784 research outputs found

    Weighted Fair Multicast Multigroup Beamforming under Per-antenna Power Constraints

    Get PDF
    A multi-antenna transmitter that conveys independent sets of common data to distinct groups of users is considered. This model is known as physical layer multicasting to multiple co-channel groups. In this context, the practical constraint of a maximum permitted power level radiated by each antenna is addressed. The per-antenna power constrained system is optimized in a maximum fairness sense with respect to predetermined quality of service weights. In other words, the worst scaled user is boosted by maximizing its weighted signal-to-interference plus noise ratio. A detailed solution to tackle the weighted max-min fair multigroup multicast problem under per-antenna power constraints is therefore derived. The implications of the novel constraints are investigated via prominent applications and paradigms. What is more, robust per-antenna constrained multigroup multicast beamforming solutions are proposed. Finally, an extensive performance evaluation quantifies the gains of the proposed algorithm over existing solutions and exhibits its accuracy over per-antenna power constrained systems.Comment: Under review in IEEE Transactions in Signal Processin

    Robust Correlation Clustering

    Get PDF
    In this paper, we introduce and study the Robust-Correlation-Clustering problem: given a graph G = (V,E) where every edge is either labeled + or - (denoting similar or dissimilar pairs of vertices), and a parameter m, the goal is to delete a set D of m vertices, and partition the remaining vertices V D into clusters to minimize the cost of the clustering, which is the sum of the number of + edges with end-points in different clusters and the number of - edges with end-points in the same cluster. This generalizes the classical Correlation-Clustering problem which is the special case when m = 0. Correlation clustering is useful when we have (only) qualitative information about the similarity or dissimilarity of pairs of points, and Robust-Correlation-Clustering equips this model with the capability to handle noise in datasets. In this work, we present a constant-factor bi-criteria algorithm for Robust-Correlation-Clustering on complete graphs (where our solution is O(1)-approximate w.r.t the cost while however discarding O(1) m points as outliers), and also complement this by showing that no finite approximation is possible if we do not violate the outlier budget. Our algorithm is very simple in that it first does a simple LP-based pre-processing to delete O(m) vertices, and subsequently runs a particular Correlation-Clustering algorithm ACNAlg [Ailon et al., 2005] on the residual instance. We then consider general graphs, and show (O(log n), O(log^2 n)) bi-criteria algorithms while also showing a hardness of alpha_MC on both the cost and the outlier violation, where alpha_MC is the lower bound for the Minimum-Multicut problem

    Algorithms to Approximate Column-Sparse Packing Problems

    Full text link
    Column-sparse packing problems arise in several contexts in both deterministic and stochastic discrete optimization. We present two unifying ideas, (non-uniform) attenuation and multiple-chance algorithms, to obtain improved approximation algorithms for some well-known families of such problems. As three main examples, we attain the integrality gap, up to lower-order terms, for known LP relaxations for k-column sparse packing integer programs (Bansal et al., Theory of Computing, 2012) and stochastic k-set packing (Bansal et al., Algorithmica, 2012), and go "half the remaining distance" to optimal for a major integrality-gap conjecture of Furedi, Kahn and Seymour on hypergraph matching (Combinatorica, 1993).Comment: Extended abstract appeared in SODA 2018. Full version in ACM Transactions of Algorithm

    Oblivious Algorithms for the Max-kAND Problem

    Get PDF

    Bi-Criteria and Approximation Algorithms for Restricted Matchings

    Full text link
    In this work we study approximation algorithms for the \textit{Bounded Color Matching} problem (a.k.a. Restricted Matching problem) which is defined as follows: given a graph in which each edge ee has a color cec_e and a profit pe∈Q+p_e \in \mathbb{Q}^+, we want to compute a maximum (cardinality or profit) matching in which no more than wj∈Z+w_j \in \mathbb{Z}^+ edges of color cjc_j are present. This kind of problems, beside the theoretical interest on its own right, emerges in multi-fiber optical networking systems, where we interpret each unique wavelength that can travel through the fiber as a color class and we would like to establish communication between pairs of systems. We study approximation and bi-criteria algorithms for this problem which are based on linear programming techniques and, in particular, on polyhedral characterizations of the natural linear formulation of the problem. In our setting, we allow violations of the bounds wjw_j and we model our problem as a bi-criteria problem: we have two objectives to optimize namely (a) to maximize the profit (maximum matching) while (b) minimizing the violation of the color bounds. We prove how we can "beat" the integrality gap of the natural linear programming formulation of the problem by allowing only a slight violation of the color bounds. In particular, our main result is \textit{constant} approximation bounds for both criteria of the corresponding bi-criteria optimization problem

    Solving optimal stopping problems via randomization and empirical dual optimization

    Get PDF
    In this paper we consider optimal stopping problems in their dual form. In this way we reformulate the optimal stopping problem as a problem of stochastic average approximation (SAA) which can be solved via linear programming. By randomizing the initial value of the underlying process, we enforce solutions with zero variance while preserving the linear programming structure of the problem. A careful analysis of the randomized SAA algorithm shows that it enjoys favorable properties such as faster convergence rates and reduced complexity as compared to the non randomized procedure. We illustrate the performance of our algorithm on several benchmark examples
    • …
    corecore