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Abstract
Motivated by recent works on streaming algorithms for constraint satisfaction problems (CSPs),
we define and analyze oblivious algorithms for the Max-kAND problem. This is a class of simple,
combinatorial algorithms which round each variable with probability depending only on a quantity
called the variable’s bias. Our definition generalizes a class of algorithms defined by Feige and Jozeph
(Algorithmica ’15) for Max-DICUT, a special case of Max-2AND.

For each oblivious algorithm, we design a so-called factor-revealing linear program (LP) which
captures its worst-case instance, generalizing one of Feige and Jozeph for Max-DICUT. Then,
departing from their work, we perform a fully explicit analysis of these (infinitely many!) LPs. In
particular, we show that for all k, oblivious algorithms for Max-kAND provably outperform a special
subclass of algorithms we call “superoblivious” algorithms.

Our result has implications for streaming algorithms: Generalizing the result for Max-DICUT
of Saxena, Singer, Sudan, and Velusamy (SODA’23), we prove that certain separation results hold
between streaming models for infinitely many CSPs: for every k, O(log n)-space sketching algorithms
for Max-kAND known to be optimal in o(

√
n)-space can be beaten in (a) O(log n)-space under a

random-ordering assumption, and (b) O(n1−1/kD1/k) space under a maximum-degree-D assumption.
Even in the previously-known case of Max-DICUT, our analytic proof gives a fuller, computer-free
picture of these separation results.
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1 Introduction

In this work, we study a restricted but natural class of randomized algorithms called oblivious
algorithms for a family of constraint satisfaction problems (CSPs) called Max-kAND for
k ≥ 2. In the Max-kAND problem, an algorithm is presented with a list of m constraints on
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15:2 Oblivious Algorithms for the Max-kAND Problem

n Boolean variables; each constraint is a disjunction on k literals (e.g., x1 ∧ ¬x4 ∧ ¬x5 for the
case of Max-3AND); and the goal is to satisfy the highest possible fraction of constraints. We
begin by introducing these problems and algorithms informally and discussing the context
and motivation for our work.

1.1 Background
Context on Max-kAND

Constraints of Max-kAND are maximally “precise” among all Boolean CSPs: each constraint
specifies exactly what its k variables must be assigned to in order for that constraint to
be satisfied.1 Numerous works have developed algorithms for Max-kAND [43, 22, 23, 8]
as well as NP-hardness-of-approximation results [44, 42, 34, 15, 35]; we now know that
Θ(k/2k)-approximations are the best achievable in polynomial time assuming P ̸= NP [8, 35].

Further attention has been devoted to important special cases of Max-kAND. One
particularly important example is the Max-DICUT problem, a special case of Max-2AND
where each constraint is of the form “x ∧ ¬y”. Max-DICUT can be viewed alternatively
as a directed graph optimization problem, where the goal is to find a directed cut (S, T )
maximizing the number of edges (s, t) such that s ∈ S and t ∈ T . Approximation algorithms
for Max-DICUT (and sometimes Max-2AND) were developed in [18, 16, 33, 30], and its
hardness-of-approximation was studied in [24]. Max-3AND was studied in [47, 45].

The importance of Max-kAND, the extensive work on its polynomial-time approximability,
and the “preciseness” of its constraints have inspired significant study on its approximability
in restricted algorithmic settings. For instance, Trevisan [43] showed that the natural linear
programming (LP) relaxation for Max-kAND beats the trivial (uniformly random rounding)
algorithm’s approximation ratio by a factor of 2, and that this LP’s “nice” structure allows
it to be solved (approximately) by distributed algorithms. Max-DICUT in particular has
been studied extensively in various restrictive algorithmic frameworks and models, including
“combinatorial” algorithms [21], spectral partitioning algorithms [46], local search algorithms
[1, 2], parallel algorithms [6], near-linear time algorithms [40], and online algorithms [5].

Oblivious algorithms for Max-kAND

In this paper, we define a restricted class of algorithms for Max-kAND called oblivious
algorithms (which were previously studied in the case of Max-DICUT by Feige and Jozeph [17]).
Oblivious algorithms fall into the paradigm of probabilistic rounding algorithms. These
algorithms somehow choose, for each variable v, a probability pv ∈ [0, 1], and then assign
xv to 1 w.p. pv and 0 w.p. 1 − pv (independently of all other variables); the goal is then to
choose these probabilities efficiently while ensuring that the resulting assignment satisfies
many of the constraints in expectation.

Informally, oblivious algorithms are probabilistic rounding algorithms which choose
rounding probabilities for each variable v in a “very local” way. It is simplest to define
these algorithms, as in [17], in the case of (the graph-theoretic view of) Max-DICUT. In this
context, oblivious algorithms choose a rounding probability for each vertex depending only
its bias. In a directed graph G, the bias of a vertex v is a real number in the interval [−1, +1],

1 In particular, as observed by Trevisan [43], an arbitrary Boolean predicate ϕ of arity k with r satisfying
assignments can be converted to r “disjoint” applications of Max-kAND constraints; this transformation
makes an instance of Max-CSP(ϕ) into an instance of Max-kAND and drops the value by a factor exactly
r. In turn, this means that algorithms for Max-kAND can approximate the acceptance probability of
k-bit probabalistically checkable proofs (PCP) verifiers.
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and is defined as the difference between v’s in- and out-degrees divided by its total degree.
(Note that the in- and out-degrees of a vertex completely describe what the vertex can “see”
about the graph around it by exploring paths of length 1.) The natural generalization of
bias to a variable in Max-kAND is the difference between its number of positive and negative
appearances in the instance, divided by the total number of appearances,2 and oblivious
algorithms again are those which round each variable depending only on its bias.

In this paper, we also define a class of algorithms called superoblivious algorithms. These
are a subclass of oblivious algorithms which round each variable depending only on the sign
of the bias (i.e., positive, negative, or zero) and not the magnitude; for instance, they ignore
the distinction between variables of bias +0.9 (95% of appearances are positive) and bias
+0.1 (55% of appearances are positive). A principal focus of this paper is showing that for
all k, oblivious algorithms can achieve strictly better approximation ratios vs. superoblivious
algorithms for Max-kAND, and we motivate this focus in the following section.

Max-kAND and streaming algorithms

Max-kAND and its special case Max-DICUT have recently received heavy attention in one
particular family of models, namely, those of streaming algorithms [20, 14, 7, 37, 36].3 In
these models, the algorithm has highly bounded space (relative to n, the number of variables
in the instance) and takes one or more passes over the list of constraints in the instance before
outputting an estimate for the value of the instance. It turns out that certain separation
results established between streaming models in [36, 37] are closely related to the distinction
between oblivious and superoblivious algorithms described in the previous subsection, and
to illuminate this connection, we pause to give a quick recap of these works on streaming
algorithms for CSPs.

Chou, Golovnev, and Velusamy [14] designed a O(log n)-space streaming algorithm which
(arbitrarily-close-to-)4/9-approximates the value of instances of Max-DICUT, and showed that
this algorithm is optimal in o(

√
n) space. Chou, Golovnev, Sudan, and Velusamy [12, 13]

vastly generalized this “dichotomy” result to hold for all CSPs (even over non-Boolean
alphabets): They showed that for every CSP predicate ϕ, there is a ratio α∗, below which
there are O(log n)-space approximation algorithms, and above which there are no o(

√
n)-space

algorithms.4
The recent works of Saxena, Singer, Sudan, and Velusamy [37, 36] demonstrated that

Max-DICUT exhibits a streaming-complexity-theoretic phenomenon previously unbeknownst
to any CSP: It admits approximation algorithms in certain streaming regimes which beat
the optimal o(

√
n)-space approximation ratio of 4/9 [14]. Specifically, better-than-4/9-

approximations are achievable either by (i) using Õ(
√

n) space or (ii) assuming that the input
stream of constraints is randomly ordered. These works relied heavily on the investigation by
Feige and Jozeph [17] of oblivious algorithms for Max-DICUT. Indeed, Feige and Jozeph [17]
constructed a 0.483 > 4/9-approximation oblivious algorithm for Max-DICUT, and the main
thrust of [37, 36] is to use stronger streaming models to “implement” the [17] algorithm by
sampling random edges and calculating the biases of their endpoints, thereby beating the
4/9-approximation of [14].

2 Or, more generally in weighted instances, the total weight of the clauses in which it appears positively
vs. those in which it appears negatively.

3 Other works in the broader area of approximation algorithms for CSPs in streaming models include
[3, 4, 29, 26, 27, 9, 10, 11, 19, 27, 28, 39]. See also Sudan’s survey [41] and the author’s undergraduate
thesis [38].

4 Technical note: The lower bounds in [12, 13] only hold in general for a special class of streaming
algorithms called sketching algorithms; we ignore this point in the exposition.

APPROX/RANDOM 2023
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The principal motivation for the current work is extending the results of [37, 36] to
Max-kAND for all k: That is, showing that tweaking the streaming model can lead to
improved approximations vs. the model studied in the dichotomy theorem of [12]. It is not
difficult to show that oblivious algorithms can be “implemented” in these modified streaming
settings, analogously to the Max-DICUT case. Thus, letting α∗

k denote the O(log n)-vs.-
Ω(

√
n)-space dichotomy threshold for Max-kAND, the goal becomes to show that oblivious

algorithms beat the ratio α∗
k. A recent work of Boyland, Hwang, Prasad, Singer, and

Velusamy [7] studied exactly this ratio, and showed that for each k, the optimal algorithm
for Max-kAND essentially “implements” a superoblivious algorithm. (Note that a priori one
cannot simulate a superoblivious algorithm in O(log n) space; the algorithm in [7] instead
measures some quantitative properties of the input instance which turn out to relate to the
behavior of a certain superoblivious algorithm.) In particular, the threshold ratio α∗

k equals
the ratio achieved by some superoblivious algorithm. Thus, to prove the separation results,
it suffices to show that oblivious algorithms strictly outperform superoblivious algorithms
(for all k); as mentioned above, this is the main focus of the current work.

Linear programming as a tool for analyzing approximation algorithms

The key technical ingredient in the current work is the definition and analysis of a so-called
factor-revealing linear program (LP). In such an LP, feasible solutions encode instances of the
problem at hand (i.e., Max-kAND); when we fix an algorithm in the designated class (i.e., an
oblivious algorithm), the objective function “reveals” the approximation ratio the algorithm
achieves on any given instance. Similar programs were first studied in depth for facility
location problems by Jain, Mahdian, Markakis, Saberi, and Vazirani [25], and have been
examined in other contexts such as online bipartite matching [31]. Our LP is a generalization
of the one developed by Feige and Jozeph [17] for Max-DICUT.

To show that there is a 0.483-approximation oblivious algorithm for Max-DICUT, Feige and
Jozeph [17] used computer analysis of their LP; as mentioned above, the fact that 0.483 > 4/9
– that is, oblivious algorithms outperform superoblivious algorithms for Max-DICUT – in
turn powered the works of [37, 36] in establishing that there are improved approximations
in stronger streaming models. However, this result of [17] was used as a black box. We
believe that our approach, which contrasts between “superoblivious” and more general
“oblivious” algorithms and attacks the corresponding LPs from an analytical perspective,
gives a more natural and systematic explanation for why Max-DICUT admits these improved
approximations – and implies that Max-kAND does as well, for all k.

1.2 Results
Next, we turn to statements of our results. In our notation, an oblivious algorithm for
Max-kAND is denoted Oblt,p

k , where t and p are, respectively, a bias partition which splits
the space of possible biases (i.e., the interval [−1, +1]) into discrete intervals, and a rounding
vector p specifying a probability with which to round variables for each of these intervals.
We denote by α(Oblt,p

k ) the approximation ratio achieved by this algorithm. (See Section 2
below for formal definitions of these objects.)

To state the theorems properly, we first define some relevant quantities which first arose
in the context of small-space sketching algorithms for Max-kAND in the work of Boyland et
al. [7]. We define

γk
def=

{
1
k k odd

1
k+1 k even,

(1)
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and

p∗
k

def= 1
2(1 + γk) (2)

and

α∗
k

def= 2 · (p∗
k(1 − p∗

k))⌊k/2⌋. (3)

That is, for even k, α∗
k = 2−(k−1)(1 − 1/(k + 1))k/2(1 + 1/(k + 1))k/2, and for odd k,

α∗
k = 2−(k−1)(1 − 1/k)(k−1)/2(1 + 1/k)(k−1)/2. In particular, at k = 2, we have p∗

k = 2/3 and
α∗

k = 4/9.
Our first theorem states that the optimal superoblivious algorithm for Max-kAND achieves

ratio α∗
k, and that this algorithm rounds with probability p∗

k:

▶ Theorem 1 (Characterization for superoblivious algorithms). For every k ≥ 2, there is
a unique superoblivious algorithm Oblt,p

k achieving ratio α(Oblt,p
k ) = α∗

k, and all other
superoblivious perform strictly worse. (In particular, for t = (0, 1), every rounding vector
p = (p) satisfies α(Oblt,p

k ) ≤ α∗
k, with equality if and only if p = p∗

k.)

Our main theorem then states that one can improve over these superoblivious algorithms
using other oblivious algorithms, and indeed, it suffices to consider only slight “perturbations”
of the optimal superoblivious algorithms:

▶ Theorem 2 (Main theorem: Better oblivious algorithms). For every k ≥ 2, there exists a
bias partition t and a rounding vector p such that the oblivious algorithm Oblt,p

k achieves
α(Oblt,p

k ) ⪈ α∗
k. (In particular, there exists ϵ∗ > 0 such that for all 0 < ϵ ≤ ϵ∗, there exists

0 < δ < 1 such that t = (δ, 1) and p = (p∗
k + ϵ) satisfy α(Oblt,p

k ) ⪈ α∗
k.)

These theorems are both proven by analyzing the dual of a certain natural “factor-
revealing” linear program. Arguably, this “dual” perspective systematizes the ad hoc analyses
of small-space sketching algorithms for Max-DICUT in [14] and for Max-kAND in [7]. Indeed,
the analysis in those paper examined certain systems of linear inequalities using “elementary”
reasoning (i.e., taking nonnegative linear combinations), and it is exactly this type of reasoning
which is captured by the technology of dual linear programs. Our perspective also sheds
direct light on why oblivious algorithms outperform the 4/9 ratio for Max-2AND was key to
the streaming separations established for Max-DICUT by Saxena et al. [37, 36].

Indeed, our results also have the following implications for streaming algorithms, general-
izing connections established by Saxena, Singer, Sudan, and Velusamy [37] for the special
case of Max-DICUT. We say an instance Ψ of Max-kAND is in input form if it is unweighted
(i.e., the weight of every clause is 1), though multiple copies of the same clause are allowed.
These instances will be the input to our algorithms though this is essentially without loss of
generality as general instances can be “rounded” to such instances via standard arguments.

▶ Theorem 3 (Random-order streaming algorithm). For all k ≥ 2, there exists α > α∗
k such

that for all ϵ > 0, the following holds. There is an O(log n)-space streaming algorithm which,
for every instance Ψ of Max-kAND in input form with n variables and poly(n) clauses, given
as input Ψ’s clauses in a randomly-ordered stream, outputs an (α − ϵ)-approximation to the
Max-kAND value of Ψ with probability 99/100.

▶ Theorem 4 (Bounded-degree streaming algorithm). For all k ≥ 2, there exists α > α∗
k such

that for all ϵ > 0, the following holds: For all D ≥ 2, there is an O(D1/kn1−1/k log n/ϵ2/k)-
space streaming algorithm which, for every instance Ψ of input form with n variables and
maximum degree ≤ D (i.e., every variable is contained in ≤ D clauses), given as input
Ψ’s clauses in an adversarially-ordered stream, outputs an (α∗

k + ϵ)-approximation to the
Max-kAND value of Ψ with probability 99/100.

APPROX/RANDOM 2023



15:6 Oblivious Algorithms for the Max-kAND Problem

Table 1 The table below displays concrete approximation ratio for Max-kAND, for k ∈ {2, . . . , 5}.
In the second column, we write the trivial upper bound of 2−(k−1) on the approximation ratio of all
oblivious algorithms (and more generally all “local” algorithms) for Max-kAND (see Observation 7
below). In the third column, we write α∗

k, the approximation ratio achieved by the best superoblivious
algorithm (and also by the best o(

√
n)-space sketching algorithm [7]). In the fourth column,

we highlight that the only previously known CSP for which oblivious algorithms outperformed
superoblivious algorithms was Max-2AND (from [17]). In the fifth, we include approximation ratios
from our “perturbed superoblivious” algorithms, as in Theorem 2 with δ = 0.01 and ϵ = 0.001.
Finally, in the sixth column, we report ratios achieved by much more complex algorithms which we
constructed. These algorithms are parametrized by triples (ℓ, x, y), where ℓ specifies the number of
bias classes, and x, y specify a rounding vector. ℓ is chosen such that the number of variables, which
is roughly (2ℓ)k (see Section 3.1 below), is in at most the hundreds of thousands, in order for the
LP solver to run in a reasonable amount of time. The bias partition is a uniform partition of [0, 1]
into ℓ intervals and, imitating the algorithm in [17, Proof of Theorem 1.3], our rounding vector are
“two-piece piecewise-linear functions”: the first part of the vector, up to bias x, interpolates linearly
between probability 1

2 and y, and the second part interpolates linearly between probability y and 1.
The values in the last two columns were calculated with a Python script and the LP solver glpk; the
code is available online at https://github.com/singerng/oblivious-csps. For the final column,
the parameters (x, y) were chosen using a grid search; solving the final LPs took 1 hour, 56 minutes
on a 2021 Macbook Pro.

k Upper bound Superobl. Prev. New, pert. New, piecewise lin.
2 1/2 = 0.5 4/9 ≈ 0.4444 0.4835 [17] 0.4457 0.4844 @ (200, 0.5, 1.0)
3 1/4 = 0.25 2/9 ≈ 0.2222 0.2226 0.2417 @ (30, 0.7, 1.0)
4 1/8 = 0.125 72/625 = 0.1152 0.1157 0.1188 @ (11, 0.8, 0.8)
5 1/16 = 0.0625 36/625 ≈ 0.0576 0.0578 0.0589 @ (7, 0.95, 0.8)

Both of these results are interesting because, as shown by Boyland et al. [7] (analyzing
families of algorithms and lower bounds due to Chou et al. [12]), there are O(log n)-space
streaming algorithms which output (arbitrarily close to) α∗

k-approximations for adversarially-
ordered streams, and this is the best achievable ratio in o(

√
n) space.5 Therefore, our results

show that by relaxing either the adversarial-ordering assumption or the space bound, one
can achieve better algorithms (the latter under a bounded-degree assumption). Analogous
results to Theorems 3 and 4 were obtained for Max-DICUT by Saxena, Singer, Sudan, and
Velusamy [36] for the special case of Max-DICUT, there contrasting with algorithms and
lower bounds due to Chou, Golovnev, and Velusamy [14].

We also include some explicit improved approximation ratios calculated using computer
search and LP solvers in Table 1.

1.3 Technical overview
The first main technical step in the paper is to develop, for each oblivious algorithm Oblt,p

k

(defined by a bias partition t and a rounding vector p), a linear program (LP) which
characterizes the approximation ratio of Oblt,p

k ; this LP is contained in Lemma 11 below,
and is a generalization of the LP developed for oblivious algorithms in Max-DICUT in [17].
The LP has a simple structure: Each feasible solution corresponds to a certain family of
instances of Max-kAND on which Oblt,p

k produces the same approximation to the Max-kAND

5 Again, this lower bound is currently only known to hold for a subclass of streaming algorithms called
sketching algorithms, but the algorithm in Theorem 4 appears to be such an algorithm.

https://github.com/singerng/oblivious-csps
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value, and the objective equals this approximation value. In particular, we will assign to
each clause in an instance Ψ of Max-kAND a “pattern” based on the biases of and negations
on the variables, and use the observation that the probability that any particular clause is
satisfied depends only on its pattern.

Next, we formulate the dual LP for this original “primal” LP (see Lemma 12 below). Here
is where we benefit massively from the fact that the performance of oblivious algorithms
is captured by a linear program, because by the magic of LP duality, it is possible to
constructively show that oblivious algorithms perform well: While feasible solutions to the
primal LP upper-bound the ratio achieved by an oblivious algorithm Oblt,p

k , feasible solutions
to the dual LP lower-bound the ratio! In other words, to prove that an oblivious algorithm
performs well on all instances, it suffices to construct a single feasible dual solution.

To prove Theorem 2, we now want to compare the dual LP for superoblivious algorithms
and their “perturbations”, and show that we can get “improved” feasible solutions in the
latter case. It turns out that in this setting, the primal LP has O(k5) variables and only 7
inequality constraints; therefore the dual LP has 7 variables and O(k5) inequality constraints.
We make the crucial observation that in the superoblivious case there is an optimal dual
solution which is sparse: It is supported on only 3 variables. Since this dual solution is so
simple, we can analytically prove its feasibility for all k. The statement of the kind of dual
solution we are seeking is in Lemma 13 below.

And moreover, this inequality will show that in the superoblivious case, when we plug in
our special solution, all but 6 of the O(k5) dual constraints have slack! Thus, for very small
values of δ, it will be sufficient to slightly perturb this special solution in a way that makes
these 6 “core” constraints strictly satisfied. This involves careful analysis based on certain
elementary inequalities, using simple inequalities such as that 1−ϵ

1−kϵ > 1+ϵ
1+kϵ for all ϵ > 0 and

k > 1. The analysis outlined in this paragraph is omitted from this version of the paper; see
the full version.

1.4 Future questions

Streaming algorithms

We hypothesize that the bounded-degree assumption in Theorem 4 can be relaxed to give an
Õ(n1−1/k)-space algorithm for all instances (in input form with poly(n) clauses). Specifically,
Saxena, Singer, Sudan, and Velusamy [36] developed sketching techniques enabling such a
guarantee for Max-DICUT, the bounded-degree counterpart being provided by their earlier
work [37]; perhaps these ideas can be extended to Max-kAND.

More CSPs

It would also be interesting to extend the framework in this paper to more CSPs, both other
Boolean CSPs and to CSPs over larger alphabets. To the best of our knowledge, it is even
plausible that every CSP which admits nontrivial O(log n)-space sketching algorithms (as
analyzed in [13]) also admits “oblivious-style” approximation algorithms, which in turn yield
better sublinear-space streaming algorithms. A good starting point here would be to analyze
symmetric Boolean CSPs, since in that setting we know that all CSPs which do not support
one-wise distributions of satisfying assignments admit such nontrivial sketching algorithms
(see [12, Proposition 2.10]); this class includes Max-kAND, for which we developed such
results in this paper, but we could hope for improved “oblivious-style” algorithms for other
such CSPs, e.g. symmetric threshold functions.

APPROX/RANDOM 2023
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“Uniform” hard instances

In the special case of Max-DICUT, Feige and Jozeph [17] constructed what might be called a
uniformly hard instance of Max-DICUT: For this single instance, every oblivious algorithm
achieves a ratio less than than 0.49. (This strengthens the 1

2 bound from a “trivial” instance,
a single bidirected edge; see also Observation 7 below.) It would be interesting to construct
similar instances for Max-kAND, k ≥ 3, especially if such this construction could be made
analytic. We note that such an object corresponds to a feasible solution to the linear program
in Lemma 11 for which every choice of rounding vector has objective strictly less than 1

2 ,
and therefore for Max-kAND, any proof would require certifying that a certain degree-k
polynomial is bounded below 1

2 over p ∈ [0, 1].

An optimal rounding curve?

To construct an 0.483-approximate oblivious algorithm for Max-DICUT, Feige and Jozeph [17]
rounded vertices using (a discretization of) a sigmoid-shaped piecewise-linear function: This
function rounds vertices with bias b ∈ (0, 1] to 1 with probability

p(b) =
{

1
2 + b 0 ≤ b ≤ 1

2

1 1
2 ≤ b ≤ 1

.

But is it possible to analytically calculate the optimal rounding function (and is it unique)?
Given any discretization of biases into intervals, one could in principle enumerate all basic
feasible solutions to the LP, and then calculate the best rounding vector; that is, each
rounding vector will induce an objective function for the LP, and the best rounding vector
maximizes the minimum objective over all basic feasible solution. Towards this, it might
be helpful to get a handle on the vertices of this LP’s polytope, and whether there is some
simple way to enumerate them.

Outline
We define Max-kAND and oblivious algorithms formally in Section 2 and develop the linear-
programming characterization for the approximation ratio of oblivious algorithms, and some
other basic tools, in Section 3. We begin analyzing the dual LP to prove Theorem 2 in
Section 4. The remainder of the proof of Theorem 2, and the proofs of the remaining
theorems, are omitted; see the full version.

2 Definitions: Max-kAND and oblivious algorithms

We now give formal definitions for the Max-kAND problem and for oblivious algorithms.

The Max-kAND problem

For the remainder of the paper, we adopt a (nonstandard) convention which views variables in
Max-kAND as taking {−1, +1} values (as opposed to {0, 1}); this is for notational convenience
in defining bias and similar concepts.

▶ Definition 5 (Max-kAND). An instance of the Max-kAND problem on n variables is given
by a sequence of constraints C1, . . . , Cm, with Cj = (V +

j , V −
j , wj), consisting of “positive

variables” V +
j ⊆ [n] and “negative variables” V −

j ⊆ [n] with V +
j ∩V −

j = ∅ and |V +
j ∪V −

j | = k,
and a weight wj ≥ 0. An assignment for this problem is given by (x) = (x1, . . . , xn) ∈ {±1}n,
and the value of this assignment is
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valΨ(x) def=
∑m

j=1 1[xv = +1 ∀v ∈ V +
j ∧ xv = −1 ∀v ∈ V −

j ] · wj∑m
j=1 wj

.

The value of the instance Ψ is

valΨ
def= max

x∈{±1}n
valΨ(x).

Next, towards defining the bias of a variable in an instance, for any variable v ∈ [n], we
define its positive and negative weight:

w+
Ψ(v) def=

m∑
j=1

1[v ∈ V +
j ] · wj and w−

Ψ(v) def=
m∑

j=1
1[v ∈ V −

j ] · wj . (4)

Bias

Then, we define the bias of a variable as:6

biasΨ(v) def= w+
Ψ(v) − w−

Ψ(v)
w+

Ψ(v) + w−
Ψ(v)

. (5)

Bias partitions

Next, we define notations for a partition of the space of possible biases [−1, +1] into L = 2ℓ+1
intervals labeled by {−ℓ, . . . , +ℓ}. The data of such a partition is a “bias partition” vector
t = (t0, . . . , tℓ) with 0 ≤ t0 < · · · < t+ℓ = 1. Each such vector t defines a set of intervals
Intt

−ℓ, . . . , Intt
+ℓ such that each real number in [−1, +1] belongs to exactly one interval.

Specifically, we define:
Intt

0 := [−t0, +t0], and
Intt

−i := [−ti, −ti−1) and Intt
+i := (+ti−1, ti] for each i ∈ {1, . . . , ℓ}.

Our choice of which ends of these intervals are open and which are closed is an arbitrary
convention; the only important property of the decomposition of [−1, +1] into intervals is
that it is symmetric.

We also let t+
i and t−

i denote the upper and lower bounds on Intt
i , respectively, i.e.,

t+
i = sup Intt

i and t−
i = inf Intt

i , so that e.g., t+
i = ti for i ≥ 0, whereas t+

i = t−(i+1) for i < 0.

Oblivious algorithms

Given a partition of [−1, +1] into bias class intervals (defined by some vector t as in the
previous paragraph), we now define an algorithm which randomly rounds each variable of
an Max-kAND instance according to which interval its bias falls into. The data of such a
rounding scheme is a rounding vector p = (p1, . . . , pℓ) of probabilities; given this vector, a
vertex with bias in Intt

+i is rounded to 1 with probability pi.
More precisely, we define an oblivious algorithm as follows:

6 Throughout the paper, we assume every variable appears in at least one constraint, and therefore that
w+

Ψ(v) + w−
Ψ(v) > 0. (This is WLOG, since variables appearing in no constraints can be ignored for the

purposes of Max-kAND.)

APPROX/RANDOM 2023
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▶ Definition 6 (Oblivious algorithm for Max-kAND). Let L = 2ℓ + 1 ≥ 3 be an odd integer.
Let t = (t0, . . . , tℓ) be a bias partition and p = (p1, . . . , pℓ) a rounding vector. For any k ≥ 2,
the oblivious algorithm Oblt,p

k for Max-kAND behaves as follows: Given an instance Ψ, for
each variable v ∈ {1, . . . , n} independently:

If biasΨ(v) ∈ Intt
0, assign xv 7→ 1 w.p. 1

2 , xv 7→ −1 w.p. 1
2 .

If biasΨ(v) ∈ Intt
+i for i ∈ {1, . . . , ℓ}, assign xv 7→ 1 w.p. pi, xv 7→ −1 w.p. 1 − pi.

If biasΨ(v) ∈ Intt
−i for i ∈ {1, . . . , ℓ}, assign xv 7→ 1 w.p. 1 − pi, xv 7→ −1 w.p. pi.

We denote by Oblt,p
k (Ψ) the expected value of the assignment produced by this algorithm,7

and by

α(Oblt,p
k ) def= inf

Ψ

Oblt,p
k (Ψ)

valΨ

the approximation ratio achieved by this algorithm.

In the simplest interesting case, we have ℓ = 1, t = (0, 1), and p = (p). These algorithms,
which we call superoblivious algorithms, ignore the magnitude of the bias of each variable,
rounding only based on sign: E.g., negatively-biased variables are rounded to 1 w.p. 1 − p.

▶ Observation 7 (A “symmetric” hard instance). There is a simple lower-bound construction
which shows that no oblivious algorithm for Max-kAND can achieve a ratio better than 2−(k−1).
(Note that the constant α∗

k defined above, which according to Theorem 1 is the optimal ratio of
superoblivious algorithms, equals this upper bound times a “discounting” factor.) Consider any
k and the instance with two equally weighted constraints C+ = (+1, . . . , +1), (1, . . . , k) and
C− = (−1, . . . , −1), (1, . . . , k); that is, the two constraints want x1, . . . , xk to be all-(+1)’s
and all-(−1)’s, respectively. Every variable has bias zero so it will be rounded uniformly by
every oblivious algorithm, yielding value 2−k, while the “greedy” all-(+1)’s (or all-(−1)’s)
assignment achieves value 1

2 . (Indeed, this “lower bound” holds for any class of algorithms
which cannot “break the symmetry” between these two greedy assignments.) Thus, for every
oblivious algorithm Oblt,p

k , α(Oblt,p
k ) ≤ 2−(k−1).

▶ Observation 8 (Generalizing oblivious algorithms). There are a few natural ways to generalize
our definition of oblivious algorithms:

We could consider rounding functions which are not “antisymmetric”. That is, we could
round variables with bias +b and variables with bias −b with probabilities which are
not complementary. In particular, for b = 0, we could round bias-0 variables to 1 with
probability p ≠ 1

2 . However, on the instance described in the previous observation, such
an algorithm outputs an assignment of value 1

2 pk + 1
2 (1 − p)k, and this value is uniquely

maximized at p = 1
2 .

We could use “general rounding functions”, that is, arbitrary functions mapping each bias
value to a rounding probability, to round each vertex. Under this “rounding functions”
view, the above definition via intervals corresponds to “step fucntions” where the domain
is broken up into finitely many intervals on which the function is constant. However, the
focus of the current work is analyzing the approximation ratio of oblivious algorithms via
linear programming, and such “continuous” algorithms would not be (directly) amenable
to analysis via linear programming.

7 We abuse this notation and often think of Oblt,p
k (Ψ) as the output of the oblivious algorithm, i.e., we

think of the oblivious algorithm’s goal as outputting a (scalar) estimate of the value of the instance;
this holds especially in the context of streaming algorithms.
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We could use a “max” algorithm, taking an ensemble of oblivious algorithms and outputting
the best assignment produced by any of them.

For Max-2AND, Feige and Jozeph [17] showed that even allowing all these generalizations
simultaneously stills fall short of achieving the ultimate goal of a 1

2 -approximation, and they
described a specific instance witnessing this.

3 The linear-programming framework for oblivious algorithms

In this section, we develop a linear program which captures the “worst-case instance” for
any oblivious algorithm, and therefore can be used to calculate the approximation ratio
(Lemma 11), as well as the corresponding dual linear program (Lemma 12). These will be
applied to bound the approximation ratios of certain oblivious algorithms in the following
sections.

3.1 Clause patterns
Let PtnL

k denote the set of vectors c = (c+, c−) = (c+
−ℓ, . . . , c+

+ℓ, c−
−ℓ, . . . , c−

−ℓ) whose entries
are natural numbers and sum to k. These are useful because they describe each particular
clause from the perspective of an L-class oblivious algorithms. In particular, given a clause
C, we denote its pattern ptnt(C) = (c+

−ℓ, . . . , c+
+ℓ, c−

−ℓ, . . . , c−
−ℓ) ∈ PtnL

k where c+
i and c−

i

denote the number of positive and negative literals in C whose variables have bias class i,
respectively, for each i ∈ {−ℓ, . . . , +ℓ}. That is, e.g.,

c+
i = |{v ∈ V +

j : biasΨ(v) ∈ Intt
i }|.

Now, for any rounding vector p = (p1, . . . , pℓ), we define

probp(c) = 2−(c+
0 +c−

0 )
ℓ∏

i=1
p

c+
+i

+c−
−i

i (1 − pi)c−
+i

+c+
−i (6)

for each c ∈ PtnL
k .8 Then we have:

▷ Claim 9. Let Ψ be an instance of Max-kAND with clauses C1, . . . , Cm with weights
w1, . . . , wm, respectively. Then

Oblt,p
k (Ψ) =

∑m
j=1 probp(ptnt(Cj)) · wj∑m

j=1 wj
.

Proof. By linearity of expectation, it suffices to show that each clause Cj is satisfied w.p.
probp(ptnt(Cj)). We can rewrite

probp(c) = 2−c+
0 2−c−

0

ℓ∏
i=1

p
c+

+i

i p
c−

−i

i (1 − pi)c−
+i(1 − pi)c+

−i .

Recalling that each variable is assigned independently, and the clause is satisfied iff each
literal is, the above expression precisely represents the probability that the clause is satisfied.
(E.g., if there is a negative literal whose variable has bias class +i, this literal is satisfied
with probability 1 − pi; the number of such factors in the probability is c−

+i.) ◁

We observe that |PtnL
k | =

(
k+2L−1

2L−1
)

by the “stars-and-bars” formula. For instance, if L = 3
(as will be the case in the explicit analysis in the following sections), we have |PtnL

k | = O(k5).

8 In this expression we adopt the convention 00 = 1, i.e., if pi = 0 but c−
+i + c+

−i = 0 then we ignore the
factor 0.
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3.2 The factor-revealing linear program

We denote by PosPtnL
k ⊆ PtnL

k the space of clause patterns without negations, i.e., c such
that c−

−ℓ = · · · = c−
+ℓ = 0. For two vectors x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn, let

x ⊙ y = (x1y1, . . . , xnyn) denote their entrywise product. To design the linear program, we
will need the following useful proposition:

▶ Proposition 10 (Flipping). Let Ψ be an instance of Max-kAND, and for any assignment
y = (y1, . . . , yn) ∈ {±1}n, let flipy(Ψ) denote the instance of Max-kAND where we “flip”
the variables v with yv = −1; that is, each clause Cj = (V +

j , V −
j , wj) in Ψ becomes a

clause Dj = (U+
j , U−

j , wj) where U+
j = {v ∈ V +

j : yv = +1} ∪ {v ∈ V −
j : yv = −1} and

U−
j = {v ∈ V +

j : yv = −1} ∪ {v ∈ V −
j : yv = +1}. Then:

For every assignment x ∈ {±1}n, valΨ(x) = valflipy(Ψ)(x ⊙ y).
In particular, if x is an optimal assignment to Ψ, then x ⊙ y is an optimal assignment to
flipy(Ψ).
Oblt,p

k (Ψ) = Oblt,p
k (flipy(Ψ)).

Proof. Follows immediately from definitions. ◀

▶ Lemma 11 (Primal characterization). For every bias partition t = (t0, . . . , tℓ) and rounding
vector p = (p1, . . . , pℓ), the approximation ratio α(Oblt,p

k ) achieved by Oblt,p
k equals the value

of the following linear program:

minimize
∑

c∈PtnL
k

probp(c) · W (c)

s.t. W (c) ≥ 0 ∀c ∈ PtnL
k∑

c∈PosPtnL
k

W (c) = 1

t−
i (W +(i) + W −(i)) ≤ W +(i) − W −(i) ∀i ∈ {−ℓ, . . . , +ℓ}

W +(i) − W −(i) ≤ t+
i (W +(i) + W −(i)) ∀i ∈ {−ℓ, . . . , +ℓ}

where we define the linear functions

W +(i) =
∑

c∈PtnL
k

c+
i W (c) and W −(i) =

∑
c∈PtnL

k

c−
i W (c).

Proof. Let αalg denote the approximation ratio of Oblt,p
k , and αLP the minimum value of

the linear program. This proof generalizes [17, Proof of Theorem 1.2].

αLP ≤ αalg. We show that for every instance Ψ of Max-kAND, there is a feasible LP
solution {W (c)}c∈PtnL

k
of objective value Oblt,p

k (Ψ)/valΨ.
Towards this claim, by Proposition 10, we can assume WLOG that the all-(+1)’s as-

signment is optimal for Ψ. Also, we assume WLOG by rescaling that Ψ has total weight
1

valΨ , i.e.,
∑m

j=1 wj = 1
valΨ . Now, let C1, . . . , Cm denote the constraints of Ψ, and let

W (c) :=
∑m

j=1 1[ptnt(Cj) = c]wj . We claim that {W (c)}c∈PtnL
k

is feasible and has objective
value

∑
c∈PtnL

k
probp(c)W (c) = Oblt,p

k (Ψ)/valΨ.
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First, we check feasibility. Clearly all W (c)’s are nonnegative. Next, we have

valΨ = valΨ(+1) (all-(+1)’s is optimal)

=
∑m

j=1 wj1[|V −
j | = 0]∑m

j=1 wj
(def. of valΨ(+1))

=
∑

c∈PosPtnL
k

W (c)
1/valΨ

(def. of PosPtnL
k and total weight assumption)

which rearranges to
∑

c∈PosPtnL
k

W (c) = 1.
Now, recall the definitions of biasΨ, w+

Ψ, w−
Ψ from Section 2. Fix a bias class i ∈

{−ℓ, . . . , +ℓ}. For any variable v with bias class i, we have biasΨ(v) ∈ Intt
i , so t−

i ≤
biasΨ(v) ≤ t+

i , so multiplying through by w+
Ψ(v) + w−

Ψ(v), we get

t−
i (w+

Ψ(v) + w−
Ψ(v)) ≤ w+

Ψ(v) − w−
Ψ(v) ≤ t+

i (w+
Ψ(v) + w−

Ψ(v)).

Letting Vi denote the set of all variables in Ψ with bias class i, we can sum over these
equations to get

t−
i

∑
v∈Vi

(w+
Ψ(v) + w−

Ψ(v)) ≤
∑
v∈Vi

(w+
Ψ(v) − w−

Ψ(v)) ≤ t+
i

∑
v∈Vi

(w+
Ψ(v) + w−

Ψ(v)).

We claim that

W +(i) =
∑
v∈V

w+
Ψ(v),

and similarly W −(i) =
∑

v∈V w−
Ψ(v). These equalities imply that W (·) satisfies the feasibility

constraints, and it remains to prove them. Now recall w+
Ψ(v) =

∑m
j=1 1[v ∈ V +

j ]wj ; therefore,

∑
v∈V

w+
Ψ(v) =

m∑
j=1

∑
v∈V +

j

1[biasΨ(v) ∈ Intt
i ]wj ,

and j-th term in this sum is precisely c+
i where c = (c+, c−) = ptnt(Cj). The proof for

W −(i) is similar.
Finally, by Claim 9 and our assumption

∑m
j=1 wj = 1/valΨ, we have

Oblt,p
k (Ψ) =

∑m
j=1 wjprobp(ptnt(Cj))∑m

j=1 wj
=

∑
c∈PtnL

k
W (c) · probp(c)
1/valΨ

,

which rearranges to Oblt,p
k (Ψ)/valΨ =

∑
c∈PtnL

k
W (c) · probp(c), as desired.

αLP ≥ αalg. This argument is essentially converse to the former argument, but there are
two technical issues: (i) the linear program does not encode strict inequality constraints,
while an oblivious algorithm needs to (in the sense that e.g., if t0 = 0, then the algorithm
rounds vertices with bias 0 and bias +ϵ differently), and (ii) since an Max-kAND constraint
cannot use a variable twice, we might need many variables with the same bias in the instance
we create. We omit the proof here; see the full version. ◀
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▶ Lemma 12 (Dual characterization). For every bias partition t = (t0, . . . , tℓ) and rounding
vector p = (p1, . . . , pℓ), the approximation ratio α(Oblt,p

k ) achieved by Oblt,p
k equals the value

of the following linear program:

max z

s.t. 1[c ∈ PosPtnL
k ] · z

+
+ℓ∑

i=−ℓ

(
((1 − t−

i )c+
i − (t−

i + 1)c−
i )y−

i + ((t+
i − 1)c+

i + (1 + t+
i )c−

i )y+
i

)
≤ probp(c) ∀c ∈ PtnL

k

y−
i ≥ 0 ∀i ∈ {−ℓ, . . . , +ℓ}

y+
i ≥ 0 ∀i ∈ {−ℓ, . . . , +ℓ}

Proof. To place the primal LP (from Lemma 11) in a more standard form, we rewrite the
primal inequality t−

i (W +(i)+W −(i)) ≤ W +(i)−W −(i) as (t−
i −1)W +(i)+(t−

i +1)W −(i) ≤ 0;
expanding the definitions of W +(i) and W −(i), this is equivalent to (t−

i −1)
∑

c∈PtnL
k

c+
i W (c)+

(t−
i +1)

∑
c∈PtnL

k
c−

i W (c) ≤ 0. Similarly, the inequality W +(i)−W −(i) ≤ t+
i (W +(i)+W −(i))

becomes (1 − t+
i )

∑
c∈PtnL

k
c+

i W (c) − (1 + t+
i )

∑
c∈PtnL

k
c−

i W (c) ≤ 0. Therefore, the primal
LP is equivalent to the following standard-form LP:

minimize
∑

c∈PtnL
k

probp(c) · W (c)

s.t. W (c) ≥ 0 ∀c ∈ PtnL
k∑

c∈PosPtnL
k

W (c) = 1

(1 − t+
i )

∑
c∈PtnL

k

c+
i W (c) − (1 + t+

i )
∑

c∈PtnL
k

c−
i W (c) ≤ 0 ∀i ∈ {−ℓ, . . . , +ℓ}

(t−
i − 1)

∑
c∈PtnL

k

c+
i W (c) + (t−

i + 1)
∑

c∈PtnL
k

c−
i W (c) ≤ 0 ∀i ∈ {−ℓ, . . . , +ℓ}

By LP duality, the above LP has the same value as its dual LP, which is the LP in the
hypothesis.9 ◀

4 Proving Theorem 2 by analyzing “dual slack”

In this section, we outline the first step towards proving Theorem 2 by constructing dual
solutions which witness lower bounds on the approximation ratio of oblivious algorithms.
This first step is the following lemma, which gives a clean sufficient condition for a lower
bound on the approximation ratio by constructing a certain sparse dual solution and applying
the dual program (Lemma 12):

9 See e.g. [32, p. 85]). One has to be careful with the signs, since our primal LP is a minimization LP.
Instead, we can consider the LP which maximizes −

∑
c∈PtnL

k

probp(c) · W (c) (whose output is the
negation of our desired output).
Applying duality to this LP gives one which minimizes z′ such that 1[c ∈ PosPtnL

k ] · z′ +∑ℓ

i=−ℓ

(
((1 − t−

i )c+
i − (t−

i + 1)c−
i )y−

i + ((t+
i − 1)c+

i + (1 + t+
i )c−

i )y+
i

)
≥ −probp(c). Transforming to

a maximization problem equivalent to our original LP (since we had a negation!), we maximize −z′ such
that 1[c ∈ PosPtnL

k ] · z′ +
∑ℓ

i=−ℓ

(
((1 − t−

i )c+
i − (t−

i + 1)c−
i )y−

i + ((t+
i − 1)c+

i + (1 + t+
i )c−

i )y+
i

)
≥

−probp(c). Finally, we negate both sides of this inequality, and use the bijective transformation
z = −z′.
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▶ Lemma 13 (Sufficient conditions for good approximations). For every k ≥ 2 ∈ N, 0 ≤
γ, δ ≤ 1, let t = (δ, 1) and p = ( 1

2 (1 + γ)). The algorithm Oblt,p
k has approximation ratio

α(Oblt,p
k ) ≥ 2−(k−1)β if the following statement holds: There exist X, Y ≥ 0 such that:

(1 + δ)
(

1 − i + j

k

)
Y + (1 − δ) j

k
X ≤ β−1 (1 − γ)i (1 + γ)j ∀i, j ∈ N, i + j ≤ k

2 − (1 − δ)
(

1 − i + j

k

)
Y − (1 + δ) i

k
X ≤ β−1 (1 − γ)i (1 + γ)j ∀i, j ∈ N, i + j ≤ k

Proof. Consider applying the dual characterization of the approximation ratio (Lemma 12)
with the solution z = 2β/2k, y+

−1 = Xβ/(k2k), y+
0 = Y β/(k2k), and y+

+1 = y−
−1 = y−

0 =
y−

+1 = 0; it is sufficient to show that this solution is feasible. Note that t+
−1 = −δ and t+

0 = δ.
Thus, the feasibility constraints in Lemma 12 become

β

2k

(
1[c ∈ PosPtnL

k ] · 2 + ((−δ − 1)c+
−1 + (1 − δ)c−

−1)X

k
+ ((δ − 1)c+

0 + (1 + δ)c−
0 )Y

k

)
≤ probp(c) ∀c ∈ PtnL

k . (7)

By Equation (6), and since c+
−1 + c+

0 + c+
+1 + c−

−1 + c−
0 + c−

+1 = k, we have

probp(c) =
(1

2 − γ

2

)c+
−1+c−

+1
(1

2

)c+
0 +c−

0
(1

2 + γ

2

)c+
+1+c−

−1 = 2−k(1 − γ)c+
−1+c−

+1 (1 + γ)c+
+1+c−

−1 .

Thus, dividing through by β/2k, Equation (7) becomes

1[c ∈ PosPtnL
k ] · 2 + ((1 − δ)c−

−1 − (1 + δ)c+
−1)X

k
+ ((1 + δ)c−

0 − (1 − δ)c+
0 )Y

k

≤ β−1(1 − γ)c+
−1+c−

+1(1 + γ)c+
+1+c−

−1 ∀c ∈ PtnL
k . (8)

Finally, we claim that Equation (8) is implied by the hypothesis. Indeed, we consider
two cases. First, if c ∈ PosPtnL

k , then c−
−1 = c−

0 = c−
+1 = 0 and c+

0 = k − c+
−1 − c+

+1, so
Equation (8) becomes

2 − (1 + δ)
c+

−1
k

X − (1 − δ)
k − c+

−1 − c+
+1

k
Y ≤ β−1(1 − γ)c+

−1(1 + γ)c+
+1 .

This is precisely the second hypothesized inequality, for c+
−1 = i, c+

+1 = j. On the other hand,
if c ̸∈ PosPtnL

k , then we observe that replacing (c+
−1, c+

0 , c+
+1, c−

−1, c−
0 , c−

+1) 7→ (0, 0, 0, c−
−1 +

c+
−1, c−

0 + c+
0 , c−

+1 + c+
+1) fixes the RHS of Equation (8), while only increasing the LHS;

thus, it suffices to prove Equation (8) only in this extreme case. Hence, we can assume
c−

0 = k − c−
−1 − c−

+1, so Equation (8) becomes

(1 − δ)
c−

−1
k

X + (1 + δ)
k − c−

−1 − c−
+1

k
Y ≤ β−1(1 − γ)c−

+1(1 + γ)c−
−1 ,

which is precisely the first assumed condition for c−
−1 = j, c−

+1 = i. ◀

▶ Remark 14. We chose the specific family of dual solutions used in the proof of Lemma 13
by inspecting an LP solver’s output for k = 2 and k = 3. Our investigation also suggests
that this solution is unique in a certain sense: In the simplest case of k = 2 and δ = γ = 0,
it appears that every optimal feasible solution requires y+

−1 = 2/9, and further, the only
solution with only two nonzero y entries sets y+

0 = 1/9.
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