

Slotted WiDom: Schedulability Analysis and
its Experimental Validation

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-110403

Version:

Date: 04-14-2011

Maryam Vahabi and Björn Andersson

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47138763?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Technical Report HURRAY-TR-110403 Slotted WiDom: Schedulability Analysis and its Experimental Validation

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Slotted WiDom: Schedulability Analysis and its Experimental Validation
Maryam Vahabi and Björn Andersson

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.hurray.isep.ipp.pt

Abstract
WiDom is a wireless prioritized medium access control protocol which offers a very large number of priority levels.
Hence, it brings the potential to employ non-preemptive static-priority scheduling and schedulability analysis for a
wireless channel assuming that the overhead of WiDom is modeled properly. One schedulability analysis for WiDom
has already been proposed but recent research has created a new version of WiDom (we call it: Slotted WiDom) with
lower overhead and for this version of WiDom no schedulability analysis exists. In this paper we propose a new
schedulability analysis for slotted WiDom and extend it to work also for message streams with release jitter. We have
performed experiments with an implementation of slotted WiDom on a real-world platform (MicaZ). We find that for
each message stream, the maximum observed response time never exceeds the calculated response time and hence this
corroborates our belief that our new scheduling theory is applicable in practice.

Slotted WiDom: Schedulability Analysis and its Experimental Validation

Maryam Vahabi1 and Björn Andersson21

1 CISTER Research Unit, Polytechnic Institute of Porto (ISEP/IPP), Porto, Portugal
2 Software Engineering Institute, Carnegie Mellon University, Pittsburgh, USA

mmvi@isep.ipp.pt, baandersson@sei.cmu.edu

Abstract

WiDom is a wireless prioritized medium access
control protocol which offers a very large number of
priority levels. Hence, it brings the potential to employ
non-preemptive static-priority scheduling and
schedulability analysis for a wireless channel assuming
that the overhead of WiDom is modeled properly. One
schedulability analysis for WiDom has already been
proposed but recent research has created a new
version of WiDom (we call it: Slotted WiDom) with
lower overhead and for this version of WiDom no
schedulability analysis exists. In this paper we propose
a new schedulability analysis for slotted WiDom and
extend it to work also for message streams with release
jitter. We have performed experiments with an
implementation of slotted WiDom on a real-world
platform (MicaZ). We find that for each message
stream, the maximum observed response time never
exceeds the calculated response time and hence this
corroborates our belief that our new scheduling theory
is applicable in practice.

1. Introduction

Wireless communication in embedded computer
systems is spreading and it is an enabler for many
future applications such as (i) wireless sensor networks
(WSN) for environmental monitoring, (ii) wire
replacement, particularly in automation,
(iii) collaborative robotics, (iv) inter-vehicle
communication and (v) smart materials.

These applications tend to have real-time
requirements. The scientific community has already
created solutions to fulfill real-time requirements. The
most well-known of these solutions is the Generalized
Rate-Monotonic Analysis which allows designers to
prove in advance that all deadlines are met at run-time.
This analysis is matured into a fully fledged theory for
uniprocessor systems and for a wired communication
channel. However, it is not well-developed for wireless
channels. Creating a rate-monotonic analysis for
wireless channels requires that:

R1. A prioritized Medium Access Control (MAC)
protocol should exist for a wireless channel. This

protocol grants, among all computer nodes that request
to transmit, the right to transmit on the channel to the
computer node with the highest priority message;

R2. The overhead related to the arbitration of the
prioritized MAC protocol grows slowly with the
number of priority levels;

R3. The overhead related to the arbitration of the
prioritized MAC protocol should be low;

R4. A schedulability analysis should exist for the
prioritized MAC protocol.

Unfortunately, the current state of art cannot fulfill
all these requirements. There exists a prioritized MAC
protocol, the Controller Area Network (CAN) [1], for a
wired channel that offers many priority levels (hence
fulfilling R2). A wireless version of CAN bus has been
proposed and dubbed WiDom [2] which provides a
corresponding schedulability analysis as well (hence
fulfilling R1, R2 and R4). The problem with this
protocol was that it imposes a large overhead (missing
R3). On this account, researchers have developed a
new version [3] of WiDom (we call it slotted WiDom)
which offers low overhead (hence fulfilling R1, R2 and
R3) but no schedulability analysis is available for it.
The development of a schedulability analysis for
slotted WiDom would, however, offer us the missing
piece in fulfilling the four requirements above.

In this paper, we present schedulability analysis for
slotted WiDom and extend it to model release jitter.
Previous work [2] has already validated the
schedulability of WiDom by running experiments,
measuring response times of messages and comparing
the maximum measured response time to the calculated
upper bound. But this validation was applicable only to
the schedulability analysis of the previous WiDom—
not-slotted WiDom. In this paper, we experimentally
validate our new schedulability analysis for slotted
WiDom. We run experiments in an office environment
and find that in this environment (i) there are packet
drops but it is not common (packet drop rate is less
than 1%) and (ii) all packets that are not dropped meet
their deadlines.

The remainder of this paper is organized as follows:
In Section 2 we first present a brief background on
schedulability analysis of static-priority scheduling on
CAN bus and the previous version of WiDom.

Following an introduction about the mechanism of the
WiDom protocol in Section 3, we provide a brief
explanation of the extended hardware used in slotted
WiDom design. In Section 4 we show the response
time analysis for slotted WiDom according to new
timing requirements of the add-on hardware. The
experimental evaluation of the protocol is then
presented in Section 5 followed by the conclusion in
Section 6.

2. Background on schedulability analysis of
non-preemptive static-priority scheduling

The schedulability analysis presented in this paper is
based on previously proposed analysis of WiDom
which follows the concept of schedulability analysis of
CAN bus. Therefore, we first provide the necessary
background on this analysis and then discuss the
presented analysis in Section 4.

2.1. Controller area network (CAN)
The CAN bus implements non-preemptive static-

priority scheduling on a wired channel and for this
reason, early researchers [4] realized that the
uniprocessor preemptive static-priority scheduling
theory [5] could be modified for non-preemptiveness
and applied to CAN. Davis et al. [6] proposed the first
correct analysis of the CAN bus by revising this
analysis by considering the fact that in the non-
preemptive static-priority scheduling, for a given
message m, a higher priority message can be awaiting
for transmission when message m completes
transmission. Thus the busy period can extend beyond
the period of message m. To be more accurate in the
calculation they first determine the duration of level-m
busy period as follows:

i
mmhpi i

im
mm C

T
JtBt ×∑ ⎥
⎥

⎤
⎢
⎢

⎡ +
+=

∪∈∀)(
 (1)

where mmhp ∪)(is the set of message streams with
priority m or higher assuming that all priorities are
unique; mB is maximum blocking time that can be
imposed by a lower priority message; release jitter or
queuing jitter [4], Ji

, is defined as the largest
difference between initiating time of the event and the
time in which that message has been queued; iC and iT
are transmission time and minimum inter-arrival time
of message stream i respectively. Then for calculating
the response time for message stream m, the response
time for all the instances of this message stream
located in the level-m busy period should be calculated.
Finally the response time of a message instance which
has the largest value among other instances during the
busy period will be considered as the Worst Case
Response Time (WCRT) of the message stream m and
is computed as follows:

)(max ,
1,...,0

mmqmm
Qq

m CqTwJR
m

+−+=
−=

 (2)

where mQ is the number of message instances located
in the level-m busy period and is given by:

⎥
⎥

⎤
⎢
⎢

⎡ +
=

m

mm
m T

JtQ (3)

and qmw , can be defined as follows:

.
)(

,
, i

mmhpi i

bitiqm
mmqm C

T
Jw

qCBw ×∑ ⎥
⎥

⎤
⎢
⎢

⎡ ++
++=

∪∈∀

τ
 (4)

Figure 1. An Example of qiw , .

2.2. Wireless Dominance MAC (WiDom)
The existing response time analysis [2] of WiDom

follows the same concept of non-preemptive static-
priority scheduling of CAN bus and provides the
feasibility test based on WCRT analysis. Two major
differences between WiDom and CAN bus analysis
are: (i) WiDom needs to incorporate the time needed
for synchronization purpose and (ii) it assumes there is
no release jitter for any message stream.

As described earlier, the WCRT of a message
stream is the longest response time among all of its
message instances q that request for transmission
during a period of time which is called busy period, so:

()iiqi
Qq

i TqCwR
i

×−′′+=
−=

,
1,...,0

max (5)

where iQ is given by:

1+⎥
⎦

⎥
⎢
⎣

⎢
=

i

i
i T

L
Q (6)

and iL is the length of the longest level-i busy period
and can be formulated as follows:

() j
iihpj j

i
bitj

ilpj
i C

T
LQCL ′′×∑

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+−′=

∪∈∈)()(
max (7)

where)(ihp is similarly the set of message streams
with priority higher than i, and)(ilp is the set of
message streams with priority lower than that. Chip
duration bitQ is the time granularity which is similar to

bitτ in CAN analysis. In the current implementations
of WiDom [3,4], the radio uses direct-sequence spread-
spectrum (DSSS) in which every 4 bits is modulated as
32 chips so that the data rate reaches 2Mchip/s which is

Stream 2τ

0,1q

time

Busy Period

...
1,1q
TxTxStream 1τ

1,1 1 −Qq
Tx

... Tx

0,2q
Tx

1,2q 1,2 2 −Qq

Tx

1,2w

equivalent to 250 Kbits/s. For such a platform, we have
bitQ =4/250000=16µs. iC ′′ is the time span needed to

finish transmission. It consists of synchronization time,
F, together with tournament duration, iC′ . The longest
time from the start of the busy period to the time in
which instance q begins transmission successfully
(qiw ,) — see Figure 1, is given by:

 ()bitj
ilpj

iqi QCCqw −′+′′×=
∈)(

, max (8)

()
∑
∈

′′×
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ +++++
+

)(

, ,max

ihpj
j

j

bitqi C
T

QHSWXTFCSEFw

where F is a long period of silence that nodes should
wait before contending for the channel and E is the
duration of time that is considered for compensating
clock drift between the nodes and it is also used to
guarantee that all nodes have time to listen for F time
units of silence — see Figure 2. Time For Carrier
Sense (TFCS) is the duration of time that a node needs
for detecting a carrier transmission. In order to have a
good perception of these parameters it is necessary to
know how WiDom works. In the next section we will
describe the functioning of WiDom in brief.

3. Background on the WiDom protocol

We will first describe the initial WiDom
mechanism. We will not use this version of WiDom
since it has large overhead. Understanding its operation
however is useful for understanding slotted WiDom, a
more recent version which has much smaller overhead
and is the one we will use in the remainder of this
paper.

3.1. WiDom without master node (initial WiDom)

As mentioned earlier, WiDom is a prioritized MAC

protocol for wireless networks and hence the message
with the highest priority (corresponding to the lowest
priority number) is granted the channel. When
messages contend for the channel, a conflict resolution
phase (called tournament) similar to the
dominance/binary countdown arbitration [7] is
performed. During the tournament nodes transmit the
priority of the message contending for the medium bit-
by-bit. A bit is said to be dominant if it is “0”; it is said
to be recessive if it is “1”. The protocol is composed of
three phases, namely: synchronization, tournament and
data exchange — see Figure 2. The synchronization is
needed to provide a common reference point in time so
that all nodes can start the competition at the same
time. Hence, the synchronization should happen before
the tournament and finally a node that wins the
tournament starts transmission.

Figure 2. Timing order of WiDom.

In this version of WiDom, at the start of
synchronization, nodes should wait for a long period of
idle time F— see Figure 2, such that no node disrupts
an ongoing tournament. Then nodes with a pending
message wait for another time span E to compensate
for the potential clock drift and also ensuring that all
nodes have enough time to listen for F time units.
Afterwards, nodes start sending a carrier pulse for a
duration of H time units that signals the start of a
tournament and establishes a common time reference.
To do so, they have to switch from receive mode to
send mode which takes SWX units of time. By sending
this signal, all nodes restart their timers and
synchronization ends.

In the tournament phase if a node loses the
contention of a bit (i.e. it transmits a recessive bit and
receives a dominant bit), it does not continue further
bits and only proceed listening to the medium to find
out the priority of the winner. If a node does not lose
the contention during the current bit it will proceed
with the contention for the next bit. The nodes that
have dominant bit, start transmitting a pulse of carrier
for duration of H units of time, while nodes with
recessive bit, perform carrier sensing. Also, note that
the fact that wireless transceivers are not able to send
and transmit simultaneously poses no problem to
WiDom since when a node has a dominant bit, there is
no need for reception and when a node has a recessive
bit, it sends nothing; it performs carrier sensing. There
is also a guarding time interval G to separate pulses of
carrier wave. This guarding time interval makes the
protocol robust against clock inaccuracies, and takes
into account that signals need a non-zero time to
propagate from one node to another. At the end of the
tournament, the node that does not receive a pulse wins
the competition and waits for ETG time units before
starting data transmission.

3.2. WiDom with master node (slotted WiDom)

The aforementioned timing order belongs to the

primary implementation of WiDom which is based on
off-the-shelf WSN platforms. Most WSN platforms use
the Chipcon CC2420 [8] that does not offer the
desirable characteristics needed for WiDom

iC

Synchronization
phase

Tournament
phase

Data exchange
phase

time

F E H G H G H G H TX/RX ETG

(npriobit)

iC ′′

iC′

implementation and introduces a large overhead on its
functionality. This overhead mainly comes from (i) the
switching time between transmission and reception
mode and (ii) the time needed to perform carrier
sensing in order to detect priority bits of other nodes.
To alleviate this problem researchers develop an add-
on board platform that can be plugged into common
WSN platforms such as MicaZ [9] and FireFly [10] —
see Figure 3.

In slotted WiDom [3] all sensor nodes are
equipped with the extended add-on board (called
WiFLEX) and a more powerful node (master node) is
used to broadcast synchronization pulses periodically
on a separate radio channel. That is why the term
“WiDom with master node” is also used for this
implementation of WiDom. We might use the term
“slotted WiDom” or “WiDom with master node”
interchangeably in the rest of the paper. The extended
platform is composed of two small boards namely
WiFLEX_main board (simply main board), Figure 3(a)
and WiFLEX_daughter board (daughter board),
Figure 3(b). The main board sends and receives pulses
during the tournament while the daughter board which
is also known as WiFLEX_rxsync is merely
responsible for receiving synchronization pulses.
Figure 3(c) shows how these two boards are
assembled. The main board is equipped with a low-
power Micro-Controller Unit (MCU) in order to run
the MAC protocol on both WiFLEX and host platform
concurrently and provide a mechanism for higher level

communication between WiFLEX and WSN platform.
The MCU controls two independent radio modules
embedded in the main board: (i) one transmitter and
(ii) one receiver that share a single antenna. This
antenna is assigned to each radio module through a
high-frequency switch under MCU supervision.
Another single receiver module has been used in the
daughter board which is always ready to receive the
synchronization signal. The advantage of using the
separate receiver (daughter board) is the possibility of
setting it perpetually in reception mode and eliminating
the switch time and finally maintaining accurate
synchronization. Furthermore, by utilizing out-of-band
signalling for synchronization, nodes are not forced to
wait for a long duration of F time units which reduces
the overhead. The receiver devices on both main and
daughter board use amplifier-sequenced hybrid (ASH)
technology that A.C. couples1 the data by use of a
series capacitor. This is done to remove the D.C.
offsets in the amplifiers and comparators. Having poor
D.C. balanced data (large number of consecutive 1’s or
0’s) results in having an unreliable receiver [11]. To
avoid this problem it is best to use data that is D.C.
balanced. We say a data is D.C. balanced when the
number of 1’s and the number of 0’s of that data in a
period of time are equal. To provide a desirable data
for receiver a bit stuffing technique is exploited during
priority bit exchange (tournament phase).

1 A.C. coupling is referred to the transfer of energy to different

devices linked together through an electrical network.

Figure 3. Hardware platform.

(c) WiFLEX_daughter board stacked
 on the WiFLEX_main board

(d) WiFLEX platform stacked on
Firefly sensor

(e) WiFLEX platform stacked on
MicaZ sensor

(a) WiFLEX_main board

(b) WiFLEX_daughter board

Figure 4. Dominant and recessive signal
sequence with bit stuffing.

The principle behind this technique is to introduce
redundant information to maintain channel activity. To
do so, a dominant bit is coded as a “1” + “0” signal
sequence and a recessive bit as two consecutive “0”
bits and then introducing a bit stuffing composed of a
“1” + “0” signal sequence after each dominant or
recessive bit — see Figure 4. Although the utilized bit
stuffing technique cannot provide a perfect
D.C. balanced data, but the achieved D.C. balance is
satisfactory for a correct A.C. coupling which allows
correct data recovery at the receiver.

The same policy is also applied in the
synchronization signal transmission. To maintain
channel activity, a burst of consecutive sequence of “0”
+ “1” with same pulse duration is used. A longer
duration of “1” pulse is then considered to announce
the reception of a synchronization signal — see
Figure 5.

Figure 5. Synchronization signal burst.

Another important issue for receiving a correct data
is to extract or synchronize the Real-Time Clock
(RTC) to transmitted data [12]. In the tournament
phase the radio module on the main board exchanges
the data only during priority bit exchange and after that
it stays idle until next synchronization signal reception.
Since the communication is not always maintained we
may lose the synchronization of the RTC for sampling
the output data of the receiver. To solve this problem, a
special start symbol or preamble has been introduced at
the beginning of the tournament phase. Two
consecutive dominant bits is sufficient to allow a
correct detection between noise and the start of an
incoming data without imposing high overhead.

4. Calculating response time

We now compute the WCRT of a given message
stream. We develop this analysis by considering
release jitter and assuming that all nodes are located in
a single broadcast domain.

Figure 6. Timing order of WiDom with
master node.

Nodes are equipped with the add-on board circuitry
and there is a master node that sends pulses
periodically on a separate channel to announce the start
of the tournament. The following subsections describe
the new developed schedulability analysis for slotted
WiDom and present the calculated response time
accordingly.

4.1. Response time analysis
So far we have explained some hardware issues to

make it easy following the new timing order of
WiDom with master node. As mentioned earlier,
immediately after receiving the synchronization signal,
nodes start executing the tournament. In the
tournament phase before going through the
competition, priority of the enqueued message should
be notified to the WiFLEX board and at the end of that;
the priority of the winner should be reported back to
the WSN host platform. Thus we need to consider two
time intervals (A and B) for boards’ communications in
the slotted WiDom — see Figure 6. This figure shows
the timing order of slotted WiDom. Each slot starts
with the reception of synchronization signal and then
two dominant bits as preamble are sent to indicate the
start of a tournament. Immediately afterwards nodes
send their priorities bit-by-bit including one bit stuffing
after each dominant or recessive bit. At the end of the
competition, WiFLEX reveals the priority of the
winner to its host platform and finally the winner sends
its message after a small duration of ETG time units.
Having these new timing requirements we obtain the
value of iC′ and iC ′′ as follows:

ii CC =′ +2(H+G)+PRIO_TRA (9)
 +2(H+G)(npriobits)+WIN_PRIO+ETG

 TFCSCC ii +′=′′ (10)

In general, queuing of a message can occur with
jitter [13]. To provide a precise response time
calculation, we follow the previous analysis by

Tx Idle Tx Rx Tx

Dominant
bit

Bit
stuffing

Recessive
bit

Bit
stuffing

0

1
Idle Idle Idle

0

1

Start of
synchronization phase

End of
synchronization phase

TFCS

Tx Synch. Signal Id
le

Tx

Id
le

Tx

Id
le

Tx

Tx

Id
le

Tx

Id
le

A: Transferring priority from MicaZ to WiFLEX
 (PRIO_TRA)
B: Transferring winner priority from WiFLEX to

(npriobit)x2

Synchronization
phase

Tournament
phase

Data exchange
phase

Preamble

TX/RX B ETG H G H G A TFCS G G H H H G ...

iC ′′

iCiC′

Start of receiving
synch signal

TFCS

Time

sP

MicaZ (WIN_PRIO)

considering this release jitter. Accordingly the WCRT
can be computed as follows:

()iiiqi
Qq

i TqCJwR
i

×−′′++=
−=

,
1...0

max (11)

where iQ is given by:

 1+⎥
⎦

⎥
⎢
⎣

⎢ +
=

i

ii
i T

JLQ (12)

iL is the length of level-i busy period and the key
characteristic of a busy period is that all messages of
priority i or higher queued strictly before the end of the
busy period are transmitted during this period.
Therefore, level-i busy period is the smallest value
given by:

S
iihpj j

ji
Si P

T
JL

PL ×
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ +
+= ∑

∪∈)(

 (13)

where)(ihp is similarly the set of message streams
with priority higher than i. The first term of the
Equation (13) refers to the blocking time that may be
caused by a lower priority message stream and is equal
to one slot. The duration of the slot is given by SP that
is the periodicity in which the synchronization signal is
broadcast through the network. This period should be
chosen in a way that a message with the longest
transmission time (iC) could be able to finish its
transmission before the start of next synchronization
signal. This constraint is formulated as follows:

≥SP TFCS+PRIO_TRA+2(H+G)(npriobits+1) (14)

 +ETG+WIN_PRIO+max(Ci)
Finally,the longest time from the start of the busy

period to the time in which instance q begins
transmission successfully is given by:

s
ihpj j

bitjqi
ssqi P

T
QJw

PPqw ×
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ ++
++×= ∑

∈)(

,
, . (15)

4.2. Analytical results
Now we apply the response time analysis to

calculate the upper-bound of response time for each
message streams according to Equation (9)-(15). First,
it is necessary to select the timeout parameters
according to their constraint or by measuring them in
the hardware. We assume that the packet length
(including PHY, MAC headers, CRC and payload) is

128 bytes since it is the maximum packet length
supported by CC2420 radio [8]. Considering data rate
of 250 Kb/s the time needed to transmit a packet is:

{ } sCni i µ4096
250000

18128:...1 =××=∈∀

(16)

Applying Equation (9) and (10) we have:

{ } sCni i µ8545:...1 =′∈∀ (17)

{ } sCni i µ8845:...1 =′′∈∀ (18)

These two values are calculated with the timeouts
given in Table 1 that is measured on a real platform.
Considering npriobits=15 and all mentioned timeout
values and considering the constraint (14), we choose
the periodicity of the synchronization signal as:

sPS µ9560= (19)
We explore two different scenarios;

(i) scenario “1” including 6 nodes and (ii) scenario “2”
including 10 nodes. Deadline monotonic priority
assignment is used for priority assignment and we
consider implicit deadline for message streams
(i.e., Di=Ti). The reason of having these two scenarios
is to investigate the large difference between the
smallest and greatest iT , 180 times (scenario “2”), and
also comparably smaller difference, 60 times
(scenario “1”). In both of these scenarios we assume
the release jitter is 1ms, that is, { } msJni i 1:...1 =∈∀ .
Table 2 and Table 3 show the calculated response time

Table 2. Calculated response time for
scenario “1” (6 nodes).

i 1 2 3 4 5 6
)(sTi µ 30,000 80,000 150,000 300,000 700,000 1,800,000
)(sCi µ 4,096 4,096 4,096 4,096 4,096 4,096
)(sCi µ′ 8,545 8,545 8,545 8,545 8,545 8,545
)(sCi µ′′ 8,845 8,845 8,845 8,845 8,845 8,845
)(sRi µ 18,405 27,965 37,525 56,645 66,205 85,325

Table 1. Timeout values.

Parameter Value
GH + sµ110

TFCS sµ300
TRAPRIO_ sµ139
PRIOWIN _ sµ235

ETG sµ555

Table 3. Calculated response time for
scenario “2” (10 nodes).

i 1 2 3 4 5
)(sTi µ 30,000 70,000 120,000 300,000 900,000
)(sCi µ 4,096 4,096 4,096 4,096 4,096

)(sCi µ′ 8,545 8,545 8,545 8,545 8,545
)(sCi µ′′ 8,845 8,845 8,845 8,845 8,845

)(sRi µ 18,405 27,695 37,525 56,645 66,205

i 6 7 8 9 10
)(sTi µ 1,900,000 3,700,000 5,400,000 5,400,000 5,400,000

)(sCi µ 4,096 4,096 4,096 4,096 4,096

)(sCi µ′ 8,545 8,545 8,545 8,545 8,545

)(sCi µ′′ 8,845 8,845 8,845 8,845 8,845

)(sRi µ 94,885 114,005 123,565 171,365 180,925

of first and second scenario respectively by applying
Equations (9)-(15) and using the given timeout values
in Table 1 (All the time values are given in µs and we
separate each three digit with a comma to make
numbers more legible). It can be easily observed that in
both scenarios the calculated WCRT of all message
streams are smaller than their relative
deadlines (i.e., { } ii TRni ≤∈∀ :...1).

5. Experimental evaluation

In order to validate the calculated upper-bound, we
have implemented the same scenarios mentioned in the
previous section using a real-world platform. In the
next section, we first explain the experimental setup
followed by the results achieved.

5.1. Experimental Setup
In the experimental test-bed we used MicaZ motes

[9] (featuring an Atmel ATmega128L 8-bit
microcontroller with 128 kB of in-system
programmable memory) equipped with the WiFLEX
add-on board — see Figure 3(e). Each sensor node runs
WiDom protocol implemented on Nano-RK [14]
operating system. Nano-RK is a real-time operating
system (RTOS) designed for wireless sensor networks
that supports multi-hop networking. Nano-RK employs
a novel energy-efficient time management scheme
using one-shot timer interrupts instead of polling
interrupt. Utilizing one-shot timer interrupts policy, the
next timing interrupt is triggered when either a task is
scheduled to be awakened because of an event or
because it becomes eligible for scheduling. The Nano-
RK timer tick is approximately 1ms so any time event
scheduled in the future will be rounded to the nearest
timer tick. Using this insight, one can infer that all the
time related events such as task periods and event
wake-ups will experience at most 1ms of jitter with
respect to their target time and that is the reason of
considering 1ms of jitter in the previous section.
Despite the release jitter, it should be mentioned that
this jitter does not affect our delay measurement since
we used a hardware-timer with time resolution of 1µs,
so, all the measured values have the precision of 1µs.

Each node has a task, (Send-Task), running on
Nano-RK which is set to be requested periodically. By
each request we increase a variable that is called
generated-packet by one. Then nodes contend for the
channel for sending the packets. They use their given
ID numbers as their packet priority. If a node succeeds
to send its packet by its deadline then another variable
named transmitted-packet is incremented by one.
Those packets that do not have the chance to be
transmitted by their deadlines will be dropped. At the
end of the experiment, if the value of generated-packet
is not equal to the value of transmitted-packet then it
implies that a deadline miss would occur. To measure
the response time, each node counts the time from
when the Send-Task is requested until that packet is
actually transmitted. Then this waiting time (Wi)
piggybacks on the packet payload. Upon receiving
packet, the receiver extracts the waiting time and
calculates the response time according to the
following:

 Ri =Wi+Ci (20)
We have run two experiments as explained in

Section 4.3. The first experiment includes 6 nodes
aligned in a row and the receiver located 1m away
from them, while the second scenario has 10 nodes
placed in a circle with the radius of 1m and the receiver
located at the centre [15]. Every node had one message
stream and the experiments were run for 12,000
number of requests for message transmission.

5.2. Experimental results
Table 4 and 5 show the results achieved from the

experimentally setup of described scenarios. The
maximum value of response time obtained through the
experiment is denoted by (iR′). Analytically calculated
response time (iR) is shown again for the sake of
convenience in comparison. It can be observed that the
calculated response time is always greater than the
maximum measured value, besides there is no deadline
miss in the system which simply means that our

Table 4. Experimentally measured response
time for scenario “1” (6 nodes).

i 1 2 3 4 5 6
)(sTi µ 30,000 80,000 150,000 300,000 700,000 1,800,000
)(sRi µ 18,405 27,965 37,525 56,645 66,205 85,325
)(sRi µ′ 18,348 27,583 37,128 55,982 59,184 64,834

Deadline
miss ratio 0% 0% 0% 0% 0% 0%

Table 5. Experimentally measured response
time for scenario “2” (10 nodes).

i 1 2 3 4 5
)(sTi µ 30,000 70,000 120,000 300,000 900,000
)(sRi µ 18,405 27,965 37,525 56,645 66,205
)(sRi µ′ 18,343 27,584 37,147 56,225 55,428

Deadline
miss ratio

0% 0% 0% 0% 0%

i 6 7 8 9 10
)(sTi µ 1,900,000 3,700,000 5,400,000 5,400,000 5,400,000

)(sRi µ 94,885 114,005 123,565 171,365 180,925

)(sRi µ′ 58,019 39,509 62,490 34,464 62,403
Deadline
miss ratio

0% 0% 0% 0% 0%

analysis provides a valid upper bound for any given
message stream. There is not a great deal of difference
between the measured and calculated response time for
the message streams with smaller iT while it can be
considerable for those message streams with greater .iT
One possible reason is that the message streams with
greater iT transmit fewer packets throughout the
experiment so they hardly experience those instances
close to the worst-case scenario.

To check the ratio of deadline miss occurrence we
insert the value of generated-packet (Gnt_Pkt) and
transmitted-packet (Tx_Pkt) in the payload and then
compute the deadline miss ratio as below:

100
)_(

)_()_(__ ×
−

=
PktGnt

PktTxPktGntratiomissDeadline (21)

Recalling from the previous subsection, it is worth
to noted again that the value of transmitted-
packet (Tx_Pkt) increments only if the message has
been sent within its deadline. After receiving each
packet, the receiver increases the number of received-
packet (Rx_Pkt) variable related to the sender by one.
Doing so, it is possible to calculate the packet loss rate
for any node by utilizing the following equation:

100
)_(

)_()_(__ ×
−

=
PktTx

PktRxPktTxratelossPacket

 (22)

To find out the total packet loss rate, one can simply
add the values of received-packet in each node and
calculate the total number of received packet, then
apply the same policy for calculating total number of
transmitted packet and then use the Equation (22). In
both experiments we had a very small packet loss rate
(less than 1%). The cause for this is that WiDom is a
collision-free MAC protocol.

6. Conclusion

In this paper we focused on a recent prioritized
MAC protocol, WiDom and opted for a more recent
low overhead implementation of this MAC design that
is called slotted WiDom. In this implementation a
special node, master node, is responsible for
synchronization process. It broadcasts periodically a
signal on a separate channel in order to provide an
accurate synchronization. Each node in slotted WiDom
is equipped with an extended hardware, WiFLEX
board, to obtain two main goals of (i) supporting a
reliable contention in the tournament phase and (ii)
achieving more efficient synchronization. We have
developed the schedulability analysis of slotted
WiDom by considering release jitter and presented an
upper bound on the queuing time of a given message
stream. To validate the calculated upper bound two
different experiments were conducted by using real-
world platform. The experimental result certifies our

findings in the analytical calculations and by offering
more than 99% successful transmission; it asserts the
property of reliable prioritized collision-free
characteristic for the slotted WiDom protocol.

References

[1] I. 11898:1993, “Road vehicles -- Interchange of digital
information -- Controller Area Network (CAN) for
high-speed communication,” ed, 1993.

[2] N. Pereira, B. Andersson and E. Tovar, “WiDom: a
dominance protocol for wireless medium access,”
Industrial Informatics, IEEE Transactions on, vol. 3,
pp. 120-130, 2007.

[3] N. Pereira, R. Gomes, B. Andersson and E. Tovar,
“Efficient aggregate computations in large-scale dense
WSN,” in Real-Time and Embedded Technology and
Applications Symposiumin, 2009, 15th IEEE
International, pp. 317-326, 2009.

[4] K. Tindell, H. Hansson and A. J. Wellings, “Analysing
real-time communications: controller area network
(CAN),” in Real-Time Systems Symposium, pp. 259-
263, 1994.

[5] M. Joseph and P. Pandya, “Finding response times in a
real-time system,” Computer journal, vol. 29, pp. 390-
395, 1986.

[6] R. Davis, A. Burns, R. Bril and J. Lukkien, “Controller
Area Network (CAN) schedulability analysis: refuted,
revisited and revised,” Real-Time Systems, vol. 35, pp.
239-272, 2007.

[7] A. Mok and S. Ward, “Distributed broadcast channel
access,” Computer Networks, vol. 3, pp. 327–335,
1979.

[8] T. Instruments, “CC2420 datasheet,”
 http://focus.ti.com/lit/ds/symlink/cc2420.pdf.
[9] CROSSBOW-Datasheet: MICAz. San Jose, USA.

Crossbow Technology, Inc., 2004.
[10] R. Mangharam, A. Rowe and R. Rajkumar, “FireFly: a

cross-layer platform for real-time embedded wireless
networks,” Real-Time Systems, vol. 37, pp. 183-231,
2007.

[11] RF MONOLITHICS INC., “ASH Transceiver
Designer’s Guide”, Dallas, Texas. RF Monolithics,
Inc., 19 May 2004.

[12] B. NELSON, “Simple Clock & Data Recovery”,
Dallas, Texas. RF Monolithics, Inc., 2 February 2003.

[13] N. Audsley, A. Burns, M. Richardson, K. Tindell and
A. J. Wellings, “Applying new scheduling theory to
static priority pre-emptive scheduling,” Software
Engineering Journal, vol. 8, pp. 284-292, 1993.

[14] A. Eswaran, A. Rowe and R. Rajkumar, “Nano-RK: an
Energy-aware Resource-centric RTOS for Sensor
Networks”, IEEE Real-Time Systems Symposium,
pp.256-265, 2005.

 Appendix A

The experiments were conducted in an office
environment where the noise floor was approximately
-94dBm. Like most common office areas there were
some Wi-Fi access points in the room; these access
points are the main source of noise for our test bed. In
order to have a precise measurement of the response
time and for excluding communication related problem

(e.g. unreliability of the link that may happen due to
unknown radio signal propagation pattern), we placed
nodes close enough (less than 2.5 meters away) so that
a robust and reliable communication could be
achieved. Figure 7 shows the node placement in first
scenario including 6 nodes.All nodes are placed on the
floor and equipped with 2 AA batteries. Only the
receiver is connected by an USB connector to the PC to
log data.

For the second scenario we used 10 nodes as
illustrated in Figure 8. Nodes are placed in a circle and
the receiver was located at the center of the circle.
Radio module on the WiFLEX_main board works on
the 418MHz frequency and transmits signal with 0dBm
power. To assure the reception of synchronization
signal by all nodes, the radio transmitter of the master
node is chosen to broadcast the signal on lower
frequency (315MHz) with the power of 1.5dBm. Both

experiments were run for 12,000 transmission request
over all computer nodes.

Appendix B

Table 4 and Table 5 in Subsection 5.2 show the
experimental results for implicit-deadline message
streams (i.e., { }:...1 ni∈∀ Di=Ti). However, the main
advantage of WiDom is the ability of scheduling
constrained-deadline message streams (i.e., { }:...1 ni∈∀
Di<=Ti).

 In order to show this virtue of WiDom protocol,
we have run another experiment including 10 nodes.
All nodes had the same period as described in the
second scenario and there is at most 1ms of release
jitter. Nodes were located in a circle shown in Figure 8
and the experiment was carried out for 12,000
transmission requests. The main difference in this
experiment is that there is an explicit deadline (Di)
related to each message stream in which all messages
should reach the receiver before their deadline.

Table 6 shows the result for the constrained-
deadline message streams. As it is shown all message
streams have been transmitted before their deadlines
and there is no deadline miss occurrence. It should be
noted that there are some message streams that have
deadlines (Di) much smaller than their periods (Ti).
Most of the MAC protocols proposed in the literature
are not able to accommodate such message streams. In
TDMA-based MAC protocols all nodes should be
triggered according to the smallest available deadline
which is inefficient, while contention-based MAC
protocols could not guarantee the reception of packets
before their constrained deadlines. This experiment
reveals the merit of utilizing WiDom protocol for
accommodating constrained-deadline message streams.

Figure 8.10-node deployment.

 Master
node

Receiver

1m

Figure 7. 6-node deployment.

1m

< 2m

Receiver

Master
node

Table 6. Experimentally measured response
time for constrained-deadline message
streams.

i 1 2 3 4 5
)(sTi µ 30,000 70,000 120,000 300,000 900,000
)(sDi µ 20,000 50,000 100,000 100,000 100,000
)(sRi µ′ 18,345 27,596 37,076 51,754 65,614

Dead miss
probability

0% 0% 0% 0% 0%

i 6 7 8 9 10
)(sTi µ 1,900,000 3,700,000 5,400,000 5,400,000 5,400,000

)(sDi µ 150,000 150,000 200,000 200,000 200,000

)(sRi µ′ 65,151 60,569 61,528 73,117 51,298
Dead miss
probability

0% 0% 0% 0% 0%

