113 research outputs found

    Non-Local Probes Do Not Help with Graph Problems

    Full text link
    This work bridges the gap between distributed and centralised models of computing in the context of sublinear-time graph algorithms. A priori, typical centralised models of computing (e.g., parallel decision trees or centralised local algorithms) seem to be much more powerful than distributed message-passing algorithms: centralised algorithms can directly probe any part of the input, while in distributed algorithms nodes can only communicate with their immediate neighbours. We show that for a large class of graph problems, this extra freedom does not help centralised algorithms at all: for example, efficient stateless deterministic centralised local algorithms can be simulated with efficient distributed message-passing algorithms. In particular, this enables us to transfer existing lower bound results from distributed algorithms to centralised local algorithms

    Large-Scale Distributed Algorithms for Facility Location with Outliers

    Get PDF
    This paper presents fast, distributed, O(1)-approximation algorithms for metric facility location problems with outliers in the Congested Clique model, Massively Parallel Computation (MPC) model, and in the k-machine model. The paper considers Robust Facility Location and Facility Location with Penalties, two versions of the facility location problem with outliers proposed by Charikar et al. (SODA 2001). The paper also considers two alternatives for specifying the input: the input metric can be provided explicitly (as an n x n matrix distributed among the machines) or implicitly as the shortest path metric of a given edge-weighted graph. The results in the paper are: - Implicit metric: For both problems, O(1)-approximation algorithms running in O(poly(log n)) rounds in the Congested Clique and the MPC model and O(1)-approximation algorithms running in O~(n/k) rounds in the k-machine model. - Explicit metric: For both problems, O(1)-approximation algorithms running in O(log log log n) rounds in the Congested Clique and the MPC model and O(1)-approximation algorithms running in O~(n/k) rounds in the k-machine model. Our main contribution is to show the existence of Mettu-Plaxton-style O(1)-approximation algorithms for both Facility Location with outlier problems. As shown in our previous work (Berns et al., ICALP 2012, Bandyapadhyay et al., ICDCN 2018) Mettu-Plaxton style algorithms are more easily amenable to being implemented efficiently in distributed and large-scale models of computation

    Distributed Dominating Set Approximations beyond Planar Graphs

    Full text link
    The Minimum Dominating Set (MDS) problem is one of the most fundamental and challenging problems in distributed computing. While it is well-known that minimum dominating sets cannot be approximated locally on general graphs, over the last years, there has been much progress on computing local approximations on sparse graphs, and in particular planar graphs. In this paper we study distributed and deterministic MDS approximation algorithms for graph classes beyond planar graphs. In particular, we show that existing approximation bounds for planar graphs can be lifted to bounded genus graphs, and present (1) a local constant-time, constant-factor MDS approximation algorithm and (2) a local O(logn)\mathcal{O}(\log^*{n})-time approximation scheme. Our main technical contribution is a new analysis of a slightly modified variant of an existing algorithm by Lenzen et al. Interestingly, unlike existing proofs for planar graphs, our analysis does not rely on direct topological arguments.Comment: arXiv admin note: substantial text overlap with arXiv:1602.0299

    Pulse propagation, graph cover, and packet forwarding

    Get PDF
    We study distributed systems, with a particular focus on graph problems and fault tolerance. Fault-tolerance in a microprocessor or even System-on-Chip can be improved by using a fault-tolerant pulse propagation design. The existing design TRIX achieves this goal by being a distributed system consisting of very simple nodes. We show that even in the typical mode of operation without faults, TRIX performs significantly better than a regular wire or clock tree: Statistical evaluation of our simulated experiments show that we achieve a skew with standard deviation of O(log log H), where H is the height of the TRIX grid. The distance-r generalization of classic graph problems can give us insights on how distance affects hardness of a problem. For the distance-r dominating set problem, we present both an algorithmic upper and unconditional lower bound for any graph class with certain high-girth and sparseness criteria. In particular, our algorithm achieves a O(r·f(r))-approximation in time O(r), where f is the expansion function, which correlates with density. For constant r, this implies a constant approximation factor, in constant time. We also show that no algorithm can achieve a (2r + 1 − δ)-approximation for any δ > 0 in time O(r), not even on the class of cycles of girth at least 5r. Furthermore, we extend the algorithm to related graph cover problems and even to a different execution model. Furthermore, we investigate the problem of packet forwarding, which addresses the question of how and when best to forward packets in a distributed system. These packets are injected by an adversary. We build on the existing algorithm OED to handle more than a single destination. In particular, we show that buffers of size O(log n) are sufficient for this algorithm, in contrast to O(n) for the naive approach.Wir untersuchen verteilte Systeme, mit besonderem Augenmerk auf Graphenprobleme und Fehlertoleranz. Fehlertoleranz auf einem System-on-Chip (SoC) kann durch eine fehlertolerante Puls- Weiterleitung verbessert werden. Das bestehende Puls-Weiterleitungs-System TRIX toleriert Fehler indem es ein verteiltes System ist das nur aus sehr einfachen Knoten besteht. Wir zeigen dass selbst im typischen, fehlerfreien Fall TRIX sich weitaus besser verhält als man naiverweise erwarten würde: Statistische Analysen unserer simulierten Experimente zeigen, dass der Verzögerungs-Unterschied eine Standardabweichung von lediglich O(log logH) erreicht, wobei H die Höhe des TRIX-Netzes ist. Das Generalisieren einiger klassischer Graphen-Probleme auf Distanz r kann uns neue Erkenntnisse bescheren über den Zusammenhang zwischen Distanz und Komplexität eines Problems. Für das Problem der dominierenden Mengen auf Distanz r zeigen wir sowohl eine algorithmische obere Schranke als auch eine bedingungsfreie untere Schranke für jede Klasse von Graphen, die bestimmte Eigenschaften an Umfang und Dichte erfüllt. Konkret erreicht unser Algorithmus in Zeit O(r) eine Annäherungsgüte von O(r · f(r)). Für konstante r bedeutet das, dass der Algorithmus in konstanter Zeit eine Annäherung konstanter Güte erreicht. Weiterhin zeigen wir, dass kein Algorithmus in Zeit O(r) eine Annäherungsgüte besser als 2r + 1 erreichen kann, nicht einmal in der Klasse der Kreis-Graphen von Umfang mindestens 5r. Weiterhin haben wir das Paketweiterleitungs-Problem untersucht, welches sich mit der Frage beschäftigt, wann genau Pakete in einem verteilten System idealerweise weitergeleitetwerden sollten. Die Paketewerden dabei von einem Gegenspieler eingefügt. Wir bauen auf dem existierenden Algorithmus OED auf, um mehr als ein Paket-Ziel beliefern zu können. Dadurch zeigen wir, dass Paket-Speicher der Größe O(log n) für dieses Problem ausreichen, im Gegensatz zu den Paket-Speichern der Größe O(n) die für einen naiven Ansatz nötig wären

    Faster Distributed Shortest Path Approximations via Shortcuts

    Get PDF
    A long series of recent results and breakthroughs have led to faster and better distributed approximation algorithms for single source shortest paths (SSSP) and related problems in the CONGEST model. The runtime of all these algorithms, however, is Omega~(sqrt{n}), regardless of the network topology, even on nice networks with a (poly)logarithmic network diameter D. While this is known to be necessary for some pathological networks, most topologies of interest are arguably not of this type. We give the first distributed approximation algorithms for shortest paths problems that adjust to the topology they are run on, thus achieving significantly faster running times on many topologies of interest. The running time of our algorithms depends on and is close to Q, where Q is the quality of the best shortcut that exists for the given topology. While Q = Theta~(sqrt{n} + D) for pathological worst-case topologies, many topologies of interest have Q = Theta~(D), which results in near instance optimal running times for our algorithm, given the trivial Omega(D) lower bound. The problems we consider are as follows: - an approximate shortest path tree and SSSP distances, - a polylogarithmic size distance label for every node such that from the labels of any two nodes alone one can determine their distance (approximately), and - an (approximately) optimal flow for the transshipment problem. Our algorithms have a tunable tradeoff between running time and approximation ratio. Our fastest algorithms have an arbitrarily good polynomial approximation guarantee and an essentially optimal O~(Q) running time. On the other end of the spectrum, we achieve polylogarithmic approximations in O~(Q * n^epsilon) rounds for any epsilon > 0. It seems likely that eventually, our non-trivial approximation algorithms for the SSSP tree and transshipment problem can be bootstrapped to give fast Q * 2^O(sqrt{log n log log n}) round (1+epsilon)-approximation algorithms using a recent result by Becker et al
    corecore