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Abstract
In this paper, we introduce and study the Robust-Correlation-Clustering problem: given a
graph G = (V,E) where every edge is either labeled + or − (denoting similar or dissimilar pairs of
vertices), and a parameter m, the goal is to delete a set D of m vertices, and partition the remaining
vertices V \D into clusters to minimize the cost of the clustering, which is the sum of the number of
+ edges with end-points in different clusters and the number of − edges with end-points in the same
cluster. This generalizes the classical Correlation-Clustering problem which is the special case
when m = 0. Correlation clustering is useful when we have (only) qualitative information about the
similarity or dissimilarity of pairs of points, and Robust-Correlation-Clustering equips this
model with the capability to handle noise in datasets.

In this work, we present a constant-factor bi-criteria algorithm for Robust-Correlation-
Clustering on complete graphs (where our solution is O(1)-approximate w.r.t the cost while
however discarding O(1)m points as outliers), and also complement this by showing that no finite
approximation is possible if we do not violate the outlier budget. Our algorithm is very simple in
that it first does a simple LP-based pre-processing to delete O(m) vertices, and subsequently runs
a particular Correlation-Clustering algorithm ACNAlg [2] on the residual instance. We then
consider general graphs, and show (O(logn), O(log2 n)) bi-criteria algorithms while also showing a
hardness of αMC on both the cost and the outlier violation, where αMC is the lower bound for the
Minimum-Multicut problem.
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1 Introduction

Clustering is one of the most widely used tools in various scientific disciplines (such as biology,
computer science, machine learning and operations research to name a few) due to its wide
applicability in these domains. Broadly speaking, the goal of clustering is to partition a
given dataset into a number of clusters such that data items in the same cluster are more
alike each other than data items in different clusters. In many application domains, the
data items are naturally represented as points in a metric space, and the distance between
the corresponding vectors is used as a measure of (dis)similarity. In such cases, clustering
formulations such as k-median or k-means are the de-facto standards to utilize. However,
there are also quite a few application domains where the information available to us is simply
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33:2 Robust Correlation Clustering

whether different pairs of data items are similar or dissimilar to each other. Examples of such
settings where there is only qualitative information include data items being web-pages on
the internet, a collection of people on a social network or even a group of proteins. Motivated
by such settings, Bansal et al. [3] formulated a problem known as correlation clustering (in
fact, a similar problem was implicitly studied by Ben-Dor et al.[4] as ’Cluster Editing’).

I Problem 1 (Correlation-Clustering). We are given a complete graph G = (V,
(
V
2
)
),

and a labelling of each edge as either positive or negative, denoting whether the end vertices of
the edge are similar to each other or dissimilar. In other words, the edge set

(
V
2
)
is partitioned

into E+∪̇E− where E+ denotes the similar pairs and E− denotes dissimiliar pairs. The goal
is to compute a partition C = {C1, C2, . . . , Cr} of V (so V = ∪̇1≤i≤rCi is a disjoint union of
the Ci’s) to minimize the cost of the clustering, which is the total number of E+ edges with
end-points in different clusters and E− edges with end-points in the same cluster.

A nice modeling aspect of this problem is that the number of clusters is not specified as
part of the input, and rather, left to the algorithm. This makes it a compelling problem when
we do not have a priori knowledge of the number of clusters we seek in the final partitioning.

Since being introduced formally as an optimization problem, there have been numerous
works trying to understand the computational complexity of the problem. Bansal et al. [3]
show that the problem is APX-hard (ruling out the design of PTASes unless P=NP) and
obtain a constant-factor approximation algorithm for this problem. Subsequently, there have
been a series of works (see, e.g., the survey by Wirth [23]) getting better factors, with the
current best bound being a factor of 2.06 due to Chawla et al. [8].

Despite the simplicity and elegance of the various clustering formulations described thus
far, a significant shortcoming of most of them is that they are not robust to noisy points. For
example, the presence of a few outliers in the data set can completely change the cost and
structure of solutions obtained by running clustering algorithms for k-median, k-means, etc.
Indeed, this has prompted much recent study in the CS, ML and statistics communities of
robust versions of these problems [6, 10, 17]. Motivated by this observation, and the fact that
real-world data sets are often noisy, we investigate the robustness of correlation clustering.

I Problem 2 (Robust-Correlation-Clustering). The input to this problem is identical
to the correlation clustering instance as in Problem 1. Additionally, we are also given a
parameter m, which denotes the number of points we can discard while clustering. The goal
is to identify a set D ⊆ V of outliers of size m, and cluster the remaining points V \D to
minimize the cost of the resulting clustering, i.e., the total number of E+ edges (resp. E−
edges) in V \D with end-points in different clusters (resp. same cluster).

We note that Correlation-Clustering problem also makes sense when the edge set
E+∪E− is not the complete graph, since we often do not have complete information about the
(dis)similarity of each pair of points (it could be expensive or even impossible to obtain such
information like in the case of protein-protein interactions). Now the problem becomes much
harder, and the current best known algorithms have approximation guarantees of a factor
of O(logn). Moreover, there is an approximation-preserving reduction from the Minimum-
Multicut problem, for which the best known approximation is an O(logn) factor [5]. In
this paper, we also consider the Robust-Correlation-Clustering problem on general
graphs, analogous to the study of Correlation-Clustering in general graphs [5].

I Problem 3 (Robust-Correlation-Clustering on General Graphs). The problem is
identical to Problem 2, with the exception that the union of E+ and E− need not be

(
V
2
)
.
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1.1 Our Results
Having introduced the problem, the first question we address is whether the Correlation-
Clustering objective is indeed susceptible to outliers in the dataset. That is, we seek to
understand whether the solution cost and/or structure can change a lot by the removal of a
few points in the dataset. Classical objectives such as k-median and k-means suffer from this
drawback even in the simplest of settings when we are promised that after removing some m
data-points, the optimal clustering of the remaining points would have 0 cost. In such cases,
solving k-means objective on the original instance could yield very different solutions than
the intended solution, which is the 0 cost (or perfect clustering).

Somewhat surprisingly, our first simple observation is that the correlation clustering
objective is inherently robust to an extent, at least in the case when the cost of the clustering
after removing m outliers becomes 0. We show that in this case, the optimal correlation
clustering solution and the optimal robust correlation clustering solution are structurally
identical upto O(m) points.

I Theorem 4. Consider an instance I of Robust-Correlation-Clustering on complete
graphs such that Opt(I) = 0, i.e., there exists a set D∗ ⊆ V of m vertices deleting which,
the subgraph induced by V \D∗ admits a perfect clustering C∗. Then, consider any optimal
solution C̃ to Correlation-Clustering (Problem 1). There exists a set D̃ of O(m) vertices
s.t. the cost of C̃ \ D̃1 has objective function value 0.

This theorem in fact sets apart the correlation clustering objective from other clustering
objectives such as k-means and k-median where an analogous statement to Theorem 4 does
not hold. Moreover, we believe that a similar result is true even when Opt(I) 6= 0 when
comparing the optimal solutions of the robust and non-robust problems.

Now, while this exhibits the robustness of correlation clustering w.r.t. optimal solutions,
the problem is APX-hard and hence we typically do not deal with optimal solutions. Hence,
we next consider the same question, but for approximation algorithms.

I Theorem 5. There exists an instance I of Robust-Correlation-Clustering on
complete graphs which satisfies the following properites: (a) Opt(I) = 0, i.e., there exists a
set D ⊆ V of m = O(

√
n) vertices deleting which, the subgraph induced by V \D admits a

perfect clustering, and (b) there exists a constant-factor approximately optimal solution C to
the Correlation-Clustering objective function (1), such that, for any set S of < n− 1
vertices, the cost of the clustering C \ S is still non-zero.

This then provides sufficient motivation for undertaking this study, with the main focus
of whether we can design efficient approximation algorithms for Robust-Correlation-
Clustering. Our first result in this direction is a negative result, which says that it is
in fact NP-hard to obtain any finite approximation algorithm for Robust-Correlation-
Clustering, even on complete graphs. This is in stark contrast to Problem 1, where we
know very good constant-factor approximations.

I Theorem 6. It is NP-hard to obtain any finite approximation factor for Robust-
Correlation-Clustering on complete graphs, unless we violate the budget on the number
of outliers.

1 We somewhat abuse notation to let C \D to denote the clustering obtained by removing the points in
D from the clustering C.
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We therefore seek to obtain bi-criteria approximation algorithms: an (a, b) bi-criteria
approximation for Robust-Correlation-Clustering is one where the solution’s cost is
at most a times the optimal cost, and the number of outliers in our solution is at most b ·m.

I Theorem 7. There is an efficient bi-criteria (6, 6)-approximation algorithm for Robust-
Correlation-Clustering on complete graphs.

Our algorithm is extremely simple: it essentially does a simple LP-based pre-processing
step to prune out a set of O(m) outliers, and then executes a classical algorithm for
Correlation-Clustering [2] (henceforth called ACNAlg) on the remaining vertices.
This approach works because the LP relaxation which [2] uses for solving Correlation-
Clustering is a purely covering LP (as opposed to the more natural metric LP relaxation
for Correlation-Clustering), and can easily be adapted to incorporating outliers. We
remark that, owing to the pre-processing step, our overall algorithm requires solving an
LP: it would be very interesting to develop a purely combinatorial algorithm for Robust-
Correlation-Clustering on complete graphs. It might even be possible for a simple
adaptation of the ACNAlg algorithm to be a constant-factor bi-criteria approximation. We
leave this as an important avenue of future research.

Finally, we turn our attention to Robust-Correlation-Clustering on general graphs,
where we show poly-logarithmic bi-criteria algorithms and logarithmic hardness results on
both the cost as well as the outlier budget. While the Correlation-Clustering problem is
equivalent to Minimum-Multicut [14] and we can use any Minimum-Multicut algorithm
to solve the problem, we show that one specific technique based on padded decompositions of
metric spaces naturally lends itself to solving the robust problem.

I Theorem 8. There is an efficient bi-criteria (O(logn), O(log2 n))-approximation algorithm
for Robust-Correlation-Clustering on general graphs.

I Theorem 9. It is NP-hard to obtain any bi-criteria (a, b)-approximation algorithm for
Robust-Correlation-Clustering on general graphs for b < αMC or a < αMC where
αMC is the inapproximability factor for the Minimum-Multicut problem.

It would be interesting to resolve the gap between the O(log2 n) upper bound and the
Ω(logn) lower bound for the outlier budget violation.

1.2 Related Work

Since its introduction, Correlation-Clustering has received much attention with focus
on designing better algorithms (see the survey of [23]), faster algorithms in the parallel
and distributed [11] and streaming settings [1], stochastic/average-case settings [19], and
applications [12, 13, 20]. There is also work on a related objective function of maximizing the
number of classified edges [3]. Being a maximization objective, it is easier to design simple
constant-factor approximation algorithms like random partitions, etc. There are however,
better SDP-based approximation algorithms [5, 22].

Recently there has also been a large body of work on the crucial problem of noise-
resilient or robust clustering for distance-based clustering objectives such as k-means [10, 17],
and designing faster algorithms [7, 21, 16], and parallel and distributed algorithms in this
model [9, 18]. To the best of our knowledge, this is the first work to study the Correlation-
Clustering problem from robustness point of view.
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1.3 Paper Outline
We first describe the inherent robustness to outliers of optimal solutions for Correlation-
Clustering in Section 2. We then consider Robust-Correlation-Clustering for
complete graphs, and show our hardness of approximation in Section 3, followed by the
bi-criteria algorithm in Section 4. Finally, in Section 5 and Appendix A, we turn our attention
to the case of general graphs and present our algorithm and hardness.

2 Robustness of the Correlation-Clustering Objective

In this section, we show two simple but illuminating results. The first result explains how, in
contrast to problems like k-median and k-means, the vanilla correlation clustering objective
is in fact inherently robust to an extent, when solved optimally. The second result then shows
this not to be true when considering solutions which are only approximately optimal. We
remark that the second result and that fact that correlation clustering is APX-hard [3] serves
as a strong motivation for studying the Robust-Correlation-Clustering problem.

2.1 Optimal Correlation-Clustering Solutions are Robust
In this section, we exhibit the inherent robustness of the correlation clustering objective
(1) in a specialized scenario. Indeed, consider an instance I of Robust-Correlation-
Clustering such that Opt(I) = 0, i.e., there exists a set of m points deleting which the
remaining points are perfectly clusterable, i.e., have 0 cost. Now, imagine we obtain an
optimal Correlation-Clustering solution (Problem 1) to instance I. We show that there
exist O(m) points, deleting which, the cost indeed becomes 0 for this solution. This tells us
that the optimal solutions to 2 and 1 are nearly identical to each other (upto O(m) points),
and hence, that the correlation clustering objective is inherently robust!

Proof of Theorem 4. We begin by recalling the theorem statement and setting up notation.
Let I be an instance of Robust-Correlation-Clustering such that Opt(I) = 0, i.e.,
there exists a set D∗ ⊆ V of m vertices deleting which, the subgraph induced by V \D∗
admits a perfect clustering C∗. And consider any optimal solution C̃ to instance I w.r.t the
Correlation-Clustering objective function (1). We would like to claim that there exists
a set D̃ of O(m) vertices such that C̃ \ D̃ is identical to C∗ \ D̃. We show this by showing
that the cost of the clustering C̃ \ D̃ is 0, and hence it must be the same as C∗ \ D̃.

To this end, let C∗ = {C∗1 , C∗2 , . . . , C∗r } denote the optimal Robust-Correlation-
Clustering clustering over vertices V \D∗, and let C̃ = {C̃1, C̃2, . . . , C̃s} denote the optimal
Correlation-Clustering clustering over all vertices V . We divide the clusters in C̃ into
two types:
(a) A cluster C̃ ∈ C̃ is a mixed cluster if it contains points from more than one cluster in C∗,

i.e., there exists i1, i2 s.t |C̃ ∩ C∗i1 | > 0 and |C̃ ∩ C∗i2 | > 0, and
(b) A cluster C̃ ∈ C̃ is an isolated cluster if it contains points from only one cluster in C∗.

We then show that the total number of points in mixed clusters is O(m), and can
simply add all such points to D̃. At this point, we would only be left with isolated clusters.
Subsequently, we show that two isolated clusters composed of points from the same cluster
in C∗ can contain at most O(m) points. Therefore, we once again add these points to D̃.
Finally, we add all the remaining set of at most m outliers to D̃. It is easy to see that the
resulting clustering C̃ \ D̃ = C∗ \D∗. These results are established in Lemmas 10 and 11. J

APPROX/RANDOM 2019



33:6 Robust Correlation Clustering

I Lemma 10. Let C̃ be a mixed cluster, and let X = C̃ ∩D∗ denote its overlap with the
outlier set R∗ in the optimal Robust-Correlation-Clustering clustering. Then we have
|C̃| ≤ O(1)|X|.

Proof. Since C̃ ∈ C̃ is a mixed cluster, there exists i1 6= i2 s.t |C̃ ∩C∗i1 | > 0 and |C̃ ∩C∗i2 | > 0.
Now, since C̃ is an optimal solution for Correlation-Clustering, we have that the cost
of the clustering must increase when we consider the following clustering C̃1 = (C̃ \ C̃)∪ (C̃ ∩
C∗i1) ∪ (C̃ \ C∗i1) formed by replacing C̃ with (C̃ ∩ C∗i1) and (C̃ \ C∗i1). since C∗ is an optimal
clustering with cost 0, we know that all the edges between C∗i1 and C∗i for i 6= i1 belong to
E−. This, combined with the fact that the cost of this new clustering is more than that of C̃
gives us the following inequality:

|C̃ ∩ C∗i1 |

∑
i 6=i1

|C̃ ∩ C∗i |

 ≤ |X||C̃ ∩ C∗i1 |
=⇒

∑
i 6=i1

|C̃ ∩ C∗i | ≤ |X| (1)

A similar argument by replacing C̃ with (C̃∩C∗i2) and (C̃ \C∗i2) would yield
∑
i6=i2 |C̃∩C

∗
i | ≤

|X|. Summing the two inequalities, we get that |C̃ \X| ≤ 2|X|, and so |C̃| ≤ 3|X|, completing
the proof. J

I Lemma 11. Let C̃1, C̃2 be two isolated clusters containing points from the same cluster
C∗ ∈ C∗, and let X1 = C̃1 ∩ D∗ and X2 = C̃2 ∩ D∗ denote their intersections with the
outlier set R∗ in the optimal Robust-Correlation-Clustering clustering. Then we have
|C̃1 ∪ C̃2| ≤ O(1)|X1 ∪X2|.

Proof. Since C̃ is an optimal solution w.r.t the Correlation-Clustering objective, we
know that if we modify C̃ by moving the points C̃1 ∩ C∗ to cluster C̃2, the cost does not
decrease. This gives us the following inequality, which uses the fact that all edges within C∗
belong to E+ due to the fact that cost of C∗ is 0:

|C̃1 ∩ C∗||C̃2 ∩ C∗| ≤ (|X1|+ |X2|)|C̃1 ∩ C∗|

=⇒ |C̃2 ∩ C∗| ≤ |X1|+ |X2|

A similar argument would also give us |C̃1 ∩ C∗| ≤ |X1|+ |X2|. Adding these inequalities
gives us |C̃1 ∩ C∗|+ |C̃2 ∩ C∗| ≤ 2(|X1|+ |X2|), and adding back X1 and X2 will incur an
additional cost of |X1|+ |X2|, hence completing the proof. J

2.2 Approximate Solutions may not be Robust
We next focus on approximation algorithms to Correlation-Clustering, and show that
they need not be robust to outliers (Theorem 5). Indeed, consider the following instance
I = (V,E) of Robust-Correlation-Clustering with n+

√
n points. Consider a

√
n×
√
n

grid, such that all points lying on the same row are pairwise similar, i.e., belong to E+ while
any two points lying on different rows are dissimilar and belong to E−. To this arrangement,√
n bad points are added, which are pairwise dissimilar to one another, but share a + edge

with each of the n points in the original
√
n×
√
n grid.

We first note that the optimal Correlation-Clustering solution to I has cost Ω(n
√
n).

Indeed, consider any triangle u, v, w where u is a bad point, and v and w belong to different
rows. Note that there must at least be one mis-classified edge in this triangle in the optimal
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solution. So, if we let B denote the set of all such bad triangles, the following is a valid lower
bound on OPT: min

∑
e∈t,t∈B ze s.t

∑
e∈t ze ≥ 1,∀t ∈ B. The dual of this is max

∑
t∈B yt s.t∑

t:e∈t,t∈B yt ≤ 1,∀e ∈ E. It is easy to see that the optimal value of the dual LP is at least
Ω(n
√
n) by setting yt = 1/n for all bad triangles in B. Now consider a clustering C which

clusters each column of the grid into a cluster, and puts the bad points in another cluster. The
overall cost of the clustering is O(n

√
n), which is a constant-factor approximation. Moreover,

note that the only way to get a 0 cost clustering from C (without altering the structure of C)
is by deleting all the n grid points.

3 Robust-Correlation-Clustering on Complete Graphs: Hardness

In this section, we give the proof of Theorem 6. The proof follows by an approximation
preserving reduction from vertex cover. Consider an instance Ivc of vertex cover, given by a
graph, G = (V,E) on n vertices. We construct the Robust-Correlation-Clustering
instance I as follows: for each vertex v ∈ V , we create two points v1 and v2, giving us a
total of 2n vertices in I. For every vertex v ∈ V , we make the edge (v1, v2) ∈ E+. Similarly,
for any pair of vertices u, v ∈ V the edges (u2, v2), (u1, v2) and (u2, v1) all belong to E−.
Finally, we place edge (u1, v1) ∈ E+ if the edge (u, v) ∈ E, and in E− otherwise. The outlier
budget is some parameter m, unrelated to the number of edges in G.

I Lemma 12. There exists a solution of cost 0 for I if G has a vertex cover of size m.

Proof. Let S ⊆ V denote a vertex cover of size m for G, and let S1 = {v1 : v ∈ S}. Then,
consider the natural clustering C = {{v1, v2} : v ∈ V } comprising of the pairs of vertices.
The only mis-classified edges in this clustering are of the form (u1, v1) corresponding to edges
(u, v) of G. But now, suppose we declare the points in S1 as outliers, then it follows that the
resulting clustering C \ S1 has 0 cost, since S is a vertex cover for G. J

I Lemma 13. If there is a set S of m outliers such that the remaining points has a 0 cost
clustering C in instance I, then G has a vertex cover of size at most m in instance Ivc.

Proof. We construct a candidate vertex cover S′ for G from the outlier-set S as follows:
for each v ∈ V , include v ∈ S′ if either v1 or v2 is in S. We claim then that S′ is a valid
vertex cover for G. To the contrary, suppose an edge (u, v) is not covered by S′. Then,
none of the four points u1, u2, v1, v2 are included in the outlier-set S in the robust clustering
solution. Now, since clustering C has 0 cost, it must be that the four points u1, u2, v1 and
v2 must belong to the same cluster in C, or else, one of the edges in (u1, u2), (u2, v2), and
(v2, v1), all of which belong to E+, would be mis-classified. But now the edges (u1, v2) and
(v1, u2) belong to E− and would be mis-classified in C, which contradicts the fact that C has
0 cost. J

Theorem 6 then follows from Lemmas 12 and 13.

4 Robust-Correlation-Clustering on Complete Graphs: Algorithms

In this section, we design a simple LP-rounding based bi-criteria approximation algorithm
for Robust-Correlation-Clustering (Problem 2) and prove Theorem 7. We begin by
recalling the problem setup: we are given an instance I consisting of a graph (V,E+, E−) on
n points with E+ ∪ E− =

(
V
2
)
. The goal is to identify a set of vertices D such that |D| = m,

and a clustering C over V \ D such that the total cost is minimized. We start with the
following definition crucial to the design and analysis of our algorithm.

APPROX/RANDOM 2019
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I Definition 14 (Bad Triangles). A triplet (u, v, w) of points is said to be a bad triangle if
exactly two of the three edges among (u, v), (v, w), (u,w) belong to E+ and one to E−.

Note a bad triangle captures the smallest unit of inconsistency in the similarity information
among the points: either we delete one of the vertices as an outlier, or at least one of the
edges must be mis-classified. In what follows, let B denote the set of all bad triangles in I.

4.1 Recap of ACNAlg for Correlation-Clustering [2]
Since the crux of our algorithm is the ACNAlg for correlation clustering, we begin with a
quick recap of ACNAlg. Essentially, the algorithm iteratively picks a random un-clustered
vertex v as a new cluster center, and includes all other un-clustered vertices similar to v.

Algorithm 1 ACNAlg(V,E+, E−).

set U = V and C = ∅ . initialize set of un-clustered points and set of cluster centers
while U 6= Φ do

sample v ∼ Unif(U)
update C ← C ∪ {v} . random v is sampled as a cluster center
let Cv = {u ∈ U : (u, v) ∈ E+} ∪ {v} . un-clustered vertices similar to v
update U ← U \ Cv

end while
return: C = {Cv : v ∈ C}

I Theorem 15 ([2]). ACNAlg(V,E+, E−) is a 3 approximation for Correlation-
Clustering.

In what follows, we outline the proof in [2] of ACNAlg, and describe a couple of definitions
and lemmas which will be useful in understanding our overall analysis.

I Definition 16. A bad triangle (u, v, w) ∈ B is said to be touched, denoted by touched(t) = 1,
if there exists a point in the algorithm execution when all three vertices u, v, w belong to the
un-clustered set U and one of u, v, w gets sampled as a cluster center.

I Lemma 17. At the end of Algorithm 1, every mis-classified edge (i.e., an E− edge which
is in a single cluster, or an E+ edge which goes across clusters) is associated with a unique
bad triangle which is touched. Moreover, the opposite vertex to the mis-classified edge must
be sampled as the cluster center.

Proof. Consider a stage of the algorithm when a vertex u gets chosen as a cluster center.
Then any newly mis-classified edge (v, w) can be of two types: (i) (v, w) ∈ E− is mis-classified
due to both (u, v) and (u,w) belonging to E+; (ii) (v, w) belonging to E+, with (u, v) ∈ E+
and (u,w) ∈ E−. In both cases we can associate the newly mis-classified edge (v, w) with
the unique bad triangle (u, v, w) which gets touched. J

Proof of Theorem 15. The first step is the following LP-based lower bound on Opt(I).
Indeed, we know that each bad triangle must have at least one mis-classified edge, and so
the LP is simply a linear relaxation for finding a maximal set of disjoint bad triangles.

maximize
∑
t∈B

wt, s.t., (LP1)∑
t∈B:u,v∈t

wt ≤ 1, ∀e = (u, v) ∈ E,

wt ∈ [0, 1], ∀t ∈ B.
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Since it will be useful in the next section, we state the dual program, which is a relaxation
for the hitting set for all bad triangles.

minimize
∑
u,v

zu,v, s.t., (LP2)

zu,v + zv,w + zu,w ≥ 1, ∀t ∈ B,
zu,v ∈ [0, 1], ∀u, v ∈ B.

Now, let pt = E[touched(t)], where touched(t) is the indicator random variable for whether
a bad triangle t is touched in the algorithm. The crux of the proof is the following lemma.

I Lemma 18. The values {E[touched(t)]/3 : t ∈ B} form a feasible solution to LP1.

Proof. To this end, consider any edge e = (u, v) and the set of bad triangles Bu,v =
{(u, v, w) ∈ B} it is part of. Lemma 17 tells us that (u, v) will be mis-classified if and only if
one of these bad triangles t ≡ (u, v, w) ∈ Bu,v is touched, and the third vertex w must be
picked as a cluster center when the triangle is touched. Finally note that, for any triangle
t ≡ (u, v, w), the probability that w is picked as the cluster center conditioned on touched(t)
is exactly 1/3, since the algorithm selects the new cluster center uniformly at random from
the un-clustered vertices. Thus we have that: 1 ≥ P((u, v) is mis-classified) =

∑
t∈Bu,v

pt/3,
thereby showing the LP feasibility of {pt/3}. J

Also note that by Lemma 17, we have that E[cost(C)] =
∑
t∈B pt, where cost(C) is the

objective value of the clustering C. Lemma 18 coupled with this inequality bounding the
cost completes the proof of Theorem 15. J

4.2 LP-rounding algorithm for Robust-Correlation-Clustering
We now present our constant-factor bi-criteria approximation for Robust-Correlation-
Clustering which uses ACNAlg as a sub-routine. Since the ACNAlg algorithm analysis
bounds the expected cost of the clustering in terms of the LP relaxation LP1, by duality, we
can also infer that the expected cost of ACNAlg is bounded by the LP relaxation LP2. We use
this intuition as our starting point: indeed, we can extend this covering LP to handle outliers
in the following natural manner. Let zu,v denote whether an edge (u, v) is mis-classified,
and yu denote whether a vertex is deleted or not. Then the following LP3 is a valid LP
relaxation for Robust-Correlation-Clustering on complete graphs.

minimize
∑

(u,v)∈(V
2)
zu,v, s.t. (LP3)

yu + yv + yw + zu,v + zv,w + zu,w ≥ 1, ∀t = (u, v, w) ∈ B, (2)∑
u

yu ≤ m,

zu,v ≥ 0, ∀(u, v) ∈
(
V
2
)
,

yu ≥ 0, ∀u ∈ V.

Equation (2) of LP3 states that at least a unit cost is incurred for any bad triangle in B if
no vertices from this triangle are deleted. Let {y∗u : u ∈ V } ,

{
z∗u,v : (u, v) ∈

(
V
2
)}

denote the
optimal solution to LP3.

I Lemma 19. Opt(I) ≥
∑

(u,v)∈(V
2) z
∗
u,v = Opt(LP3).
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Proof. Indeed, consider any optimal solution to the Robust-Correlation-Clustering
instance, and set zu,v = 1 if (u, v) is mis-classified, and yu = 1 if u is deleted. For any
bad triangle (u, v, w) ∈ B, note that either one of u, v or w must be deleted as an outlier
in the optimal solution, or one of the three edges must be mis-classified. Hence the first
LP constraint is satisfied. The second is true since the optimal solution deletes at most m
outliers. Finally, the objective function captures the number of mis-classified edges. J

Algorithm 2 RCCAlg(V,E+, E−,m).

1: Initialization: Vdel ← ∅ . Set of deleted vertices
2: Let the optimal solution of LP3 be denoted as {y∗u : u ∈ V } ∪ {z∗uv : (u, v) ∈

(
V
2
)
}

3: Vdel ← {v ∈ V : y∗v ≥ 1/6} . Delete vertices having y∗v ≥ 1/6
4: V ′ ← V \ Vdel
5: return: ACNAlg(V ′, E′+, E′−) . E′+, E

′
−: edges in

(
V
2
)
not incident on Vdel

4.3 Analysis

I Theorem 20. RCCAlg(V,E+, E−,m) is a bi-criteria (6, 6)-approximation for Robust-
Correlation-Clustering.

Proof. The proof of this result follows from Lemmas 21 and 22. J

I Lemma 21. At most 6m vertices are deleted by RCCAlg(V,E+, E−,m).

Proof. Recall that RCCAlg(V,E+, E−,m) deletes those vertices having y∗u ≥ 1/6 in the
optimal solution to LP3. Let the set of vertices deleted by RCCAlg(V,E+, E−,m) be denoted
Vdel. Then,

|Vdel| =
∑
u∈V

1(y∗u ≥ 1/6) ≤
∑
u∈V

6y∗u ≤ 6m.

Therefore, the budget of vertices to remove is not exceeded by more than a factor of 6. J

We next bound the cost incurred by the clustering output by RCCAlg(V,E+, E−,m).

I Lemma 22. The cost of the clustering output by RCCAlg(V,E+, E−,m) is at most 6 times
the cost of the optimal clustering to I.

Proof. Since the first step deletes vertices in Vdel = {v ∈ V : y∗v ≥ 1/6}, it suffices to
consider the remaining vertices V ′ = V \ Vdel and show that ACNAlg has cost at most 6Opt
on the residual instance. The proof is again very simple: indeed, each vertex v′ ∈ V ′ has
y∗v′ ≤ 1/6, we get that the optimal LP solution to LP3 satisfies z∗u,v + z∗v,w + z∗u,w ≥ 1/2 for
all (u, v, w) ∈ B′, where B′ denotes the set of all bad triangles induced in the vertex set V ′.
Then by simply considering the scaled variables 2z∗u,v, we get that there exists a feasible
solution to LP2 for the Correlation-Clustering instance induced in (V ′, E′+, E′−), of
cost at most 2Opt. Hence, since the 3-approximation of ACNAlg guarantee holds against the
dual LP LP1, we can use weak duality to complete the proof. J
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5 Algorithms for Robust-Correlation-Clustering on General Graphs

In this section, we consider Robust-Correlation-Clustering on general graphs and
prove Theorem 8. Given an instance I, comprising of graph G = (V,E+ ∪ E−) and outlier
budget m, we begin with the following LP relaxation:

Minimize
∑

(u,v)∈E+∪E−

zu,v, s.t., (LP6)

xu,v + xv,w ≥ xu,w, ∀u 6= v 6= w (3)
yu + yv + zu,v ≥ 1− xu,v, ∀(u, v) ∈ E− (4)

yu + yv + zu,v ≥ xu,v, ∀(u, v) ∈ E+ (5)∑
u

yu ≤ m, (6)

xu,v, zu,v, yu ∈ [0, 1]

In simple terms, on imposing integer constraints, LP6 asks to find a clustering s.t.
xu,v = 1 if u and v belong to different clusters, and 0 otherwise. It is easy to check that
such an assignment of xu,v satisfies the triangle inequality constraint Equation (3). The
objective function charges a unit cost (zu,v = 1) for dissimilar (resp. similar) pairs of points
(u, v) placed in the same (resp. different) clusters, only if neither u nor v is deleted, i.e, if
yu = yv = 0. In addition, Equation (6) ensures that at most m vertices are deleted in the
intended solution. The following lemma is then an immediate consequence of the fact that
the optimal integral solution to Robust-Correlation-Clustering instance I is feasible
for Equation (LP6).

I Lemma 23. The optimal solution {x∗, y∗, z∗} to the LP above has objective value at most
Opt(I), the cost of an optimal Robust-Correlation-Clustering solution. Moreover,
we may slightly perturb this solution to ensure that (a) min(u,v):x∗u,v 6=0 x

∗
u,v ≥ 1/n2 and

minu:y∗u 6=0 y
∗
u ≥ 1/n2, i.e., the smallest non-zero values among x∗ and y∗ variables is at

least 1/n2, and (b) the perturbed solution has same objective value and satisfies all the LP
inequalities except Equation (6), which is satisfied up to

∑
u y
∗
u ≤ (m+ 1/n).

We require the lower bound on the x∗ and y∗ variables for technical reasons which will
become clear as the proof proceeds. However, for all practical purposes, the reader may
assume that it is just the optimal solution to the LP. We begin by observing that the
one of the techniques of solving the Correlation-Clustering problem is by reducing
it to Minimum-Multicut problem (in fact, up to constant factors, the Correlation-
Clustering problem on general graphs is equivalent to Minimum-Multicut on general
graphs in [14]), and running the best known approximation to Minimum-Multicut to
get O(logn) approximations to Correlation-Clustering. In our case, for Robust-
Correlation-Clustering, just like how we used a specific approximation algorithm
ACNAlg for Correlation-Clustering, it turns out that the right starting point for general
graphs is the following beautiful partitioning scheme (Theorem 24) for metric spaces known
as padded decompositions. At a high level, they randomly partition a metric space into
regions of bounded diameter, such that the probability of a ball of radius ρ around any vertex
v being separated by the partitioning is proportional to ρ. This generalizes the standard
partitioning schemes which just guarantee that the probability that any pair u, v being
separated is proportional to d(u, v). While any scheme which satisfies the latter suffices to
get good algorithms for Correlation-Clustering, we crucially use the stronger property
in our algorithm for Robust-Correlation-Clustering.
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I Theorem 24 ([15]). For any finite metric space (X, d) and parameter ∆ > 0, there exists
a randomized algorithm PaddedClustering(X, d,∆) which outputs a clustering C of points in
X such that,

Every cluster C ∈ C has diameter at most ∆,
For every x ∈ X and ρ ∈ (0,∆/8),

Prob(Ballρ(x) * C(x)) ≤ α(x) ρ∆ , (7)

where α(x) = O(log( |Ball∆(x)|
|Ball∆/8(x)| )) = O(logn) and C(x) denotes the points in the same

cluster as x in C.

5.1 Rounding Algorithm
Before we describe the algorithm in detail, we now provide an overview.

Step 1. We first compute a near-optimal solution {x∗, y∗, z∗} for Equation (LP6) satisfying
the conditions of Lemma 23.

Step 2. We run the padded decomposition scheme on x∗ with ∆ = 0.25 to obtain a clustering
C∗ of the points. Indeed, we can interpret C∗ as a rounding of the xu,v variables into an
integral clustering: if x∗u,v ≥ 0.25, then u and v are definitely in different clusters of C∗,
and if x∗u,v is small, then the are in different clusters with probability ∝ O(logn)x∗u,v.

Step 3. If a mis-classified edge in this clustering has z∗u,v at least some constant, say 0.25,
then we can charge such edges to the LP objective.

Step 4a. It remains to consider mis-classified edges with small z∗u,v. If (u, v) ∈ E−, then
again this is an easy case, since we know that x∗u,v ≤ 0.25 because (u, v) is mis-classified,
hence it must belong to the same cluster, and all clusters have diameter at most 0.25
w.r.t the x∗ metric. Hence, if z∗u,v ≤ 0.25 for such edges, we can infer that y∗u + y∗v ≥ 0.5
from Equation (4), and we can handle all such edges by deleting all vertices with y∗u ≥ 0.25.

Step 4b. We are finally left with handling the case when (u, v) ∈ E+, and z∗u,v is small. Here
again, we are in good shape if x∗u,v is at least some constant, since from Equation (5)
we know that at least one of y∗u or y∗v or z∗u,v must be large, so we can either delete an
end-point of (u, v), or we can charge this mis-classified edge to the LP objective. On
the other hand, if x∗u,v is small and (u, v) is mis-classified (and so u and v belong to
different clusters since (u, v) ∈ E+), we use the padded decomposition property that
such an event occurred with very low probability, and we can actually afford to the scale
variables by x∗u,v to get that y∗u

x∗u,v
+ y∗v

x∗u,v
+ z∗u,v

x∗u,v
≥ 1. In expectation, the overall scaling

factor would be bounded from Theorem 24, and moreover, for each mis-classified edge in
E+, we can either charge it to the scaled z∗u,v variable, or delete an end-point due to the
scaled y∗u or y∗v being large. Of course, this is a simplified view since we cannot consider
different scaling factors for different edges. In our actual algorithm, we scale each y∗v by a
quantity rv, where rv is the radius of the smallest ball around v w.r.t metric s∗ which
gets separated by the clustering C∗. This is where our proof uses the stronger properties
of the padded decomposition schemes.

I Theorem 25. RCC-general(V,E+, E−,m) is a randomized (O(logn),O(log2 n)) bi-criteria
approximation for Robust-Correlation-Clustering on general graphs.

Proof. We begin by introducing some notation that will be useful for the analysis of
the algorithm. Consider the clustering C∗ output by PaddedClustering(V, x∗, 0.25) in RCC-
general(V,E+, E−,m). We slightly abuse notation and let C∗(v) denote the set of all vertices
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Algorithm 3 RCC-general(V,E+, E−,m).

1: Let {x∗, y∗, z∗} denote the (perturbed) optimal solution to LP6 obtained in Lemma 23
2: Compute C∗ = PaddedClustering(V, x∗, 0.25)
3: Define V −b = {v ∈ V : ∃u ∈ C∗(v) such that (u, v) ∈ E−} . candidate vertices for

deletion: have a − edge to at least one other vertex in the same cluster
4: Define V −del = {v ∈ V −b : y∗v ≥ 1/4}
5: Set V ′ ← V \ V −del
6: Define V +

b = {v ∈ V ′ : ∃u ∈ V ′ \ C∗(v) such that (u, v) ∈ E+} . candidate vertices for
deletion: have a + edge to at least one vertex in a different cluster

7: For each u ∈ V +
b , define

ŷu
def= 2r · y∗u, where 1

2r < min
v∈V ′\C∗(u)

x∗u,v ≤
1

2r−1

8: Define V +
del = {v ∈ V +

b : ŷv ≥ 1/3}
9: Return: Dalg = V −del ∪ V

+
del as outliers and the clustering Calg = C∗ \D

which are in the same cluster as v in the clustering C∗. Define E−b as the set of − edges
between vertices in V in the same cluster in C∗, E−b

def= {(u, v) ∈ E− : u ∈ C∗(v)}. In
addition, define E+

b to be the set of + edges between vertices in V ′ lying in different clusters
in C∗, i.e., E+

b

def= {(u, v) ∈ E+ : u ∈ V ′ \ C∗(v)}. Let cost(alg) denote the cost of the
clustering output by RCC-general(V,E+, E−,m) and let Vdel = V −del ∪ V

+
del denote the set of

vertices deleted. Observe that any edge that contributes to cost(alg) belongs to either E+
b or

E−b and is not incident on any vertex in Vdel. Therefore, cost(alg) can be decomposed as

cost(alg) ≤ cost(alg)− + cost(alg)+. (8)

where cost(alg)− denotes the cost associated with edges in E−b that are not incident on
vertices in V −del, and cost(alg)+ denotes the cost associated with edges in E+

b that are not
incident on vertices in V −del ∪ V

+
del.

Let Opt∗ denote the cost of the optimal solution to LP6. To bound the cost of our
solution, we show in Lemmas 28 and 33 respectively that cost(alg)− is upper-bounded by
4Opt∗, while E [cost(alg)+] is upper-bounded by O(logn)Opt∗.

On the other hand, to bound the number of vertices deleted by RCC-general(V,E+, E−,m),
we follow a similar strategy. Since, |Vdel| = |V +

del|+ |V
−

del|, we separately upper bound V −del
and E[V +

del] in Lemmas 27 and 32 by 4m and O(log2 n)m respectively. J

Recall that the optimal solution of LP6 is denoted as
(
{y∗u}, {x∗u,v}, {z∗u,v}

)
. We begin by

establishing some basic properties of the clustering C∗.

B Claim 26. For any edge (u, v) ∈ E−b , y∗u + y∗v + z∗u,v ≥ 0.75.

Proof. Recall that E−b denotes the set of dissimilar points in V that are placed in the same
cluster by C∗. Since, E−b ⊆ E−, the optimal solution to LP6 must satisfy the negative
edge-constraint (4) for edge (u, v), and so y∗u + y∗v + z∗u,v ≥ 1 − x∗u,v. Now, note that
x∗u,v ≤ 0.25, since u and v belong to the same cluster in C∗ and the diameter of any cluster
in PaddedClustering(X, d,∆) is at most ∆ from Theorem 24. C

I Lemma 27. The set of vertices, V −del satisfies |V
−

del| ≤ 4
∑
v∈V y

∗
v ≤ 4(m+ 1/n).

Proof. Recall that V −del is the set of vertices, v ∈ V −b such that y∗v ≥ 1/4. This, combined
with the fact that {y∗v} satisfies

∑
u y
∗
u ≤ m+ 1/n from Lemma 23, completes the proof. J
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I Lemma 28. The cost of mis-classified E− edges cost(alg)− is at most 4
∑

(u,v)∈E− z
∗
u,v.

Proof. Observe that cost(alg)− accrues unit cost only for edges in E−b which are not incident
on a vertex in V −del. This implies that y∗u ≤ 0.25 for all vertices incident on such edges. This,
combined with Claim 26 completes the proof. J

We now move onto the analysis of cost(alg)+ and |V +
del|, which are slightly more involved. In

this respect, define

ẑu,v
def=


z∗u,v

x∗u,v
, v 6∈ C∗(u),

0 otherwise.
(9)

We demonstrate some useful facts about ẑu,v and ŷu, which recall is defined previously as,

ŷu = 2r · y∗u, where, r : 1
2r < min

v∈V ′\C∗(u)
x∗u,v ≤

1
2r−1

B Claim 29. For any edge (u, v) ∈ E+
b , E[ẑu,v] ≤ O(logn)z∗u,v.

Proof. Observe that if two points belong to different clusters, then we must necessarily have
for ρ = x∗u,v that Ballρ(u) * C(u)). Therefore, from Theorem 24,

Prob(u 6∈ C∗(v)) ≤ O(logn)
x∗u,v
0.25 .

Therefore, from the definition of ẑu,v in (9), it follows that, E[ẑu,v] ≤ O(logn)x
∗
u,v

0.25
z∗u,v

x∗u,v
+ 0 =

O(logn)z∗u,v. C

B Claim 30. For any vertex v ∈ V −b , E [ŷu] ≤ O(log2 n) · y∗u.

Proof. Observe that x∗u,v ∈ [n−2, 1]. Therefore, r takes values from the set {0, 1, 2, . . . ,
2 logn}. By definition of ŷu,

E[ŷu] =
2 logn∑
r=0

2r (y∗u) Prob
(

1
2r < min

v∈V \C∗(u)
x∗u,v ≤

1
2r−1

)
,

≤
2 logn∑
r=0

2r (y∗u) Prob
(

min
v∈V \C∗(u)

x∗u,v ≤
1

2r−1

)
. (10)

Next, observe that the event minv∈V ′\C∗(u) x
∗
u,v ≤ 2−(r−1) can only occur if the ball of radius

2−(r−1) centered at u does not lie entirely within C(u). Therefore, from Theorem 24,

Prob
(

min
v∈V \C∗(u)

x∗u,v ≤
1

2r−1

)
≤ O(logn) 1

2r−1 .

Plugging this into (10) gives, E[ŷu] ≤ O(logn)
∑2 logn
r=0 y∗u = O(log2 n) · y∗u. C

B Claim 31. For any edge (u, v) ∈ E+
b , we have that ŷu + ŷv + ẑu,v ≥ 1.

Proof. Since E+
b ⊆ E+, every (u, v) ∈ E+

b must satisfy the positive edge-constraint (5)
y∗u + y∗v + z∗u,v ≥ x∗u,v. The proof then concludes by dividing both sides by x∗u,v, and using
the definitions of ŷu and ẑu,v. C
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I Lemma 32. The set of vertices V +
del satisfies, E

[∣∣V +
del
∣∣] ≤ O(log2 n) m.

Proof. Recall that V +
del is defined as the set of vertices v ∈ V +

b such that ŷv ≥ 1/3. Therefore
|V +

del| =
∑
v∈V +

b
1(ŷv ≥ 1/3). Since 1(ŷv ≥ 1/3) ≤ 3ŷv, it follows that |V +

del| ≤ 3
∑
v∈V +

b
ŷv.

Taking expectation on both sides, and using Claim 30, E[|V +
del|] ≤ O(log2 n)

∑
v∈V +

b
y∗v . The

proof concludes by relaxing the summation v ∈ V +
b to v ∈ V , and using Lemma 23 to claim

that
∑
v∈V y

∗
v ≤ m+ 1

n ≤ 2m. J

I Lemma 33. The expected cost of the mis-classified E+ edges E [cost(alg)+] is at most
O(logn)

∑
(u,v)∈E+ z∗u,v.

Proof. cost(alg)+ is the cost corresponding to edges in E+
b which are not incident on any

vertex in Vdel. Recall that a vertex v ∈ V ′ belongs to Vdel only if ŷv ≥ 1/3. Following a
similar proof as Lemma 28, we get that,

cost(alg)+ ≤
∑

(u,v)∈E+
b

1(ẑu,v ≥ 1/3) ≤ 3
∑

(u,v)∈E+
b

ẑu,v,

Taking expectations on both sides, using Claim 29 to upper bound E[ẑu,v] by O(logn)z∗u,v,
and relaxing the summation to (u, v) ∈ E+ completes the proof. J
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A Hardness of Robust-Correlation-Clustering on General Graphs

Firstly, when m = 0, Robust-Correlation-Clustering is simply Correlation-
Clustering, for which is known NP-hardness of Ω(αMC) [5]. We show that it is NP-
hard to get any (a, b)-approximation for Robust-Correlation-Clustering with finite b
when a < αMC, for any m > 0.

I Theorem 34. It is NP-hard to have an (a, b) bi-criteria approximation to Robust-
Correlation-Clustering for any finite b and a < αMC.

Proof. The proof is via a reduction from Minimum-Multicut, similar to the proof for
Correlation-Clustering in [5]. Consider the Minimum-Multicut instance problem
I = {G(V,E), {(si, ti), 1 ≤ i ≤ k}}, where (si, ti), 1 ≤ i ≤ k represent k source-sink pairs.
We construct the Robust-Correlation-Clustering problem instance I∗ as follows. The
edges in G become + edges in I∗. For each i, 1 ≤ i ≤ k, we add a negative edge between
(si, ti) of weight −W , for some large positive integer W , say W = n3. We can make the
instance unweighted by replacing a negative edge of weight −W by W parallel length two
paths; each path has a fresh intermediate vertex, with one + edge and one − edge. Clearly,
the minimum cost clustering must have (si, ti) in different clusters ∀1 ≤ i ≤ k. In addition,
introduce m more vertices which act like outliers, represented by set U = {u1, u2, . . . , um} in
I∗. Connect each ui, 1 ≤ i ≤ m to every vertex q, q ∈ V (I∗) \U with an edge of weight −W
and an edge of weight W . We can make the instance unweighted by replacing the negative
edge as described before, and the positive edge of weight W by W parallel length two paths;
each path has a fresh intermediate vertex, with both edges +.

Due to the above construction, the vertices (q, ui), q ∈ V (I∗) \ U, 1 ≤ i ≤ k add a high
cost irrespective of whether they lie in the same cluster or not.

Hence, the optimal solution to Robust-Correlation-Clustering on the problem
instance I∗ removes vertices u1, u2, · · · , um, and the corresponding optimal cost is same as
the Minimum-Multicut optimal cost on instance I. J

We next establish that unless the budget of vertices to be removed is violated by a
certain factor, it is NP-hard to find any approximation to the cost of the optimal solution to
Robust-Correlation-Clustering.

I Theorem 35. It is NP-hard to find an (a, b) bi-criteria approximation to Robust-
Correlation-Clustering for any finite a, and b < αMC.

Proof. The proof of this result once again follows via a reduction from Minimum-Multicut.
Indeed, consider the Minimum-Multicut instance problem I = {G(V,E), {(si, ti), 1 ≤ i ≤
k}}, where (si, ti), 1 ≤ i ≤ k represent k source-sink pairs. We now define an intermediate
problem which will simplify our overall reduction. J

I Definition 36 (Vertex-Multicut). Given a problem instance I = {H, {(si, ti), 1 ≤ i ≤
k}}, where (si, ti), 1 ≤ i ≤ k represent k source-sink pairs, the Vertex-Multicut problem
is to find the minimum set of vertices S ⊆ V (H) such that no source-sink pair lie in the
same connected component in the graph induced on V (H) \ S.

I Lemma 37. There exists an approximation preserving reduction from Minimum-Multicut
to Vertex-Multicut.
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Proof. The idea is to reduce the Minimum-Multicut problem instance I to a Vertex-
Multicut problem instance I ′ = {H(V ′, E′), {(s′i, t′i), 1 ≤ i ≤ l}}. Consider the graph
G = (V,E) as defined above. Reduce each vertex vi ∈ V into a clique of large size, say n, where
n = |V |. Let clique(vi) = {vi1, vi2, . . . , vin}, where vi ∈ V, 1 ≤ i ≤ n represent the clique in
H. For every (si, ti), 1 ≤ i ≤ k source-sink pair in I, let each of (sia, tib) ∀1 ≤ a, b ≤ n be
a source sink pair in instance I ′. Hence, instance I ′ will contain kn2 source-sink pairs in
comparison with the k pairs in I. We now define the edges in I ′. E′ is composed of two
components, ∪i≤nEclique(vi) and Eacross, where Eclique(vi) = {(via, vib), 1 ≤ i, a, b ≤ n, a 6= b},
and Eacross = {(vij , vji) : (vi, vj) ∈ E}.
We now have a Vertex-Multicut problem instance I ′. We claim that the reduction from
I to I ′ is an approximation preserving reduction. Let S denote the optimal solution to
problem instance I ′, that is, S denotes the optimal set of vertices to remove to disconnect
the source-sink pairs. Let vij ∈ S, 1 ≤ i, j ≤ n. Removing the edge (vi, vj) ∈ E in instance
I is equivalent to removing the vertex vij (or vji) in I ′ where (ui, vj) ∈ E′. Hence solving
the Vertex-Multicut problem solves Minimum-Multicut problem as well. J

I Lemma 38. There exists an approximation preserving reduction from Vertex-Multicut
to approximating the budget of number of vertices to remove in Robust-Correlation-
Clustering problem.

Proof. Given a Vertex-Multicut problem instance I ′ = {H, {(si, ti)1 ≤ i ≤ k, }}, we
construct a Robust-Correlation-Clustering problem instance I ′′. The edges in H

becomes positive edges in I ′′. In addition, add a negative edge between each (si, ti) pair
of weight −W , for some large positive integer W , say W = n3. The graph can be made
unweighted as discussed in the proof to Theorem 34.

Consider the instance I ′′. The minimum set of vertices R such that the graph induced
on remaining vertices has a 0 cost clustering is identical to the optimal solution to the
instance I ′. From Lemma 37, it follows that if I ′ can be solved optimally, the underlying
Minimum-Multicut problem instance I can be solved optimally. Therefore from Theorem 34
and Lemma 37, it follows that it is NP-hard to violate the budget of number of vertices to
remove by a factor < αMC such that the cost of the output clustering is a finite approximation
to the optimal cost. J
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