36,384 research outputs found

    Distributed Maximum Matching in Bounded Degree Graphs

    Full text link
    We present deterministic distributed algorithms for computing approximate maximum cardinality matchings and approximate maximum weight matchings. Our algorithm for the unweighted case computes a matching whose size is at least (1-\eps) times the optimal in \Delta^{O(1/\eps)} + O\left(\frac{1}{\eps^2}\right) \cdot\log^*(n) rounds where nn is the number of vertices in the graph and Δ\Delta is the maximum degree. Our algorithm for the edge-weighted case computes a matching whose weight is at least (1-\eps) times the optimal in \log(\min\{1/\wmin,n/\eps\})^{O(1/\eps)}\cdot(\Delta^{O(1/\eps)}+\log^*(n)) rounds for edge-weights in [\wmin,1]. The best previous algorithms for both the unweighted case and the weighted case are by Lotker, Patt-Shamir, and Pettie~(SPAA 2008). For the unweighted case they give a randomized (1-\eps)-approximation algorithm that runs in O((\log(n)) /\eps^3) rounds. For the weighted case they give a randomized (1/2-\eps)-approximation algorithm that runs in O(\log(\eps^{-1}) \cdot \log(n)) rounds. Hence, our results improve on the previous ones when the parameters Δ\Delta, \eps and \wmin are constants (where we reduce the number of runs from O(log(n))O(\log(n)) to O(log(n))O(\log^*(n))), and more generally when Δ\Delta, 1/\eps and 1/\wmin are sufficiently slowly increasing functions of nn. Moreover, our algorithms are deterministic rather than randomized.Comment: arXiv admin note: substantial text overlap with arXiv:1402.379

    Best of Two Local Models: Local Centralized and Local Distributed Algorithms

    Full text link
    We consider two models of computation: centralized local algorithms and local distributed algorithms. Algorithms in one model are adapted to the other model to obtain improved algorithms. Distributed vertex coloring is employed to design improved centralized local algorithms for: maximal independent set, maximal matching, and an approximation scheme for maximum (weighted) matching over bounded degree graphs. The improvement is threefold: the algorithms are deterministic, stateless, and the number of probes grows polynomially in logn\log^* n, where nn is the number of vertices of the input graph. The recursive centralized local improvement technique by Nguyen and Onak~\cite{onak2008} is employed to obtain an improved distributed approximation scheme for maximum (weighted) matching. The improvement is twofold: we reduce the number of rounds from O(logn)O(\log n) to O(logn)O(\log^*n) for a wide range of instances and, our algorithms are deterministic rather than randomized

    Deterministic Distributed Edge-Coloring via Hypergraph Maximal Matching

    Full text link
    We present a deterministic distributed algorithm that computes a (2Δ1)(2\Delta-1)-edge-coloring, or even list-edge-coloring, in any nn-node graph with maximum degree Δ\Delta, in O(log7Δlogn)O(\log^7 \Delta \log n) rounds. This answers one of the long-standing open questions of \emph{distributed graph algorithms} from the late 1980s, which asked for a polylogarithmic-time algorithm. See, e.g., Open Problem 4 in the Distributed Graph Coloring book of Barenboim and Elkin. The previous best round complexities were 2O(logn)2^{O(\sqrt{\log n})} by Panconesi and Srinivasan [STOC'92] and O~(Δ)+O(logn)\tilde{O}(\sqrt{\Delta}) + O(\log^* n) by Fraigniaud, Heinrich, and Kosowski [FOCS'16]. A corollary of our deterministic list-edge-coloring also improves the randomized complexity of (2Δ1)(2\Delta-1)-edge-coloring to poly(loglogn)(\log\log n) rounds. The key technical ingredient is a deterministic distributed algorithm for \emph{hypergraph maximal matching}, which we believe will be of interest beyond this result. In any hypergraph of rank rr --- where each hyperedge has at most rr vertices --- with nn nodes and maximum degree Δ\Delta, this algorithm computes a maximal matching in O(r5log6+logrΔlogn)O(r^5 \log^{6+\log r } \Delta \log n) rounds. This hypergraph matching algorithm and its extensions lead to a number of other results. In particular, a polylogarithmic-time deterministic distributed maximal independent set algorithm for graphs with bounded neighborhood independence, hence answering Open Problem 5 of Barenboim and Elkin's book, a ((logΔ/ε)O(log(1/ε)))((\log \Delta/\varepsilon)^{O(\log (1/\varepsilon))})-round deterministic algorithm for (1+ε)(1+\varepsilon)-approximation of maximum matching, and a quasi-polylogarithmic-time deterministic distributed algorithm for orienting λ\lambda-arboricity graphs with out-degree at most (1+ε)λ(1+\varepsilon)\lambda, for any constant ε>0\varepsilon>0, hence partially answering Open Problem 10 of Barenboim and Elkin's book

    Local Algorithms for Bounded Degree Sparsifiers in Sparse Graphs

    Get PDF
    In graph sparsification, the goal has almost always been of global nature: compress a graph into a smaller subgraph (sparsifier) that maintains certain features of the original graph. Algorithms can then run on the sparsifier, which in many cases leads to improvements in the overall runtime and memory. This paper studies sparsifiers that have bounded (maximum) degree, and are thus locally sparse, aiming to improve local measures of runtime and memory. To improve those local measures, it is important to be able to compute such sparsifiers locally. We initiate the study of local algorithms for bounded degree sparsifiers in unweighted sparse graphs, focusing on the problems of vertex cover, matching, and independent set. Let eps > 0 be a slack parameter and alpha ge 1 be a density parameter. We devise local algorithms for computing: 1. A (1+eps)-vertex cover sparsifier of degree O(alpha / eps), for any graph of arboricity alpha.footnote{In a graph of arboricity alpha the average degree of any induced subgraph is at most 2alpha.} 2. A (1+eps)-maximum matching sparsifier and also a (1+eps)-maximal matching sparsifier of degree O(alpha / eps, for any graph of arboricity alpha. 3. A (1+eps)-independent set sparsifier of degree O(alpha^2 / eps), for any graph of average degree alpha. Our algorithms require only a single communication round in the standard message passing model of distributed computing, and moreover, they can be simulated locally in a trivial way. As an immediate application we can extend results from distributed computing and local computation algorithms that apply to graphs of degree bounded by d to graphs of arboricity O(d / eps) or average degree O(d^2 / eps), at the expense of increasing the approximation guarantee by a factor of (1+eps). In particular, we can extend the plethora of recent local computation algorithms for approximate maximum and maximal matching from bounded degree graphs to bounded arboricity graphs with a negligible loss in the approximation guarantee. The inherently local behavior of our algorithms can be used to amplify the approximation guarantee of any sparsifier in time roughly linear in its size, which has immediate applications in the area of dynamic graph algorithms. In particular, the state-of-the-art algorithm for maintaining (2-eps)-vertex cover (VC) is at least linear in the graph size, even in dynamic forests. We provide a reduction from the dynamic to the static case, showing that if a t-VC can be computed from scratch in time T(n) in any (sub)family of graphs with arboricity bounded by alpha, for an arbitrary t ge 1, then a (t+eps)-VC can be maintained with update time frac{T(n)}{O((n / alpha) cdot eps^2)}, for any eps > 0. For planar graphs this yields an algorithm for maintaining a (1+eps)-VC with constant update time for any constant eps > 0

    Distributed Approximate Maximum Matching in the CONGEST Model

    Get PDF
    We study distributed algorithms for the maximum matching problem in the CONGEST model, where each message must be bounded in size. We give new deterministic upper bounds, and a new lower bound on the problem. We begin by giving a distributed algorithm that computes an exact maximum (unweighted) matching in bipartite graphs, in O(n log n) rounds. Next, we give a distributed algorithm that approximates the fractional weighted maximum matching problem in general graphs. In a graph with maximum degree at most Delta, the algorithm computes a (1-epsilon)-approximation for the problem in time O(log(Delta W)/epsilon^2), where W is a bound on the ratio between the largest and the smallest edge weight. Next, we show a slightly improved and generalized version of the deterministic rounding algorithm of Fischer [DISC \u2717]. Given a fractional weighted maximum matching solution of value f for a given graph G, we show that in time O((log^2(Delta)+log^*n)/epsilon), the fractional solution can be turned into an integer solution of value at least (1-epsilon)f for bipartite graphs and (1-epsilon) * (g-1)/g * f for general graphs, where g is the length of the shortest odd cycle of G. Together with the above fractional maximum matching algorithm, this implies a deterministic algorithm that computes a (1-epsilon)* (g-1)/g-approximation for the weighted maximum matching problem in time O(log(Delta W)/epsilon^2 + (log^2(Delta)+log^* n)/epsilon). On the lower-bound front, we show that even for unweighted fractional maximum matching in bipartite graphs, computing an (1 - O(1/sqrt{n}))-approximate solution requires at least Omega~(D+sqrt{n}) rounds in CONGEST. This lower bound requires the introduction of a new 2-party communication problem, for which we prove a tight lower bound

    An Estimator for Matching Size in Low Arboricity Graphs with Two Applications

    Get PDF
    In this paper, we present a new simple degree-based estimator for the size of maximum matching in bounded arboricity graphs. When the arboricity of the graph is bounded by α\alpha, the estimator gives a α+2\alpha+2 factor approximation of the matching size. For planar graphs, we show the estimator does better and returns a 3.53.5 approximation of the matching size. Using this estimator, we get new results for approximating the matching size of planar graphs in the streaming and distributed models of computation. In particular, in the vertex-arrival streams, we get a randomized O(nϵ2logn)O(\frac{\sqrt{n}}{\epsilon^2}\log n) space algorithm for approximating the matching size within (3.5+ϵ)(3.5+\epsilon) factor in a planar graph on nn vertices. Similarly, we get a simultaneous protocol in the vertex-partition model for approximating the matching size within (3.5+ϵ)(3.5+\epsilon) factor using O(n2/3ϵ2logn)O(\frac{n^{2/3}}{\epsilon^2}\log n) communication from each player. In comparison with the previous estimators, the estimator in this paper does not need to know the arboricity of the input graph and improves the approximation factor for the case of planar graphs

    An optimal maximal independent setalgorithm for bounded-independence graphs

    Get PDF
    We present a novel distributed algorithm for the maximal independent set problem (This is an extended journal version of Schneider and Wattenhofer in Twenty-seventh annual ACM SIGACT-SIGOPS symposium on principles of distributed computing, 2008). On bounded-independence graphs our deterministic algorithm finishes in O(log* n) time, n being the number of nodes. In light of Linial's Ω(log* n) lower bound our algorithm is asymptotically optimal. Furthermore, it solves the connected dominating set problem for unit disk graphs in O(log* n) time, exponentially faster than the state-of-the-art algorithm. With a new extension our algorithm also computes a δ+1 coloring and a maximal matching in O(log* n) time, where δ is the maximum degree of the grap
    corecore