
Faster Distributed Shortest Path Approximations
via Shortcuts
Bernhard Haeupler1

Carnegie Mellon University, USA
http://cs.cmu.edu/~haeupler

Jason Li
Carnegie Mellon University, USA
http://cs.cmu.edu/~jmli

Abstract
A long series of recent results and breakthroughs have led to faster and better distributed ap-
proximation algorithms for single source shortest paths (SSSP) and related problems in the
CONGEST model. The runtime of all these algorithms, however, is Ω̃(

√
n), regardless of the

network topology2, even on nice networks with a (poly)logarithmic network diameter D. While
this is known to be necessary for some pathological networks, most topologies of interest are
arguably not of this type.

We give the first distributed approximation algorithms for shortest paths problems that ad-
just to the topology they are run on, thus achieving significantly faster running times on many
topologies of interest. The running time of our algorithms depends on and is close to Q, where Q
is the quality of the best shortcut that exists for the given topology. While Q = Θ̃(

√
n+D) for

pathological worst-case topologies, many topologies of interest3 have Q = Θ̃(D), which results
in near instance optimal running times for our algorithm, given the trivial Ω(D) lower bound.

The problems we consider are as follows:
an approximate shortest path tree and SSSP distances,
a polylogarithmic size distance label for every node such that from the labels of any two nodes
alone one can determine their distance (approximately), and
an (approximately) optimal flow for the transshipment problem.

Our algorithms have a tunable tradeoff between running time and approximation ratio. Our
fastest algorithms have an arbitrarily good polynomial approximation guarantee and an essen-
tially optimal Õ(Q) running time. On the other end of the spectrum, we achieve polylogarithmic
approximations in Õ(Q ·nε) rounds for any ε > 0. It seems likely that eventually, our non-trivial
approximation algorithms for the SSSP tree and transshipment problem can be bootstrapped to
give fast Q · 2O(

√
logn log logn) round (1 + ε)-approximation algorithms using a recent result by

Becker et al.

2012 ACM Subject Classification Theory of computation → Shortest paths, Theory of compu-
tation → Distributed algorithms, Theory of computation → Approximation algorithms analysis

Keywords and phrases Distributed Graph Algorithms, Shortest Path, Shortcuts

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.33

Related Version A full version of the paper is available at https://arxiv.org/abs/1802.
03671.

1 Supported in part by NSF grants CCF-1527110, CCF-1618280 and NSF CAREER award CCF-1750808.
2 We use -̃notation to hide polylogarithmic factors in n, e.g., Õ(f(n)) = O(f(n) logO(1) n).
3 For example, [8] and [10] show that large classes of interesting network topologies, including planar

networks, bounded genus topologies, and networks with polylogarithmic treewidth have shortcuts of
quality Q = Õ(D). A similar statment is likely to hold for any minor closed graph family [11].

© Bernhard Haeupler and Jason Li;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 33; pp. 33:1–33:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/161589437?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://cs.cmu.edu/~haeupler
http://cs.cmu.edu/~jmli
https://doi.org/10.4230/LIPIcs.DISC.2018.33
https://arxiv.org/abs/1802.03671
https://arxiv.org/abs/1802.03671
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

33:2 Faster Distributed Shortest Path Approximations via Shortcuts

1 Introduction

This paper gives new distributed approximation algorithms for computing single source
shortest path (SSSP) distances and various generalizations, such as computing a SSSP tree,
distance labels, and a min-cost uncapacitated flow.

In the last few years, CONGEST algorithms for shortest path problems have seen a
tremendous amount of interest and progress [5,12,17]. The main difference of the algorithms
developed here, compared to those works, is that our algorithms achieve significantly faster
running times for non-pathological network topologies by building on the recently developed [8,
9] low-congestion shortcut framework; for a detailed overview, see Appendix A of the full
version on arXiv.

The low-congestion shortcut framework leads to faster algorithms for optimization prob-
lems with simple parallel divide and conquer style algorithms, such as the minimum spanning
tree problem. However it initially seemed less applicable to shortest path problems, par-
ticularly because all previous approaches for CONGEST algorithms for these problems
led to Ω(

√
n) running times, for reasons that are independent of issues where shortcuts

can help. Indeed, our approach for achieving non-trivial approximation ratios for shortest
path problems deviates notably from these approaches, and uses different tools to obtain
non-trivial approximation guarantees.

This paper is organized as follows: We briefly summarizes the key technical concepts of
the shortcut framework in Section 1.1; a more detailed treatment of the framework is given
in Appendix A in the full version. In Section 1.2, we define the different problems we treat in
this paper, and explain the difficulties in beating the Ω̃(

√
n+D) barrier for approximating

shortest path distances. We state our results in Section 1.3, compare it to related works in
Section 1.4, and devote the remaining paper to describing our algorithms and proving them
correct.

1.1 The Low-Congestion Shortcut Framework: A Brief Summary
This section provides the key technical definitions and facts about the low-congestion shortcut
framework. However, it does not attempt to explain the reasons, generality or importance
behind the definitions given here. Appendix A of the full version gives a more detailed
treatment, and we highly recommend to readers not familiar with the low-congestion shortcut
framework to read Appendix A first.

The shortcut framework is built around a simple and basic communication problem, given
in the next two definitions:

I Definition 1 (Valid Partitioning and Parts). For a graph G = (V,E), we say that a collection
of parts S1, S2, . . . ⊂ V is a valid partition if the parts are vertex disjoint and each induces
a connected graph.

I Definition 2 (The Part-wise Communication Problem). Let G be a network with a valid
partitioning S1, S2, . . . and a value xv for every node v ∈ V . Suppose ⊕ is an associative
and commutative function. The partwise communication problem asks for every Si and
every u ∈ Si to compute the value

⊕
v∈Si

xv.

We remark that for convenience, the parts of a valid partition do not necessarily need
to contain every vertex in V . Alternatively, it can be convenient to think of each node

B. Haeupler and J. Li 33:3

in V \
⋃
i Si as forming its own single-vertex part, thus making any valid partitioning a

partitioning in the usual sense.
The key findings of the shortcut framework can now be summarized as follows:

The shortcut framework allows us to characterize how hard it is to solve the part-wise
communication problem described in Definition 2 in the CONGEST model for any given
topology G. For any network with topology G this is captured by the quantity QG. In
the worst-case, the value of QG is Θ̃(

√
n+D) for a network with n nodes and diameter

D, such as the pathological network that shows a Ω̃(
√
n+D) lower bound for MST and

related problems [19]. In many other networks of interest, including planar networks,
networks which embed into a surface with bounded or polylogarithmic genus, networks
with bounded or polylogarithmic tree-width or networks with small separators, the
hardness QG is much lower and in fact only Õ(D). Most importantly, whatever the
hardness QG of a given topology is, there is a simple distributed algorithm which solves
the part-wise communication problem in Õ(QG) rounds for any valid partitioning in G.
Thus, Õ(QG) round shortcut-based algorithms necessarily have a worst-case running
time of Õ(

√
n+D) when expressed in terms of n and D; however, they are essentially

running as fast as the given topology (and to some extent even the given input) allows
it, which in many cases of interest is significantly faster, e.g., Õ(D) rounds.

1.2 CONGEST model and Shortest Path Problems
1.2.1 CONGEST Model
We consider the classical CONGEST model of distributed computing where a network is
given by a connected graph G = (V,E) with n nodes and (hop-)diameter D. Communication
proceeds in synchronous rounds. In each round, each node can send a different O(logn) bit
message to each of its neighbors. Local computations are free and require no time. Nodes
have no initial knowledge of the topology G, except that we assume that they know n and D
up to constants (because these parameters can be computed in O(D) time, which is negligible
in our context). All of our algorithms are randomized and succeed with high probability4. In
particular, we assume that each node has access to a private string of randomness, which it
can also use to create an O(logn) bit ID that is unique w.h.p.

In all problems considered here, we assume that every edge e of the network G has a
length or cost w(e) associated with it. We assume that all lengths lie in the range [1, nC] for
some constant C, and are initially only known to nodes adjacent to an edge. Interestingly,
our algorithms also easily handle edges of length zero, but for sake of simplicity, we do not
consider such edges in this paper. Any such length or cost function w produces a weighted
graph which we call G(w), and induces a distance between any two nodes u, v ∈ V , which
we denote with dG(w)(u, v), or simply d(u, v) when the weighted graph G(w) is clear. We
denote the weighted diameter of a network with L = maxu,v dG(u, v).

1.2.2 Shortest Path Problems
The most important and most basic problem we are studying in this paper is the single
source shortest path problem:

4 Throughout this work, “with high probability” or w.h.p. means with probability at least 1− n−C for
any desired constant C.

DISC 2018

33:4 Faster Distributed Shortest Path Approximations via Shortcuts

I Definition 3. The α-approximate SSSP distance problem assumes as input a
weighted graph and a designated source node s ∈ V , and asks for every node v ∈ V

to compute an approximate distance dv which satisfies d(s, v) ≤ dv ≤ α · d(s, v).

We furthermore consider the following generalizations of the SSSP distance problem:

I Definition 4. The α-approximate SSSP tree problem assumes that a weighted graph
with a designated source node s ∈ V is given and asks to compute a subtree T ⊆ G such
that for every node v ∈ V distance dT (s, v) ≤ α · d(s, v). Each node should know which of
its adjacent edges belong to T .

I Definition 5 (Approximate distance labeling scheme). An (l(n), α)-approximate dis-
tance labeling scheme is a function that labels the vertices of an input graph with distinct
labels up to l(n) bits, such that there exists a polynomial time algorithm that, given the
labels of vertices x and y, provides an estimate d̃(x, y) for the distance between these vertices
such that

d̃(x, y) ≤ d(x, y) ≤ α · d̃(x, y).

I Definition 6 (Transshipment Problem). The transshipment problem is the problem of
uncapacitated min-cost flow. In it every node in a weighted graph G has some real demand
dv such that

∑
v dv = 0. The cost of routing x amount of flow over an edge e of weight w(e)

is xw(e). The problem is to compute a flow satisfying all demands of approximate minimum
cost. Each node should know the flow an all edges incident to it.

1.3 Our Results
1.3.1 SSSP
Our first result is on computing an approximate, single source shortest path tree in a
distributed setting. Note that due to communication limits in the CONGEST model, it is
infeasible for each vertex to know the entire shortest path tree. However, it is sufficient that
each vertex computes the local structure of the tree, which is made specific below.

I Theorem 7. Let G be a network graph with edge weights in [1,poly(n)], with a specified
source vertex, and let β := (logn)−Ω(1). There is a distributed algorithm that, w.h.p., runs
for Õ(1

βQG) rounds and outputs a spanning tree that approximates distances to the source to
factor O(LO(log logn)/ log(1/β)).5 By output, we mean that at the end of the algorithm, every
vertex knows its set of incident edges in the spanning tree.

By setting β := n−ε, β := 2−Θ(
√

logn), and β := log−Θ(1/ε) n for constant ε, respectively,
we obtain the following three corollaries:

I Corollary 8. Let G be a network graph with edge weights in [1, poly(n)], with a specified
source vertex. For any constant ε > 0, there is a distributed algorithm that, w.h.p., runs for
Õ(QGnε) rounds and outputs a spanning tree that approximates distances to the source to
factor polylog(n).

I Corollary 9. Let G be a network graph with edge weights in [1, poly(n)], with a specified
source vertex. There is a distributed algorithm that, w.h.p., runs for Õ(QG2O(

√
logn)) rounds

and outputs a spanning tree that approximates distances to the source to factor 2O(
√

logn).

5 Recall that L = maxu,v dG(u, v).

B. Haeupler and J. Li 33:5

I Corollary 10. Let G be a network graph with edge weights in [1,poly(n)], with a specified
source vertex. For any constant ε > 0, there is a distributed algorithm that, w.h.p., runs
for Õ(QG) rounds and outputs a spanning tree that approximates distances to the source to
factor O(Lε).

1.3.2 Distance labeling schemes
For distance labeling schemes, we have the following result.

I Theorem 11. Let G be a network graph with edge weights in [1,poly(n)]. There exists a
(polylog(n), nO(log logn)/log(1/β)) approximate distance labeling scheme that runs in Õ(1

βQG)
rounds.

Setting β := nε gives the following corollary:

I Corollary 12. Let G be a network graph with edge weights in [1, poly(n)], There exists a
(polylog(n), polylog(n)) approximate distance labeling scheme that runs in Õ(QGnε) rounds.

1.3.3 Transshipment problem
We also provide a distributed algorithm to compute an approximate flow for the transshipment
problem.

I Theorem 13. Let G be a network graph with edge weights in [1, poly(n)] and demands that
sum to zero, and let β := (logn)−Ω(1). There is an algorithm that, w.h.p., runs for Õ(1

βQG)
rounds and computes a Õ(1

βn
O(log logn)/ log(1/β))-approximate flow.

1.4 Related Work
The complexity theoretic issues in the design of distributed graph algorithms for the CON-
GEST model have received much attention in the last decade, and extensive progress has been
made for many problems: Minimum-Spanning Tree [13], Minimum Cut [18], Diameter [14],
Shortest Path [5], and so on. Most of those problems have Θ̃(

√
n + D)-round upper and

lower bounds for some sort of approximation guarantee [19]. The notion of low-congestion
shortcuts was invented as a framework of circumventing these lower bounds [8]. Specifically,
the ideas present in [8] can be turned into very short and clean Õ(D+

√
n) round algorithms

for general graphs, and near-optimal Õ(D) round algorithms for special classes of graphs, for
problems such as MST and Min-Cut.

However, the shortcut framework cannot be applied directly to the SSSP problem, since,
unlike MST and Min-Cut, shortest path problems are not inherently parallelizable. For SSSP,
a new technique based on multiplicative weights results in a (1 + ε)-approximation to SSSP
in Õ(D +

√
n) time on general graphs [5]. However, until this paper, not much work has

been done on circumventing the Ω̃(D +
√
n) lower bound on restricted classes of graphs or

otherwise.
As a subroutine to computing shortest paths, we will be running low-diameter graph

decompositions. Low diameter decompositions have a long history in the centralized [4, 15]
and parallel [3, 6, 16] settings, and have been applied in the distributed setting to compute a
network decomposition with low “chromatic number” [7].

2 Distance-Preserving Tree

Let G be a weighted graph with QG-quality shortcuts. For a reader not familiar with
shortcuts or the material in Appendix A of the full version, the parameter QG intuitively

DISC 2018

33:6 Faster Distributed Shortest Path Approximations via Shortcuts

measures how easy it is for connected components of G to communicate within each other.
As a general rule, the “nicer” the graph G is, the smaller the quantity QG and the closer it
gets to the optimal D. For example, if G is a planar graph, then QG = Õ(D).

We first consider the problem of finding a tree such that, for every pair of vertices x, y ∈ V ,
their distance is well-approximated with constant probability. Our algorithm is an adaptation
of the algorithm of Section 5.4 from [2].

To motivate the ideas behind the algorithm, we describe it in a parallel framework with
graph contraction support. In each iteration, the algorithm runs a low diameter decomposition
(defined below; see Appendix B of the full version for details) on the graph and contracts
each component into a single vertex. To compute the tree as described above, take the set
of edges inside the BFS trees formed by each LDD, and map them back to the original
graph. The resulting tree is simply the (disjoint) union of these edges over all iterations. Of
course, in a distributed framework, we cannot maintain contracted graphs, so we substitute
each contracted vertex with a part of the original graph with zero-weight edges inside. To
communicate efficiently between the parts, we establish shortcuts within each part.

I Definition 14. For a weighted graph G = (V,E), a low-diameter decomposition (LDD) of
G is a probabilistic distribution over partitions of V into connected components S1, . . . , Sk,
such that
1. W.h.p., every induced graph G[Si] has low weighted diameter.
2. For every two vertices x, y ∈ V , the probability that they belong to the same component

is bounded from below by some function depending on dG(x, y).

We now describe the algorithm in detail. For a weight function w : E → R, denote G(w)
to be the graph G whose edges are reweighted according to w. The algorithm maintains a
weight function w : E → {0} ∪ [R,poly(n)] on the set of edges, for a given value R. The
zero-weight edges connect vertices within each component, while the threshold R increases
geometrically over time. With a larger threshold R, we can compute the LDD on G(1

Rw),
allowing the LDD to travel farther in the same amount of time. If R is large enough, this
graph still has edge weights at least 1 in between components, so computing the LDD is
feasible in a distributed manner.

In addition to w, the algorithm also maintains a forest T , which gets new edges every
iteration until it results in the approximate shortest path tree. Consider the following
LDDSubroutine, which we apply iteratively to w and T .

Algorithm (w′, T ′) = LDDSubroutine(w, T, β,R)
Algorithm:

1. Initially, set w′ := w and T ′ := T .
2. Consider G0(w), the subgraph of G with only the edges e with w(e) = 0.
3. Let H be the (multi-)graph with every connected component of G0(w) contracted

to a single vertex. Denote wH as the function w restricted to the edges in H.
4. Simulate a LDD on H(1

RwH) with parameter 1
β (see Appendix C of the full version).

The specifics are deferred to the next section.
5. For every edge in H that is part of a BFS tree in the LDD, add that edge to T ′.
6. For every edge e in H completely inside a LDD component, set w′(e) := 0.
7. For every other edge e in H, set w′(e) := w(e) + c1

β logn (for large enough constant
c1).

8. Output (w′, T ′).

B. Haeupler and J. Li 33:7

2.1 Correctness
The following two lemmas bound the maximum weighted diameter of a component, and
therefore also the running time of the subroutine, as well as the probability that two vertices
close together belong to the same component. Their proofs are natural generalizations of
those in [16] and appear in Appendix C of the full version.

I Lemma 15. W.h.p., each component in LowDiameterDecomposition has weighted dia-
meter O(1

β logn).

I Lemma 16. For vertices u, v ∈ V of (weighted) distance d, the probability that u and v
belong to the same component is e−O(dβ).

We now describe in more detail how to simulate the LDD in H(1
RwH) in the desired

running time. Observe that we cannot directly compute the LDD on the contracted graph,
since the contracted vertices are actually entire parts with limited communication between
them. However, we can apply shortcuts to communicate quickly within the parts, up to the
quality of the shortcut.

I Lemma 17. The LDD on the contracted graph (step 4 of LDDSubroutine) can be simulated
with a Õ(QG) multiplicative overhead in running time. In other words, if the LDD takes d
rounds, then it can be simulated in Õ(QGd) rounds in the network G.

Proof. Define the parts of V to be the connected components of G, and compute a set of
Õ(QG)-quality shortcuts, one for each part. In every round of the LDD on H(1

RwH), we
perform two steps sequentially: one to traverse nonzero weight edges between parts, and one
to flood through the zero weight edges within each part. To take care of the edges between
parts, note that every such edge has weight at least 1, so we can send them directly through
the network G. To flood through the zero edges within each part, it suffices to compute the
minimum time t that is received by any vertex, and then broadcast the message “t” to the
entire part. By routing through shortcuts, this can be done in Õ(QG) time per partition.
Overall, every round of the LDD is replaced by Õ(QG) rounds in the network G, hence the
multiplicative overhead. J

Together with Lemma 15, we get a running time of Õ(1
βQG).

I Definition 18. Let w : E → R be a weight function, and T ⊆ G a forest. Define G0(w)
to be the subgraph of G with only the edges e with w(e) = 0. Let C1, C2, . . . of G be the
connected components of G0(w). We say that (w, T) satisfies the subroutine invariant
with parameter R if the following conditions hold:
1. The weighted diameter of each part Ci using edge weights in G is at most R.
2. Every edge within a part Ci has weight 0 in w.
3. Every edge between two parts Ci, Cj has weight at least R in w.
4. For all x, y belonging to the same part Ci, dT (x, y) ≤ R.
5. T has a spanning tree within each part Ci, and no edges in between parts.

I Lemma 19. Fix parameter β. Suppose that the input (w, T) to LDDSubroutine satisfies
the subroutine invariant with parameter R. Then, w.h.p., for large enough constants c1 and
c2,

The output (w′, T ′) satisfies the subroutine invariant with parameter (c1
β logn)R.

For all x, y ∈ V , E[dG(w′)(x, y)] ≤ (c2 logn)dG(w)(x, y).

DISC 2018

33:8 Faster Distributed Shortest Path Approximations via Shortcuts

Proof. Note that the following properties of the invariant follow immediately:
2. Every edge within a part C ′i has weight 0 in w′.
3. Every edge between two parts C ′i, C ′j has weight at least (c1

β logn)R in w′.
5. T ′ has a spanning tree within each part C ′i, and no edges in between parts.

To prove invariant (4), suppose that x, y ∈ V are in the same C ′i. If they are also in
the same Ci, then the property holds by the input guarantee. Otherwise, by Lemma 15,
w.h.p. the parts containing x and y have distance O(1

β logn) in the BFS tree on H(1
RwH),

which means that there is a path in the BFS tree that travels through O(1
β logn) vertices

in H(1
RwH). We consider the distance through edges in H(1

RwH) and through vertices in
H(1

RwH) (which are actually parts in G) separately. For the edges, the distance is at most
O(1

β logn)R in H, and each of these edges has weight at least that in G, giving O(1
β logn)R

total distance. For the vertices, traversing through T inside the O(1
β logn) parts takes O(R)

distance each, by the input guarantee, and O(1
β logn)R distance overall. Combining the two

arguments proves (4) dT ′(x, y) ≤ (c1
β logn)R. Note that (4) immediately implies that (1) the

weighted diameter of each part C ′i using edge weights in G is at most (c1
β logn)R.

Finally, we prove that E[dG(w′)(x, y)] ≤ (c2 logn)dG(w)(x, y). If x, y ∈ V are in the same
C ′i, then their distance in G(w′) is zero and the claim follows. Otherwise, consider the
shortest path in H, which is also the shortest path in H(1

RwH). By Lemma 16, every edge
e on this path has probability at most 1− e−O(weβ) = O(w(e)β) of being cut between two
components, so the expected length is at most O(w(e)β) · c1

β logn = O(w(e) logn). By
linearity of expectation, the expected multiplicative increase of the path in H(1

RwH), and
also in G(w′), is O(logn). J

2.2 Algorithm Main Loop
In this section, we apply LDDSubroutine recursively with geometrically increasing values of
R. We show that the resulting forest approximates distances in expectation.

Algorithm T = ExpectedSPForest(G, β,R0)
Input:

G = (V,E), the network graph with edge weights in [1, poly(n)].
β = (logn)−Ω(1), freely chosen.
R0 ∈ [c2β

c1
, 1]

Algorithm:
1. Initially, set R(0) := R0, T (0) := ∅, and w(0) to have the same edge weights as G.
2. For t = 1, 2, . . ., while R < nc for large enough c:

a. (w(t), T (t)) := LDDSubroutine(w(t−1), T (t−1), β, R(t−1)).
b. Set R(t) := (c1

β logn)R(t−1).
3. Output the forest obtained on the last iteration.

Note that T is not guaranteed to be a tree at the end of the algorithm, so distances
within T can be infinite. However, a simple induction with linearity of expectation shows
that the expected increase in length behaves in a controlled way:

I Lemma 20. Let G be a network graph with edge weights in [1, poly(n)], and let β :=
(logn)−Ω(1). On the tth iteration of ExpectedSPForest, for any two vertices x, y ∈ V ,
E[dG(w(t))(x, y)] ≤ (c2 logn)tdG(x, y).

B. Haeupler and J. Li 33:9

We now show that we get approximate shortest paths with constant probability.

I Lemma 21. Let G be a network graph with edge weights in [1, poly(n)], and let β :=
(logn)−Ω(1). The algorithm ExpectedSPForest runs in Õ(1

βQG) rounds. Consider the
output forest T , and fix any two vertices x, y ∈ V . Then, dT (x, y) ≥ dG(x, y) always6, and
with constant probability, dT (x, y) ≤ O(1

β logn · dG(x, y)O(log logn)/ log(1/β)) · dG(x, y).

Proof. For the running time, there are O(logn
log(1/β)) iterations of the LDD, each of which takes

Õ(QG) time.
For simpler notation, define L := dG(x, y). Since every edge added to T has weight at

least the weight of that same edge in G, we clearly have dT (x, y) ≥ L. We now prove the
other bound on dT (x, y).

Consider any iteration t such that R(t) ≥ 2(c2 logn)tL. (We later argue that such an
iteration t must exist.) By Lemma 20 and Markov’s inequality, dG̃(t)(x, y) < R(t) with
probability at least 1

2 . If this occurs, then x and y cannot belong to different parts at
iteration t, since the distance between parts is at least R(t). By the subroutine guarantee,
dT (t)(x, y) = O(1

β logn)R(t−1) = O(R(t)), and since the edges of T (t) are preserved for the rest
of the algorithm, dT (x, y) = O(R(t)) as well. Therefore, for this value of t, the approximation
factor is 2(c2 logn)t with probability at least 1

2 .
It remains to find the smallest satisfying t. The condition on t is equivalent to

(c1
β logn)tR0 ≥ 2(c2 logn)tL, or t ≥ d log(2L)−log(R0)

log(c1/(c2β)) e. For t achieving equality, we get

R(t) = O

(
c1
β

logn
)t
R0 ≤

(
c1
β

logn
) log(2L)−log(R0)

log(c1/(c2β)) +1
= c1

β
logn ·

(
c1
β

logn
) log(2L)−log(R0)

log(c1/(c2β))

.

First, consider the case when L ≤ c1/(c2β). Since R0 ≥ (c2β)/c1, we have log(2L) −
log(R0) ≤ log 2, so

R(t) ≤ c1
β

logn ·
(
c1
β

logn
) log 2

log(c1/(c2β))

≤ c1
β

logn ·O(1) ≤ O
(
c1
β

logn
)
· L,

where the second-to-last inequality uses that β = (logn)Ω(1).
Now consider the case when L ≥ c1/(c2β). Since R0 ≥ (c2β)/c1, we have log(2L) −

log(R0) ≤ log(2L2), so

R(t) ≤
(
c1
β

logn
) log(2L2)

log(c1/(c2β)) +1
= c1

β
logn ·

(
c1
β

logn
) log(2L2)

log(c1/(c2β))

= c1
β

logn · (2L2)
log(c1/β·logn)
log(c1/(c2β)) = O

(
1
β

logn · (2L2)
O(log logn)

log(1/β)

)
,

as desired.
Lastly, we show that such an iteration t must exist. In particular, we show that the value

of t chosen above satisfies R(t) ≤ nc for some large enough constant c in the algorithm. Since
L = poly(n) and R = 1/poly(n), we have

t =
⌈

log(2L)− log(R0)
log(c1/(c2β))

⌉
= O

(
logn

log(1/β)

)
.

6 In particular, dT (x, y) =∞ if x and y are not in the same connected component in T

DISC 2018

33:10 Faster Distributed Shortest Path Approximations via Shortcuts

Therefore,

R(t) =
(
c1
β

logn
)t
R0 =

(
logn
β

)O(logn
log(1/β)

)
=
(

1
β

)O(logn
log(1/β)

)
· (logn)O

(
logn

log(1/β)

)
= nO(1) · nO(1),

where the last equality uses the fact that β = (logn)−Ω(1) =⇒ log(1/β) = Ω(log logn).
Therefore, R(t) ≤ nc for large enough c. J

From the shortest path forest, we can also derive the distances to each vertex v from a
specified source s. Below is the algorithm, which runs in Õ(1

βQG) rounds.

Algorithm ExpectedSPDistance(G, β, s)

1. Run ExpectedSPForest(G, β) to obtain forest T . Set T̃ to be the connected com-
ponent of T that contains the source s.

2. For all vertices v /∈ T̃ , set d(s, v) :=∞.
3. Run AggregatePathToRoot (see Appendix B of the full version) with xv = 1 for all

v ∈ T̃ to determine the depth of each vertex in the tree T̃ rooted at s.
4. Every vertex v ∈ T̃\{s} computes its parent in the rooted tree, which it can determine

by finding the one neighbor with smaller depth.
5. For each v ∈ T̃\{s}, set xv to be the weight of the edge to its parent, and set xs := 0.

Run AggregatePathToRoot on these values to determine d(s, v) for v ∈ T .

3 Solving SSSP and Related Problems

3.1 SSSP Trees
In this section, we describe an algorithm that outputs an approximate single source shortest
path tree with source s. At a high level, to boost the probability that distances are well-
approximated, we construct many randomized trees and take a collective “best” tree.

Algorithm SSSPTree(G, β, s)
1. Repeat ExpectedSPDistance(G, β, s) Θ(logn) times to obtain distances dTi(v) :=

dTi(s, v).
2. For each vertex v, set dmin(v) := mini dTi(v).
3. For each vertex v except the source, connect an edge to some neighbor u that satisfies

dmin(u) + w(u,v) ≤ dmin(v). Return the tree T ∗ of all such edges.

I Lemma 22. Let G be a network graph with edge weights in [1, poly(n)], and let β :=
(logn)−Ω(1). W.h.p., SSSPTree runs for Õ(1

βQG) rounds and outputs a shortest path tree

that O(1
βdG(v)

O(log logn)
log(1/β) logn)-approximates distances from the source to each v.

Proof. Observe that in step 3 of SSSPTree, such a neighbor always exists, since in the tree Ti
that achieves distance dmin(v) to v, the parent u of v in Ti satisfies dmin(u)+w(u,v) = dmin(v).
To show that dT∗(v) ≤ d(v) for each v, consider the path s = v0, v1, v2, . . . , v` = v in T ∗. We
have w(vi, vi−1) ≤ dmin(vi)− dmin(vi−1) for each i, and summing up the inequalities gives
the result.

B. Haeupler and J. Li 33:11

From Lemma 21, each vertex v achieves the desired approximation with constant prob-
ability. By taking the minimum dTi(v) over Θ(logn) trees, this approximation is satisfied
w.h.p. for every v, giving dT∗(v) ≤ dmin(v) = O(1

βdG(v)1+O(log logn)
log(1/β) logn) · dG(v). J

By repeating SSSPTree multiple times with differing R0, we can shave off the 1
β logn in

the approximation as follows, giving our main result for SSSP.

I Theorem 7. Let G be a network graph with edge weights in [1, poly(n)], with a specified
source vertex, and let β := (logn)−Ω(1). There is a distributed algorithm that, w.h.p., runs
for Õ(1

βQG) rounds and outputs a spanning tree that approximates distances to the source to
factor O(LO(log logn)/ log(1/β)).7 By output, we mean that at the end of the algorithm, every
vertex knows its set of incident edges in the spanning tree.

Proof. We first handle the pairs u, v ∈ V with d(u, v) ≥ c1/(c2β).
Run SSSPTree dlog(c1/(c2β))e = O(logn) many times, setting R0 := 2−t on the tth

iteration. The total number of rounds is Õ(1
βQG). Consider the case L ≥ c1/(c2β) in the

proof of 21. Observe that the factor 1
β comes from the +1 in the ceiling computation in

the expression d log(2L)−log(R0)
log(c1/(c2β)) e. However, with the differing values of R0, there exists one

such R0 such that taking the ceiling increases the value by at most 1
log(c1/(c2β)) . This factor

gets absorbed in the exponent O(log logn)
log(1/β) . Therefore, for each v, there exists a tree with this

approximation factor, and running steps 2 and 3 from SSSPTree on these trees gives the
result.

Now we handle the pairs u, v ∈ V with d(u, v) ≤ c1/(c2β). Intuitively, this should not
be a problem: if we run an LDD with β ∈ [1/L, 2/L], then by Lemma 16, with constant
probability, u and v are in a common component of diameter O(L logn), stretching the
distance by a factor O(logn).

Let us define wG to be the weights of the input graph G. Then the algorithm runs
LDDSubroutine(wG, ∅, β′, 1) times for each β′ ∈ [1, c1/(c2β)] satisfying β′ = 2−i for some
positive integer i, and repeats this loop O(logn) times. In total, this takes Õ(1

βQG). W.h.p.,
for each pair u, v ∈ V with d(u, v) ≤ c1/(c2β), there is a forest T returned by one of the
LDDSubroutines for which dT (u, v) ≤ O(logn)dG(u, v). Finally, running steps 2 and 3 from
SSSPTree on these forests, along with the tree obtained from the case L ≥ c1/(c2β), gives
the desired SSSP tree. J

3.2 Distance Labeling Schemes
We restate our main result on approximate distance labeling schemes.

I Theorem 11. Let G be a network graph with edge weights in [1,poly(n)]. There exists a
(polylog(n), nO(log logn)/log(1/β)) approximate distance labeling scheme that runs in Õ(1

βQG)
rounds.

Proof. For each t from 1 to dlog(c1/(c2β))e, run ExpectedSPForest Θ(logn) times with
R0 := 2−t. By analysis from Lemma 21 and Theorem 7, w.h.p., for every x, y ∈ V , there
is an iteration of ExpectedSPForest with R = O(dG(v)1+O(log logn)

log(1/β)) that outputs a cluster
containing both x and y. The total number of rounds is Õ(1

βQG).

7 Recall that L = maxu,v dG(u, v).

DISC 2018

33:12 Faster Distributed Shortest Path Approximations via Shortcuts

In each of the O(log2 n) iterations of ExpectedSPForest, consider all of the clusters
formed throughout the algorithm, and give each one a unique ID. For every iteration with
parameter R and a cluster formed in that iteration, assign to every vertex within the cluster
the label (ID, R). Each vertex is assigned to O(logn

log(1/β)) clusters per ExpectedSPForest, so
the label size is polylog(n).

To compute distances given two vertices x, y ∈ V , simply output the minimum possible
R over all clusters that contain both x and y, which is easily computed with the labels of
x and y. By the analysis above, the minimum possible R gives the desired approximation
factor O(dG(v)O(log logn)/log(1/β)) = O(nO(log logn)/log(1/β)). J

3.3 Transshipment Problem
Let G be a transshipment network with demand dv at each node v. The following algorithm
computes an approximate transshipment flow in expectation.

Algorithm ExpectedTS
1. Run ExpectedSPForest and root the tree T arbitrarily.
2. Using AggregateSubtree (see Appendix B) compute F (v) :=

∑
u∈Sv

dv for all v, where

Sv is the subtree rooted at v.
3. For each edge (v, p) ∈ T with p the parent of v in the rooted tree, direct F (v) flow

from v to p. (If F (v) is negative, then direct the flow the other way.)

I Lemma 23. Let G be a network graph with edge weights in [1,poly(n)] and demands that
sum to zero, and let β := (logn)−Ω(1). The expected total cost of ExpectedTS is within
Õ(1

βn
O(log logn)/ log(1/β)) of optimum.

Proof. Decompose the optimal solution into a set of (shortest) paths. For a path from s

to t, we have E[dT (s, t)] = Õ(1
βn

O(log logn)/ log(1/β)) · dG(s, t) by Lemma 21, and by linearity
of expectation, the cost C of routing each of these paths through T gives an expected
Õ(1

βn
O(log logn)/ log(1/β)) approximation. It remains to show that the total cost of ExpectedTS

is at most C. If ExpectedTS places F (e) flow along an edge e, then the total demand difference
between the two halves of the tree split at e is |2F |. Therefore, any sequence of paths along
T that satisfies all demands must route at least |F | flow along edge e. It follows that C must
be at least the cost of ExpectedTS. J

By running ExpectedTS repeatedly and taking the overall best flow, we obtain our main
result for transshipment.

I Theorem 13. Let G be a network graph with edge weights in [1, poly(n)] and demands that
sum to zero, and let β := (logn)−Ω(1). There is an algorithm that, w.h.p., runs for Õ(1

βQG)
rounds and computes a Õ(1

βn
O(log logn)/ log(1/β))-approximate flow.

Proof. Run ExpectedTS Θ(logn) many times and output the minimum total cost. By
Markov’s inequality and Lemma 23, w.h.p., some iteration achieves within twice the expected
approximation of Õ(1

βn
O(log logn)/ log(1/β)). J

4 Conclusion and Future Work

Using the shortcuts framework from [8, 9], we give the first nontrivial approximation al-
gorithms for shortest path problems which run in o(

√
n + D) time on non-pathological

B. Haeupler and J. Li 33:13

network topologies. Our algorithms feature a tuneable parameter β that represents the
balance between approximation ratio and running time. For certain values of β, we obtain
polylogarithmic-approximate solutions in Õ(nε ·QG) rounds for the shortest path and distance
labeling problems. While sublogarithmic approximation ratios are known to be impossible
(even existentially) for labeling schemes with polylogarithmic labels we believe that our
approximation guarantees can likely be improved for nice family of graphs, and, in the case
of the SSSP-tree and transshipment problems, even generally.

In particular, for the quite general set of minor closed families of graphs one might be
able to use more sophisticated low-diameter decompositions, such as [1], which would directly
lead to O(1)-approximation guarantees for such networks in our framework. However, [1] is
written for the sequential setting and making the algorithms in [1] distributed and compatible
with the shortcut framework is a nontrivial extension, which we plan to explore for the
journal version of this work.

More importantly, it seems possible that our non-trivial approximation ratios for the
SSSP-tree and transshipment problem can be improved all the way to (1 + ε)-approximations
using tools from continuous optimization, such as, gradient descent or the multiplicative
weights method. As one example, the recent and brilliant work of Becker et al. [5] shows how
to obtain a (1 + ε)-approximation for the SSSP-tree problem and the transshipment problem
by computing Õ(α2) many α-approximations to the transshipment problem. This work also
demonstrates that the required updates to weight and demand vectors can be performed in
various non-centralized models, including CONGEST. If this method could be applied to our
transshipment algorithm, we could choose β = 2−O(

√
logn log logn) to get a 2O(

√
logn log logn)-

approximate solution to the transshipment problem in QG · 2O(
√

logn log logn) rounds, which
could then be transformed into a (1 + ε) approximation with the exact same running time
(up to the constant hidden by the O-notation). This extension is highly nontrivial as well
and left for future work.

References

1 Ittai Abraham, Cyril Gavoille, Anupam Gupta, Ofer Neiman, and Kunal Talwar. Cops,
robbers, and threatening skeletons: Padded decomposition for minor-free graphs. In Pro-
ceedings of the 46th Annual ACM Symposium on Theory of Computing, pages 79–88. ACM,
2014.

2 Noga Alon, Richard M Karp, David Peleg, and Douglas West. A graph-theoretic game and
its application to the k-server problem. SIAM Journal on Computing, 24(1):78–100, 1995.

3 Baruch Awerbuch, Bonnie Berger, Lenore Cowen, and David Peleg. Low-diameter graph
decomposition is in nc. In Scandinavian Workshop on Algorithm Theory, pages 83–93.
Springer, 1992.

4 Yair Bartal. Probabilistic approximation of metric spaces and its algorithmic applications.
In Foundations of Computer Science, 1996. Proceedings., 37th Annual Symposium on, pages
184–193. IEEE, 1996.

5 Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph Lenzen. Near-
optimal approximate shortest paths and transshipment in distributed and streaming models.
In International Symposium on Distributed Computing, 2017.

6 Guy E Blelloch, Anupam Gupta, Ioannis Koutis, Gary L Miller, Richard Peng, and Kanat
Tangwongsan. Nearly-linear work parallel sdd solvers, low-diameter decomposition, and
low-stretch subgraphs. Theory of Computing Systems, 55(3):521–554, 2014.

DISC 2018

33:14 Faster Distributed Shortest Path Approximations via Shortcuts

7 Michael Elkin and Ofer Neiman. Distributed strong diameter network decomposition. In
Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, pages
211–216. ACM, 2016.

8 Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks ii:
Low-congestion shortcuts, mst, and min-cut. In Proceedings of the Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 202–219. Society for Industrial and
Applied Mathematics, 2016.

9 Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic. Low-congestion shortcuts without
embedding. In Proceedings of the 2016 ACM Symposium on Principles of Distributed
Computing, pages 451–460. ACM, 2016.

10 Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic. Near-optimal low-congestion short-
cuts on bounded parameter graphs. In International Symposium on Distributed Computing,
pages 158–172. Springer, 2016.

11 Bernhard Haeupler, Goran Zuzic, and Jason Li. Low-congestion shortcuts for any minor
closed family. In personal communications, 2017.

12 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. An almost-tight dis-
tributed algorithm for computing single-source shortest paths. In Proceedings of the ACM
Symposium on Theory of Computing, 2016.

13 Shay Kutten and David Peleg. Fast distributed construction of k-dominating sets and
applications. In Proceedings of the fourteenth annual ACM symposium on Principles of
distributed computing, pages 238–251. ACM, 1995.

14 Christoph Lenzen and Boaz Patt-Shamir. Fast partial distance estimation and applications.
In Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, pages
153–162. ACM, 2015.

15 Nathan Linial and Michael E Saks. Decomposing graphs into regions of small diameter. In
SODA, volume 91, pages 320–330, 1991.

16 Gary L Miller, Richard Peng, and Shen Chen Xu. Parallel graph decompositions using
random shifts. In Proceedings of the twenty-fifth annual ACM symposium on Parallelism
in algorithms and architectures, pages 196–203. ACM, 2013.

17 Danupon Nanongkai. Distributed approximation algorithms for weighted shortest paths.
In Proceedings of the ACM Symposium on Theory of Computing, pages 565–573, 2014.

18 Danupon Nanongkai and Hsin-Hao Su. Almost-tight distributed minimum cut algorithms.
In International Symposium on Distributed Computing, pages 439–453. Springer, 2014.

19 Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal
Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness
of distributed approximation. SIAM Journal on Computing, 41(5):1235–1265, 2012.

	Introduction
	The Low-Congestion Shortcut Framework: A Brief Summary
	CONGEST model and Shortest Path Problems
	CONGEST Model
	Shortest Path Problems

	Our Results
	SSSP
	Distance labeling schemes
	Transshipment problem

	Related Work

	Distance-Preserving Tree
	Correctness
	Algorithm Main Loop

	Solving SSSP and Related Problems
	SSSP Trees
	Distance Labeling Schemes
	Transshipment Problem

	Conclusion and Future Work

