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Abstract

We study a virtual time CSMA protocol for hard real

time communication systems where messages have explicit

deadlines. In this protocol, each node maintains two

clocks: a real time clock and a virtual time clock. When-

ever a node finds the channel to be idle, it resets its virtual

clock to be equal to the real clock. The virtual clock then

runs at a higher rate than the real clock. A node transmits

a waiting message when the time on the virtual clock is

equal to the latest time to send the message. This protocol

implements the minimum-laxity-first transmission policy.

We compare the performance of our protocol with two

baseline protocols both of which transmit messages accord-

ing to the minimum-laxity-first policy. While both use per-

fect state information about the nodes and channel, the

first is an idealized protocol which obtains this informa-

tion without paying any cost and the second one pays a

reasonable price for it. The simulation study shows that

in most cases, our protocol performs close to the first one

and better than the second one.

1 Introduction

This paper concerns communication protocols for dis-

tributed hard real-time systems. Tasks performed in such

systems are time constrained. Consequently, the messages

transmitted in the network often also have explicit time

constraints such as deadlines. In this paper, we propose
and evaluate a protocol which particularly takes messages’

time constraints into account, and hence is suitable for the

control of communications in distributed hard real-time

systems.

1This material is based upon work supported in part
by the National Science Foundation under grants DCR-
8318776, and DCR-8500332, and by the Office of Naval
Research under grant 048-716/3-22-85.

The most common communication network used in dis-

tributed hard real time systems is the multiple access net-

work. In this type of network, stations transmit messages

via a shared channel. Only one message can be success-

fully transmitted over the channel at any time. A collision

occurs if at any time two or more messages are transmitted

on the channel. No message can be received correctly in

the event of a collision.

Based on how the collisions are handled, multiple access

communication protocols can be broadly divided into three

categories:

1. lrzjerence avoiding protocols: This category includes

ALOHA [1] and various CSMA protocols [9]. These

protocols operate without taking past history of the

channel into account.

2. Inference seeking protocols: Various tree, window,

and stack protocols [2,4,5,7,12,27] and Urn protocols

[10,28] belong to this category. These protocols make

inference on the collision history, and usually solve

collisions by partitioning some parameter space of

messages.

3. Deterministic or Collision-free protocols: The Time

Division Multiple-Access Protocols (TDMA), the

Bit-Map Protocol [11], the Broadcast Recognition

with Alternative Priorities Protocol [24,3,6], the

Multi-1evel Multi-access Protocol [23], etc. are in this

category. They work in such a way that collision do

not occur at all.

While we are currently developing protocols belonging to

all three categories for hard real-time communication, in

this paper we report on the performance of a protocol be-

longing to the first category.

In our model, each meseage has a deadline which spec-

ifies the absolute time by which the message must arrive

at its destination; otherwise it is useless. The major per-

formance metric in such a network is the ratio of message

loss, i.e., the fraction of messages that do not arrive at
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their destinations by their deadlines. A good protocol for

hard real-time communication should minimize this ratio.

The design objectives of multiple access protocols and

scheduling algorithms are quite similar: Both are for allo-

cation of a serially-used resource to a set of processes [13].

It is known from the tkeory of hard real-time scheduling

that, in the static case, i.e., when all the task character-

istics are known a priori, minimum-deadline-first and the

minimum-laxity-first scheduling policies are optimal in the

sense that they can schedule a set of tasks if there is some

policy which can do so [15]. In the dynamic case, these

policies also offer better performance than others [8]. Due

to this fact, in our protocol, we adopt a network-wide

transmission policy in which the message with the mini-

mum laxity is transmitted first.

Kurose et al. suggest a window protocol for real time

communicantion [12,13], implement ing the minimum-laxity-

first policy. They assume that the laxities of all the mes-

sages when they arrive are constant. Under this assump-

tion, the minimum-laxity-first policy is ident ical to the

first-come-first-served policy. Panwar et al. [20,21] have

also studied the problem of optimal transmission policy.

They assume that the length of the i-th message being

transmitted on the channel is independent of what the i-th

message is. In other words, the lengths of messages varies

with the order in which they are transmitted. They prove

that if the channel is not allowed to remain idle when there

is a message waiting to be sent, the minimum-laxity-first

policy is the best. In our protocol, all of above assumptions

are removed: We allow messages to have arbitrary laxit ies,

and also allow the message lengths to be determined at the

time they arrive and hence to be invariant with the order

in which they are transmitted.

In our protocol, each node maintains two clocks: a real

time clock and a virtual time clock. Whenever a node

finds the channel to be idle, it resets its virtual clock to be

equal to the real clock. The virtual clock then runs at a

higher rate than the real clock. A node transmits a wait-

ing message when the time on the virtual clock is equal to

the latest time to send the message which is equal to the

message deadline minus the message length. This protocol

implements the minimum-laxity-first transmission policy.

Our protocol belongs to the newest class of CSMA proto-

cols — virtual time CSMA [18,19,14]. We will have a brief

discussion of the general virtual time CSMA in Section 3.

The remainder of this paper is organized as follows:

Section 2 defines the model we adopt in this study. While

Section 3 introduces our protocol, Section 4 presents the

results of simulation studies comparing the performance of

our protocol with that of two baseline protocols. Section

5 concludes the paper and suggests future work.

2 The Model

In a multiple access network, a set of nodes are connected

to one communication channel. At any given time, only

one message can be successfully transmitted over the chan-

nel. The maximum end-t o-end delay for a bit is r. We

assume that the time axis is slotted. The length of a slot

is defined to be one time unit. Given that the maximum

end-to-end delay is r, we let the length of a slot be equal

to r. A node can start transmitting a message only at the

beginning of a slot. The length of a message is a multiple

of the length of a slot. The normalized end-to-end delay is

defined as
Q = TIM

where M is the mean message length. Previous work

shows that CSMA protocols are applicable to environments

where a has a small value such as 0.01.

Each message, M, can be characterized as follows:

Length LM which is the total number of time uni&

needed to transmit message M;

Deadline DM. This is the time by which message M

must be received by its destination;

Latest time to Send the message, LSM, is equal to

DM – LM;

Laxity at time t,LAM(t) is the maximum amount of

time the transmission of message M can be delayed

at time t.Therefore,

LAM(t) = DM – LM – t = LSM – t.

When it is clear from the context, we may omit ar-

gument t as well as subscript M in the above expres-

sions.

From these definitions, it is clear that if we transmit tasks

according to their latest start times, it is equivalent to the

minimum-laxity-first transmission policy.
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3 A Virtual Time CSMA Proto-
col: VTCSMA-L

Various Carrier Sense Multiple Access (CSMA) protocols

have been proposed and evaluated [9]. Most of them may

not be suitable for hard real-time communication because

the message transmission delay cannot be bounded. Molle

and Kleinrock [18,19] suggested a new class of CSMA pro-

tocols called Virtual Time CSMA. In this protocol, each

node has two clocks. One clock gives the real time, and

another gives the virtual time. The virtual clock stops run-

ning when the channel is busy, and runs when the channel

is idle. When it runs, the virtual clock runs at a higher rate

than the real one if it is behind the real clock. A message

is sent only when its arrival time is equal to the time on

the virtual clock. The major advantages of the VTCSMA

protocol are its fairness in transmitting the waiting mes-

sages (since it is based on the FCFS policy), lower collision

rate, and better delay-throughput behavior [14].

Below, we propose a virtual time CSMA protocol for

hard real-time communication. We let the virtual clock

run along the axis of messages’ LS such that a network-

wide minimum-laxity-first transmission policy is achieved.

Because of this, we call this protocol VTCSMA-L. The

following is the outline of our protocol:

1.

2.

3.

Each node has two clocks, one clock maintaining the

real time, and another maintaining the virtual time

set in a manner discussed below.

Each message M is associated with a parameter vir-

tual latest time to start transmission, VLSM. when

a message arrives, VLSM of message M is set to be

LSM. If the channel is idle and

‘LsNew Message –< the reading of the virtual clock,

the new message is sent immediately; otherwise it

waits. VLSM may be modified when the transmission

of this message causes a collision. We will discuss the
details of this modification in Step 5.

Each node eenses the channel. Suppose that after ei-

ther a successful message transmission or a collision,
at real time t every node finds that the channel is

idle:

a. Every node resets its virtual clock to be equal to

the real clock. The virtual clock starts to run

at rate ~ > 1. ~ is a parameter of this protocol.

We will discuss seIection of q later. The virtual

clock will stop when the channel is busy.

4.

5.

b. Every node drops any waiting message if the LS

of the message is less than the current time t,

i.e., such a message is lost.

A node sends message M when VLSM equals the

reading of the virtual clock. Note that because the

virtual clock runs faster than the real clock, the mes-

sage is sent at (real) time

t + (VLSM – t)/~

where ~ > 1. This time is earlier than the latest time

to send message M, LSM.

When a collision occurs during the transmission of a

message, say at (real) time t’,the sender node

a. re-transmits this message immediately with prob-

ability Pi; or

b. draws a number R randomly from the interval (t’,

LSM), and modifies VLSM as

VLSM E R,

c. then, puts this message back in the queue of mes-

sages waiting to be transmitted.

The protocol above ensures that the message with the

minimum VLS is transmitted first. By the definitions of

VLS, LS and LA, we notice that this policy is equivalent

to that of the minimum-laxity-first.

The following example helps to understand how the

time on the virtual clock relates to the time on the real

clock (eee Figure 1).

EXAMPLE: Assume that at real time tl the channel is

found idle, every node resets its virtual clock to be t~= tl.

Then the virtual clock runs at a rate of q > 1. Say, two

messages Ml and &fz are waiting to be sent with VLSM, =
tjand VLSM2 = tjrespectively. When the virtual clock

equals to t;,Ml is sent out. This message is transmitted

over the channel from the real time t2 to ts.During the

transmission of Ml, the virtual clock does not run.

At real time t~, because the channel is idle again, the

virtual clock is set to be t~= t3.Then it starts running at

rate q. When the virtual clock reaches t:, message &fz is

sent out. The channel is busy, and the virtual clock stops

running. Say, at real time t5,the transmission of message

M2 finishes. Then the virtual clock is set to the value of

the real clock (so t~= t5),and starts running again.

From this example, it is clear that the virtual clock

does not run continuoust~. At real time t3,thevirtual
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Figure 1: Virtual Clock vs. Real Clock

clock is set to equal the real clock. It is not necessary

for the virtual clock to cover the interval (tj, t!Jbecause if

there is any message with its VLS in (tj,t:)this message

has been lost by real time ts.On the other hand, (t&,t’J

is twice covered by the virtual clock. This is necessary

because when message iW2is being transmitted, some new

messages may arrive with its VLS in that region and at

real time ts,there is still a chance to transmit it.

4 Performance Evaluation by
Simulation

4.1 Base-line Protocols

We will compare the performance of VTCSMA-L with two

baseline protocols. The first baseline protocol is called

Centralized Minimum Lazit~ message transmitted First,

abbreviated as CMLF. In this protocol, all the transmis-

sions of messages are assumed to be scheduled by a central-

ized controller. This controller obtains perfect knowledge

about the nodes and the channel without any communica-

tion overheads. It schedules the transmissions of messages

such that the message with the minimum laxity is trans-

mit ted first. This algorithm is hence an ideal one, not

realizable in practice. We use it purely to give us an upper

bound on performance.

The second baseline protocol is based on the binary

countdown protocol proposed by Mok and Ward [16]. We

modify it as follows for use in hard real-time communica-

tion.

1.

2.

3.

4.

Let MLi be the minimum laxity (> O) of the mes-

sages waiting to be sent on node i. When each node

senses the channel to be idle, if it has any message

to be sent, it sends out the complement of the binary

code of its MLi one bit per slot in a binary cormt-

down manner [16,26]. Briefly, the binary countdown

method functions as follows: as soon as a node sees

that a high-order bit position that is Oin its MI/i has

been overwritten with a 1 (by some other node(s)),

this node gives up and does not send any more bits.

After a complete (complement code of) MLi has

been transmitted along the channel, each node knows

what the minimum laxity among all the messages

waiting to be sent is. Those nodes, which have mes-

sages with this minimum laxity, then send out their

identification number in the same binary countdown

manner.

The node, which has the message with the minimum

laxity and has the minir%um identification number,

starts sending out the message.

Each node repeats the above procedure when the

channel is idle again.

Because the “countdown” is done on Iaxities of messages,

we call this baseline protocol Binary Countdown on Lady,

abbreviated as BC-L. Note that BC-L uses

[log, (Maximum Laxity)l +

[log, (Maximum Node Identification Number)l

time slots to decide which message is to be transmitted

during each cycle of transmission.

4.2 Simulation Results

We simulate 3 cases for a network of 10 nodes. The first

two cases are for stochastic messages and the last one is

for periodic messages. The simulation program is writ-

ten in Simscript, and runs in an ULTRIX environment on

MicroVAX-II. For simplicity, in all the simulations, the

probability of immediate re-transmission, FI, takes a value

of 0.5. We will discuss extension to this in the last section.
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4.2.1 Stochastic Messages

In Cases 1 and 2, messages arrive at each node as a Poisson

process. The arrival rate at each node is the same. Message

-lengths are exponentially distributed with a mean of 100

in Case 1 and 10 in Case 2. The laxities of messages are

randomly chosen from [0, 600] in Case 1 and [0, 60] in Case

2. Recall that the end-to-end delay r is the unit of time.

Thus, in Case 1, a = 0.01, and in Case 2, a = 0.1’.2 In

each case, we simulate the network with system load from

0.1 to 1.2 where the system load (L) is defined as

L= AR*M*N

where AR is the mean of the message arrival rates at each

node, M is the mean of the message length, and N is the

number of nodes in the network. For the simulation, N =

10, M = 100 in Case 1, and = 10 in Case 2. AR is adjusted

to get different values for L,

Figures 2 and 3 show the ratios of message loss (R) vs.

the system loads (L) for Cases 1 and 2 respectively. From

these figures, we can make the following observations:

1. Message loss in CMLF and BC-L tends to grow al-

most linearly with increase in system load.

‘We note that a = 0.01 is considered to be the typical
application environment for CSMA [19].
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Figure 3: Message Loss vs. System Load

When a is small, e.g., equal to 0.01, the performance

of VTCSMA-L is almost identical, or very close to

that of. CMLF.

When a is large, e.g., equal to 0.1, the performance

of VTCSMA-L is between that of CMLF and BC-L.

When the load is not too high, say, lower than 0.7,

the performance of VTCSMA-L is closer to that of

CMLF than to BC-L.

In any case, VTCSMA-L is definitely better than

BC-L.

Selection of q is an important issue for the application

of VTCSMA-L. For each value of CY,we test the system

performance over different values of q with three different

loads. Figures 4 and 5 show the simulation results. We

see that when the system load is light (= 0.1 ), or when a

is small (= 0.01). For a relatively wide range of ~ values,

message loss is very close to the minimum. This indicates

that the system performance is not sensitive to the values

chosen for q under these situations. This observation con-

forms with that made by Molle for the original VTCSMA

[18,19], though performance metrics of his VTCSMA and

our VT CSMA-L are different.
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4.2~2 Periodic IYlessages

Case 3 is for periodic messages. In hard real time sys-

tems, messages are often periodic, i.e., they arrive and re-

quest to be transmitted pertidically. These messages can

be input/output data to/from application tasks as well as

control information, such as the node surplus information,

passed among nodes [17,22,29].

If a system has only periodic messages and all message

characteristics are known a priori, then a pre-determined

schedule may be used to control the transmissions of mes-

sages. However, if both periodic and stochastic messages

exist, or if char acteristics of periodic messages may change

at run-time, then a dynamic scheme, such as BC-L or

VTCSMA-L has to be used.

For simplicity, we simulate a system with periodic mes-

sages only. The simulation model is set as follows: The

system has 10 nodes. Time is divided into periods. The

length of a period is 1150 time units. In each period, one

message arrives at each node. The message length is 100

time units, A message has deadline equal to the end point

of the period within which it arrives, The reason for this
choice of parameters is that if the messages at all the nodes

arrive at the beginning of a period, then CMLF and BC-

0 e
b El
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0.30

0.20

0.10

U.!(I

I
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Case 2: a =0.1

Figure 5: MessageLoss vs. q

Protocols b= 01b=5751b =1035]
BC-L 0.00 0.11 0.18

VTCSMA-L <0.01 0.06 0.18
CMLF 0.00 0.01 0.11

Table 1: Ratios of Message Loss for Periodic Messages

L will be able to transmit all the messages.’3 Note that

all the messages in a period have the same laxity. This is

a worst-case situation for VTCSMA-L because a collision

definitely occurs when there are two or more newly arrived

messages. The objective of this simulation is to verify the

viability of VTCSMA-L under this situation.

For a given period, P, we assume that the messages be-

longing to this period may arrive in the interval [a, a i- 6]

where a marks the begin point of P and b is a simulation

parameter that is changed for different simulations. Ta-

ble 1 lists the values of b and the corresponding ratios of

message loss for the three protocols.

3Recall that there are 10 messages in a period (one mes-
sage per node). Total transmission time for 10 messages
is 1000 time units. To transmit a message, BC-L takes 15
time units for the “binary countdown”. Thus, the mini-
mum length of a period is 1150.
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From Table 1, we notice that when b = O, i.e., every

message belonging to a period arrives at the beginning

of the period, VTCSMA-L cannot guarantee that all the

messages will be transmitted. However, BC-L and CMLF

can. This is due to the probabilistic nature of VTCSMA-

L. However, the amount of messages lost is very small (<

0.01). Hence, in a system where this amount of loss is

tolerable, VTCSMA-L can be used. When b = 575, i.e.,

all the messages in a period arrive in the first half of the

period, the performance of VTCSMA-L is better than BC-

L. When b = 1035, i.e., messages can arrive at any feasible

time within a period, 4 VTCSMA-L and BC-L have very

similar performance. Thus, in general, for the transmission

of periodic messages, we see that VTCSMA-L performs at

least as well as BC-L.

5 Conclusions

We have proposed a multiple access protocol for hard real

time communication. We have compared the performance

of our VTCSMA-L protocol with CMLF and BC-L. The

reader may note that these three protocols are all intended

to ensure network-wide minimum-laxity-first policy. But
the costs are different. CMLF is the idealized protocol

with no costs. BC-L takes

[log, (Maximum Laxity)l +

[log, (Maximum Node Identification Number)]

time slots for each message transmission. VTCSMA-L

achieves the minimum-laxity-first policy in a different man-

ner. When the channel is found to be idle, whereas both

CMLF and BC-L transmit a waiting message immediately,

VTCSMA-L would let the channel idle for a while (until

the virtual clock matches the minimum laxity of messages

waiting to be sent). This has a two-fold effect: Recall that

when the channel is found to be idle, all the nodes reset

their virtual clocks.

1. While the channel is idle, a message with a laxity less

than that of waiting messages may arrive and has a

chance to be transmitted. If the channel were “used,

this newly arrived message might be lost.

2. On the other hand, some of waiting messages (not

the one with the minimum laxity) may be lost due

4Note that the length of a period is 1150 and that BC-L takes
115 time units to transmit a message, Therefore if a message in a

period arrives at time after a + 1035, BC-L definitely has no chance
to transmit it.

to the fact that the channel is left idle, i.e., is not

being fully utilized.

The simulation results shown in the last section indi-

cate that in the domain we tested, for the case of stochastic

messages, the performance of VTCSMA-L is always better

than BC-L, and is most likely closer to the performance

of CMLF. For the case of periodic messages, i.e., in an

extremely unfavorable case, VTCSMA-L performs at least

as well as BC-L most of the time.

The implementation of the protocol requires the syn-

chronization of clocks of all nodes. In a distributed sys-

tem, clock synchronization is an interesting and challeng-

ing problem. However, our protocol is robust in the sense

that the network will continue functioning even if clocks

are not perfectly synchronized. Of course, in this situation,

the performance of the network may degrade because the

minimum-laxity-first transmission policy cannot be guar-

anteed.

The work reported in this paper is preliminary. Many

extensions are possible. VTCSMA-L should easily extend

to the un-slotted channel. If the exact number of nodes

which are involved in a collision can be known (say, as

~,) [27], Pt, the probability of immediate re-transmission

after a collision may be set dynamically to improve the
performance. When IVCis larger, P: should be smaller so

that the overhead of collision resolution may be reduced.

On the other hand, if NCis small, Pi may take a larger value

to increase the chance that a bode finally gets the right

to transmit a message. More generally, we are currently

studying other protocols for use in distributed dynamic

hard real time computer systems.
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