13 research outputs found

    Static-priority scheduling of sporadic messages on a wireless channel

    Get PDF
    Consider the problem of scheduling sporadic messages with deadlines on a wireless channel. We propose a collision-free medium access control (MAC) protocol which implements static-priority scheduling and present a schedulability analysis technique for the protocol. The MAC protocol allows multiple masters and is fully distributed; it is an adaptation to a wireless channel of the dominance protocol used in the CAN bus. But unlike that protocol, our protocol does not require a node having the ability to receive an incoming bit from the channel while transmitting to the channel

    A virtual time CSMA protocols for hard real-time communication

    Get PDF
    We study virtual time CSMA protocols for hard real time communication systems where messages have explicit deadlines. In this protocol, each node maintains two clocks; a real time clock and a virtual time clock. Whenever a node finds the channel to be idle, it resets its virtual clock to be equal to the real clock. The virtual clock then runs at a higher rate than the real clock. A node transmits a waiting message when the time on the virtual clock is equal to the latest time to send the message. This protocol implements the minimum-laxity-first transmission policy. We compare the performance of our protocol with two baseline protocols both of which transmit messages according to the minimum-laxity-first policy. While both use perfect state information about the nodes and channel, the first is an idealized protocol which obtains this information without paying any cost and the second one pays a reasonable price for it. The simulation study shows that in most cases, our protocol performs close to the first one and better than the second one

    Scalable and efficient data processing in networked control systems

    Get PDF
    Network control systems (NCSs) are spatially distributed systems in which the communication between sensors, actuators and controllers occurs through a shared band-limited digital communication network. However, the use of a shared communication network, in contrast to using several dedicated independent connections, introduces new challenges which are even more acute in large scale and dense networked control systems. In this paper we investigate a recently introduced technique of gathering information from a dense sensor network to be used in networked control applications. Obtaining efficiently an approximate interpolation of the sensed data is exploited as offering a good tradeoff between accuracy in the measurement of the input signals and the delay to the actuation. These are important aspects to take into account for the quality of control. We introduce a variation to the state-of-the-art algorithms which we prove to perform relatively better because it takes into account the changes over time of the input signal within the process of obtaining an approximate interpolation

    Slotted wiDom: schedulability analysis and its experimental validation

    Get PDF
    WiDom is a wireless prioritized medium access control protocol which offers a very large number of priority levels. Hence, it brings the potential to employ non-preemptive static-priority scheduling and schedulability analysis for a wireless channel assuming that the overhead of WiDom is modeled properly. One schedulability analysis for WiDom has already been proposed but recent research has created a new version of WiDom (we call it: Slotted WiDom) with lower overhead and for this version of WiDom no schedulability analysis exists. In this paper we propose a new schedulability analysis for slotted WiDom and extend it to work also for message streams with release jitter. We have performed experiments with an implementation of slotted WiDom on a real-world platform (MicaZ). We find that for each message stream, the maximum observed response time never exceeds the calculated response time and hence this corroborates our belief that our new scheduling theory is applicable in practice

    Using a prioritized medium access control protocol for incrementally obtaining an interpolation of sensor readings

    Get PDF
    This paper addresses sensor network applications which need to obtain an accurate image of physical phenomena and do so with a high sampling rate in both time and space. We present a fast and scalable approach for obtaining an approximate representation of all sensor readings at high sampling rate for quickly reacting to critical events in a physical environment. This approach is an improvement on previous work in that after the new approach has undergone a startup phase then the new approach can use a very small sampling period

    Data gathering approach in dense sensor networks

    Get PDF
    Sensor/actuator networks promised to extend automated monitoring and control into industrial processes. Avionic system is one of the prominent technologies that can highly gain from dense sensor/actuator deployments. An aircraft with smart sensing skin would fulfill the vision of affordability and environmental friendliness properties by reducing the fuel consumption. Achieving these properties is possible by providing an approximate representation of the air flow across the body of the aircraft and suppressing the detected aerodynamic drags. To the best of our knowledge, getting an accurate representation of the physical entity is one of the most significant challenges that still exists with dense sensor/actuator network. This paper offers an efficient way to acquire sensor readings from very large sensor/actuator network that are located in a small area (dense network). It presents LIA algorithm, a Linear Interpolation Algorithm that provides two important contributions. First, it demonstrates the effectiveness of employing a transformation matrix to mimic the environmental behavior. Second, it renders a smart solution for updating the previously defined matrix through a procedure called learning phase. Simulation results reveal that the average relative error in LIA algorithm can be reduced by as much as 60% by exploiting transformation matrix

    Response time analysis of slotted WiDOM in noisy wireless channels

    Get PDF
    International Conference on Emerging Technologies and Factory Automation (ETFA 2015), Industrial Communication Technologies and Systems, Luxembourg, Luxembourg.Timely delivery of critical traffic is a major challenge in industrial applications. The Wireless Dominance (WiDOM) medium access control protocol offers a very large number of priority levels to suit time sensitive application requirements. In particular, assuming that its overhead is properly modeled, WiDOM enables an accurate evaluation of the network response time in the wireless domain, through the power of the schedulability analysis, based on non-preemptive and staticpriority scheduling. Recent research proposed a new version of WiDOM (dubbed Slotted WiDOM), which offers a lower overhead as compared to the original version. In this paper, we propose a new schedulability analysis for Slotted WiDOM and extend it to handle message streams with release jitter. In order to provide a more accurate timing analysis, the effect of transmission faults must be taken into account. Therefore, in our novel analysis we consider the case where messages are transmitted in a realistic wireless channel, affected by noise and interference. Evaluation is performed on a real test-bed and the results from experiments provide a firm validation of our findings

    The integrity of serial data highway systems

    Get PDF
    The Admiralty Surface Weapons Establishment (ASWE) have developed a Local Area Network System. This thesis describes the development of a replacement for this LAN system, based around 16 bit microprocessor hosts, as opposed to the minicomputers currently used. This change gave a substantial reduction in size, and allowed the new system to be installed on a ship and tested under operational conditions. Analysis of the data collected during the tests gave performance information on the ASWE system. The performance of this LAN is compared to that of other leading types of LAN. The design of a portable network controller/ monitor unit is presented, which may be manufactured as a standard controller for the ASWE Serial Highway
    corecore