xi = 0 then an edge connecting si to ui is added; similarly if
yi = 0 on the t side. Conversely, if xi = 1 then a path of length 5` − 1 that connects si to ui is added;
similarly if yi = 1 on the t side. The resulting graph is depicted in Figure 2. This graph has Ω(n) and
O(n log n) vertices.

The key property of this graph is that its diameter is at most (4` + 3 + 5` − 1)/2 if ID-DISJ(n/2) = 1,
where 4` + 3 + 5` − 1 is the maximum length of a shortest path from one vertex to itself in this case, and
at least 5` otherwise. Parties si’s and ti’s simulate the distributed algorithm for their respective nodes. Then
the claim follows from Theorem 8 by observing that, for any constant δ > 0, (9/10 + δ)5` > 4.5`+ 1.

6 Conclusions

In this paper we have presented a uniform approach to derive lower bounds on the number of messages
exchanged in synchronous distributed computations. The most interesting avenue for further research is to
explore the possibility of deriving tight message lower bounds in the synchronous message-passing model
where the underlying topology is arbitrary. In fact, although the number of messages required by an algo-
rithm in a general network is no better than the number of messages required by the same computation on
a network with complete interconnection (a fact that makes a message lower bound for complete networks
also valid in arbitrary networks), lower bounds for complete networks might not be tight in other topologies
(see, e.g., [9]).

It is easy to show that in an arbitrary network any problem can be solved by exchanging only O(m)
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Figure 2: The reduction used in the proof of Theorem 10.

messages, where m is the number of edges of the network, by building a spanning tree and then sending
all the information to the root of the tree, through its edges, by using time encoding. However, this can
take time at least exponential in the size of the input. It would be interesting to explore such message-
time tradeoffs, at least for some specific networks or classes of networks of practical interest such as core-
periphery networks [3].
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