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Abstract
In graph sparsification, the goal has almost always been of global nature: compress a graph into
a smaller subgraph (sparsifier) that maintains certain features of the original graph. Algorithms
can then run on the sparsifier, which in many cases leads to improvements in the overall runtime
and memory. This paper studies sparsifiers that have bounded (maximum) degree, and are thus
locally sparse, aiming to improve local measures of runtime and memory. To improve those local
measures, it is important to be able to compute such sparsifiers locally.

We initiate the study of local algorithms for bounded degree sparsifiers in unweighted sparse
graphs, focusing on the problems of vertex cover, matching, and independent set. Let ε > 0 be
a slack parameter and α ≥ 1 be a density parameter. We devise local algorithms for computing:
1. A (1 + ε)-vertex cover sparsifier of degree O(α/ε), for any graph of arboricity α.1

2. A (1 + ε)-maximum matching sparsifier and also a (1 + ε)-maximal matching sparsifier of
degree O(α/ε), for any graph of arboricity α.

3. A (1 + ε)-independent set sparsifier of degree O(α2/ε), for any graph of average degree α.
Our algorithms require only a single communication round in the standard message passing mod-
els of distributed computing, and moreover, they can be simulated locally in a trivial way. As an
immediate application we can extend results from distributed computing and local computation
algorithms that apply to graphs of degree bounded by d to graphs of arboricity O(d/ε) or average
degree O(d2/ε), at the expense of increasing the approximation guarantee by a factor of (1 + ε).
In particular, we can extend the plethora of recent local computation algorithms for approximate
maximum and maximal matching from bounded degree graphs to bounded arboricity graphs
with a negligible loss in the approximation guarantee.

The inherently local behavior of our algorithms can be used to amplify the approximation
guarantee of any sparsifier in time roughly linear in its size, which has immediate applications
in the area of dynamic graph algorithms. In particular, the state-of-the-art algorithm for main-
taining (2− ε)-vertex cover (VC) is at least linear in the graph size, even in dynamic forests. We
provide a reduction from the dynamic to the static case, showing that if a t-VC can be computed
from scratch in time T (n) in any (sub)family of graphs with arboricity bounded by α, for an
arbitrary t ≥ 1, then a (t+ ε)-VC can be maintained with update time T (n)

O((n/α)·ε2) , for any ε > 0.
For planar graphs this yields an algorithm for maintaining a (1 + ε)-VC with constant update
time for any constant ε > 0.
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1 Introduction

Graph sparsification has been extensively studied for many years, and is subject to increasingly
growing interest due to the rapidly growing necessity of dealing with huge-sized graphs.
Given such a graph G = (V,E), we would like to compress G into a subgraph H of much
smaller size that maintains certain features of G, such as distances, cuts or flows. Algorithms
can then run on the compressed subgraph H, sometimes called sparsifier, rather than the
original graph G, which may save significantly on important resources such as the overall
runtime and memory of the algorithm, often at the expense of approximate rather than exact
solutions or worse approximation guarantees. The most common type of sparsifiers are edge
sparsifiers, such as graph spanners [49] and cut or spectral sparsifiers [11, 52], which span the
original vertex set using a small number of edges. Another well-studied type of sparsifiers
are vertex sparsifiers, such as flow or cut sparsifiers [32, 43, 39], which should span a small
number of designated vertices.

The basic goal in this area has almost always been of global nature, i.e., of minimizing
the overall size of the sparsifier and the overall time needed for computing it. One of the
exceptions is in the area of spanners, where researchers have studied spanners of bounded
(maximum) degree. While a sparse spanner has a low average degree, and is thus globally
sparse, a bounded degree spanner has a low maximum degree, and is thus locally sparse.
Although bounded degree spanners have been little studied thus far in general graphs
[20, 19], they have been studied extensively in Euclidean low-dimensional spaces, see e.g.,
[23, 3, 24, 29, 25]). The spanner degree often determines local memory constraints when
using spanners to construct network synchronizers [49] and efficient broadcast protocols
[5, 6]. In compact routing schemes (e.g., [53, 18]), the use of low degree spanners may
enable the routing tables to be of small size. Moreover, viewing vertices as processors, in
many applications the degree of a processor represents its load, hence a low degree spanner
guarantees that the load on all the processors in the network will be low.

This paper studies sparsifiers from a local perspective, aiming to improve local measures
of runtime and memory. To improve those local measures, it is important to be able to
compute such sparsifiers locally, in a manner to be defined shortly. We initiate the study
of local algorithms for bounded degree sparsifiers in unweighted sparse graphs. The graphs
that we consider are sparse either globally, i.e., of bounded average degree, or uniformly,
i.e., of bounded arboricity, whence the average degree of any induced subgraph is bounded.
In sparse graphs some vertices may have large degrees, as with the n-star graph. Our
basic goal is to compute locally a sparsifier H for the original graph G = (V,E), whose
maximum degree is bounded in terms of the density of G and some slack parameter ε > 0,
and which approximately preserves a certain property or feature of the original graph; the
sparsifier would ideally be a subgraph of G, but this cannot always be achieved. Algorithms,
particularly local ones, can then run on the bounded degree sparsifier H rather than on the
original graph G, which may save significantly on local resources of runtime and memory. For
concreteness, we focus on the following combinatorial optimization problems: (approximate)
minimum vertex cover (VC), maximum and maximal matching, and maximum independent
set (IS). It would be only natural to extend the study of bounded degree sparsifiers to other
fundamental problems.

For the maximum matching problem, a (1 + ε)-sparsifier for G is a subgraph H = (V ′, E′)
of G, with V ′ ⊆ V,E′ ⊆ E, such that the maximum matching size of H is within a factor of
1 + ε from that of G; thus a (1 + ε)-(approximate) maximum matching for H is a (1 +O(ε))-
maximum matching for G. For the maximal matching problem the definition is similar; see
Section 2.
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We need to be more careful with the definitions of sparsifier for the minimum VC and
maximum IS problems, since a VC (respectively, IS) for a subgraph H of G may not be a
valid VC (resp., IS) for the entire graph G. Note that we are concerned with the validity
of solutions obtained by the sparsifier rather than the approximations that they provide.
Consequently, a sparsifier in these cases will not be simply a subgraph H of G, but rather a
pair (H,V ′), where H is a subgraph of G and V ′ is a vertex set of V , hereafter the validating
set of the sparsifier, such that for any VC (resp., IS) for H, adding (resp., removing) the
validating set V ′ to (resp., from) it provides a valid VC (resp., IS) for G; the role of the
validating set is to translate the solution obtained by the sparsifier into a valid solution for
G. We say that (H,V ′) is a (1 + ε)-sparsifier for G if for any (1 + ε)-(approximate minimum)
VC (resp., (approximate maximum) IS) for H, denoted by CH (resp., IH), the set CH ∪ V ′
is a valid (1 +O(ε))-VC (resp., IH \ V ′ is a (1 +O(ε))-IS) for G.

Given any ε > 0 and any density parameter α ≥ 1, we devise local algorithms for
computing:
1. A (1 + ε)-VC sparsifier of degree O(α/ε), for any graph of arboricity bounded by α.
2. A (1 + ε)-maximum matching sparsifier and also a (1 + ε)-maximal matching sparsifier of

degree O(α/ε), for any graph of arboricity bounded by α.
3. A (1 + ε)-IS sparsifier of degree O(α2/ε), for any graph of average degree bounded by α.

Aiming at enhancing the applicability and usefulness of our sparsifiers, we adhere to a
strict notion of locality: For any vertex v, we want to be able to compute the adjacent edges
of v that belong to the sparsifier by probing only v and a small number (bounded by the
degree of the sparsifier) of its neighbors, where the probing procedure is context-dependent.
In standard centralized settings such a procedure will simply examine the data structures
of v and those neighbors, but in the message passing models of distributed computing, for
example, the procedure may trigger the exchange of messages between v and those neighbors.
Also, we want to determine if a vertex v belongs to the validating set of the sparsifier by
probing only v. The advantage in using such a strict notion of locality is three-fold, as
summarized here and described in more detail later on:
1. In the rapidly growing area of local computation algorithms (see, e.g., [50, 2, 26, 27]), a

standard assumption is that the underlying graph has bounded degree. This assumption
is required since a local computation algorithm would typically probe all vertices inside
a small-radius ball around the queried vertex/edge. If the maximum degree is ∆ and
the ball radius is r, the probe complexity is bounded by ∆O(r), and sometimes the
total runtime and space will also be bounded by ∆O(r). Due to the local nature of our
sparsification algorithms, we can restrict the probing procedure only to the sparsifier
edges, which directly enables us to extend known results from bounded degree graphs to
uniformly sparse graphs.

2. In dynamic centralized graph algorithms, following an update of a vertex/edge, the update
algorithm would typically scan all neighbors of the updated vertices (and usually more
than just those vertices), either to obtain up-to-date information from the data structures
of those neighbors or to update that information. Since the adversary may choose to
focus its attention on few high degree vertices, this could lead to algorithms with a poor
update time. Using our notion of locality, we show that the attention can be restricted to
only few edges of the sparsifier, which leads to improvements in the update time.

3. In distributed networks, we can compute the sparsifier in a single communication round.
Moreover, since each vertex communicates with only few of its neighbors, the load on all
vertices (or processors) throughout the sparsifier’s computation is low. After the sparsifier
has been computed, running on it distributed algorithms rather than on the original

ITCS 2018
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network may significantly reduce the total runtime of the algorithms and the load on the
processors.

In addition to the above applications, our sparsification algorithms can be used more broadly
in computational models where there are local memory constraints, such as the distributed
communication model and the massively parallel computation (MPC) model, which is an
abstraction of MapReduce-style frameworks (cf. [21, 4]). Another relevant model is the
dynamic distributed model (cf. [46, 17]), where some graph structure (e.g., matching) is to
be maintained in a dynamically changing distributed network using low local memory at
processors.

1.1 Our sparsifiers
Perhaps the most important feature of our sparsification algorithms is their simplicity, which
is partly why they can be computed under such a strict notion of locality.

For any ∆ ≥ 1, let V ∆
high and V ∆

low be the sets of vertices of degree ≥ ∆ and < ∆,
respectively. When ∆ is clear from the context, we may omit it from the superscript. For any
vertex set V ′ in G, denote by G[V ′] the subgraph induced by V ′. Define Ghigh = G[Vhigh]
and Glow = G[Vlow].

1. For the minimum VC problem, we take the pair (Glow, Vhigh) as the (1 + ε)-sparsifier for
G, where Glow is a subgraph of G and Vhigh is the validating set of the sparsifier. It is
clear that the degree of Glow is at most ∆, and moreover, for any VC for Glow, its union
with Vhigh is a valid VC for G. In Section 3.2 we show that for any graph of arboricity
α, taking ∆ = O(α/ε) guarantees the following: If V Clow is a (1 + ε)-VC for Glow, then
V Clow ∪ Vhigh is a (1 +O(ε))-VC for G.

2. For the maximum and maximal matching problems, a (subgraph) (1 + ε)-sparsifier G∆
for G with degree bounded by ∆ can be obtained as follows: Mark up to ∆ arbitrary
adjacent edges on every vertex v, and add to G∆ all edges that are marked by both
endpoints. It is clear that the degree of G∆ is at most ∆. (Note that if we took to G∆
edges that are marked just once, the degree of G∆ could explode.) In Section 3.1 we show
that for any graph of arboricity α, taking ∆ = O(α/ε) guarantees that the subgraph G∆
is a (1 + ε)-sparsifier for G.

3. For the maximum IS problem, we take Glow as the (1 + ε)-sparsifier for G. (Although we
may also use a validating set for the sparsifier, there is no need to do that here; thus in
this case the IS sparsifier is a subgraph of G.) It is clear that the degree of Glow is at
most ∆, and moreover, any IS for Glow is a valid IS for G. In Section 3.3 we show that
for any graph of average degree α, taking ∆ = O(α2/ε) guarantees that any (1 + ε)-IS for
Glow is a (1 +O(ε))-IS for G.

Note that our sparsifiers are obtained by essentially “ignoring” the high degree vertices,
where what is meant by ignoring is context-dependent. For the minimum VC and maximum
IS problems, we take all high degree vertices to the VC and take none of them to the IS,
respectively, whereas for the maximum and maximal matching problems, we ignore all but
at most ∆ edges adjacent on any high degree vertex. This approach of ignoring the high
degree vertices can be viewed as a general paradigm, and it would be interesting to apply it
to additional fundamental graph problems.

1.2 Local computation algorithms
The model of local computation algorithms was introduced by Rubinfeld et al. [50], motivated
by the fact that it is prohibitively expensive and sometimes infeasible for an algorithm to read
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and process the entire input as well as to report the entire output, when dealing with massive
data sets. Local computation algorithms should answer queries regarding global solutions to
computational problems by examining only a small part of the input. The goal is to reach a
global solution by performing local (sublinear time) computations on the input, and answer
only regarding the queried part of the output. If there are multiple possible solutions, the
answers to all queries must be consistent with a single solution. (More technical details on
this model are given in Section 2; see also [50].) For the (1 + ε)-maximum matching problem,
each query is an edge in the graph, and the algorithm needs to answer whether the queried
edge belongs to a (1 + ε)-maximum matching; note that the answers to all queries must be
with respect to the same matching. [41] devised a randomized local computation algorithm
for (1 + ε)-maximum matching with time and space complexities poly(logn) · exp(∆), where
∆ is the maximum degree of the graph. This result was improved in [26] to a deterministic
algorithm with time complexity O(log∗ n) · exp(∆) and zero space complexity. [40] devised a
randomized algorithms with time and space complexities of poly(logn,∆). [28] obtained a
deterministic algorithm for (2+ε)-maximum matching with time complexity O(log∗ n)·2O(∆2).
(We ignore the dependencies on ε in the results of [41, 26, 40, 28]; in fact, in some of these
results it is assumed that ε is constant.)

We can extend the results of [41, 26, 40, 28] from graphs of bounded degree to graphs
of bounded arboricity. Specifically, for any graph with arboricity bounded by α, our
matching sparsifier G∆ has a degree bounded by ∆ = O(α/ε). We get this extension by
exploiting the local nature of G∆, and in particular, the fact that for any vertex v, we
can compute the adjacent edges of v that belong to G∆ by probing only v and at most ∆
of its neighbors. Any (1 + ε)-maximum matching computed for the sparsifier provides a
(1 + ε)2 = (1 +O(ε))-maximum matching for the original graph, thus there is only a negligible
loss in the approximation guarantee. Since ∆ = O(α/ε), the smaller ε is, the larger the time
and space complexities get. Nonetheless, as long as ε is not too small, the loss here is quite
negligible too. In this way reduce the problem of approximate maximum matching from
graphs of arboricity bounded by α to graphs of degree bounded by ≈ α.

In the same way we reduce the problems of approximate minimum VC and maximum
IS from bounded arboricity graphs and graphs of bounded average degree, respectively,
to bounded degree graphs. These reductions show that if and when local computation
algorithms for these problems are developed in bounded degree graphs (there are currently
no such algorithms), they will immediately give rise to new algorithms in the respective
wider families. Moreover, this can be viewed as a general paradigm: By locally computing a
sparsifier for a combinatorial optimization problem in some family of graphs, we reduce the
problem from that family to the family of bounded degree graphs, and the loss depends on
the approximation guarantee of the sparsifier and on its degree.

1.3 Dynamic centralized graph algorithms
The problems of dynamically maintaining approximate minimum VC and maximum matching
have been intensively studied in recent years, see e.g. [45, 10, 44, 30, 14, 13, 15]. The holy
grail is for the approximation guarantee to approach 1 and for the (amortized or worst-case)
update time to be poly(logn) and ideally a constant.

A dynamic algorithm for approximate VC (respectively, matching) should maintain a data
structure that answers queries of whether a vertex is in the VC (resp., an edge is matched)
or not in constant time. Constant query time is considered a standard requirement in this
line of research, and the goal is to optimize the update time of the algorithm under this
requirement. Almost all related works follow another requirement, of bounding the number
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of changes to the maintained structure per step, either in the amortized or in the worst-case
sense. The update time of the algorithm, which is the time it needs to update the data
structure, may be significantly lower than, and is bounded by, the number of changes to the
maintained structure; for a motivation of this requirement, refer to [16, 1]. It is easy to see
that maintaining an exact minimum VC or a maximum matching requires Ω(n) changes per
update even in the amortized sense, and even for a simple path that changes dynamically in
a straightforward way.

Except for general graphs, these problems have been studied mostly in bounded arboricity
graphs [44, 38, 34, 12, 13, 48]. It was shown in [44] that a maximal matching can be
maintained with amortized time O(logn/ log logn) in constant arboricity graphs, and this
bound was improved in [34] to O(

√
logn). [38] achieved a worst-case update time of O(logn).

The algorithms of [44, 34, 38] extend to graphs with arboricity bounded by α, with the
update time depending on α. A randomized algorithm for maintaining a maximal matching in
general graphs with constant amortized update time was given in [51]. A maximal matching
provides a 2-approximation for both the maximum matching and the minimum VC.

What about better-than-2 approximations? Improving upon [12, 13] and providing
essentially the best result one can hope for in graphs of arboricity α, [48] showed that a
(1 + ε)-maximum matching can be maintained with a worst-case update time of O(α). The
O(α) bound in [48] also bounds the number of changes to the matching, and as mentioned it
is impossible to maintain an exact matching with o(n) matching changes even for a dynamic
path. In addition, [48] showed that a (2 + ε)-VC can be maintained with a worst-case update
time of O(α). This improves the update time of the 2-VC algorithms of [44, 34, 38] in every
aspect, at the expense of increasing the approximation guarantee from 2 to (2 + ε).

Note that in general graphs, a better-than-2 approximation to the minimum VC cannot
be maintained efficiently under the unique games conjecture [37]. Although this hardness
result does not apply to bounded arboricity graphs, there is currently no dynamic algorithm
for maintaining a better-than-2 approximate VC with update time o(n) even in the amortized
sense, and even in dynamic forests!2 In fact, the only known way to maintain a better-than-2
VC dynamically is to apply the fastest static algorithm from scratch following every update
step.

The local nature of our sparsification algorithms can be used to amplify the approximation
guarantee of our VC sparsifier in time roughly linear in its size. As a corollary, we provide a
reduction from the dynamic to the static case, showing that if a t-VC can be computed from
scratch in time T (n) in any (sub)family of graphs with arboricity bounded by α, for any
t ≥ 1, then a (t+ ε)-VC can be maintained with a worst-case update time of T (n)

O((n/α)·ε2) . This
bound of T (n)

O((n/α)·ε2) also bounds the amortized number of changes to the VC. For planar
graphs this yields an algorithm for maintaining an (1 + ε)-VC with a constant worst-case
update time for any constant ε > 0, which is essentially the best one can hope for. For graphs
of arboricity bounded by α we can maintain a VC of approximation guarantee ≈ 2− 1

α with
a worst-case update time of O(

√
n · α2).

We can also amplify our matching and IS sparsifiers and obtain reductions from the
dynamic to the static case. These reductions are not useful to obtain new time bounds for the

2 The only exception is an algorithm for maintaining a maximum matching in dynamic forests with a
worst-case update time of O(logn) [31]. As a result one can maintain the size of the minimum VC (by
Konig’s theorem) in logarithmic update time. On the negative side, one cannot efficiently maintain the
VC itself or even a poor approximation of it using [31], and more importantly, the result of [31] requires
a logarithmic query time, hence it does not follow the standard constant query time requirement. (We
believe that [31] is the only paper in this line of research that does not follow this requirement.)
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maximum matching and IS problems. In particular, for approximate matchings, the result
of [48] is already the best one can hope for; nevertheless, our reduction for the maximum
matching problem can be used to obtain simpler and cleaner algorithms and arguments than
those of [48], as discussed in Section 4.2.

1.4 Distributed networks

Our sparsification algorithms can be implemented within a single communication round in
distributed networks, where each processor sends and receives a single O(1)-bit message
along each of its adjacent edges. Moreover, if ∆ is the maximum degree of the sparsifier,
each processor may send messages along just ∆ of its adjacent edges, which ensures that
the load on all the processors will be low throughout the sparsifier’s computation. After the
sparsifier has been computed, we can run on it the required distributed algorithm rather than
on the original network, which may significantly reduce the total runtime of the algorithm,
the load on the processors, and in some settings it may also reduce the local memory usage
at a processor.

Our distributed sparsification algorithms directly extend results from bounded degree
graphs to bounded arboricity graphs or to graphs of bounded average degree, for all the
problems studied in this paper. Since the performance of many distributed algorithm depend
on the maximum degree of the underlying network and as our sparsification algorithms are
extremely simple, we anticipate that they will be used and implemented in practice.

For the distributed approximate VC problem, [8] showed how to compute a (2 + ε)-VC in
O(log ∆/(ε log log ∆)) rounds, where ∆ is the maximum degree in the graph. We can plug
our reduction to extend the result of [8] to graphs of arboricity bounded by α, getting a
(2 + ε)-VC in O(log(α/ε)/(ε log log(α/ε))) rounds.

For the distributed approximate matching problem, a reduction from bounded arboricity
graphs to bounded degree graphs was already given in [22]. Nonetheless, our reduction has
several advantages over that of [22] (see Section 4), one of which is that it is much simpler,
another is that our degree bound has better dependence on ε. In particular, [27] devised a
distributed algorithm for computing a (1 + ε)-maximum matching in ∆O(1/ε) +O(ε−2) · log∗ n
rounds. Plugging our reduction (instead of that from [22]), we easily extend the result of [27]
to graphs of arboricity bounded by α to get a (1 + ε)-maximum matching in (α/ε)O(1/ε) +
O(ε−2) · log∗ n rounds.

A reduction from bounded arboricity graphs to bounded degree graphs was given in [9]
for the problems of maximal matching, maximal IS, vertex coloring and ruling sets. The
reduction of [9] is based on different ideas than ours (their algorithm is randomized, the
number of rounds required by their algorithm is polylogarithmic in the maximum degree,
etc), and moreover, it appears that the reduction of [9] cannot be efficiently applied to the
problems studied in this paper.

1.5 Organization

The definitions and notation used throughout are given in Section 2. Our matching, VC and
IS sparsifiers are presented in Sections 3.1, 3.2 and 3.3, respectively. Finally, in Section 4 we
provide some applications of our sparsifiers.

ITCS 2018
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2 Preliminaries

Consider an unweighted graph G = (V,E). A matchingM for G is said to be almost-maximal
w.r.t. some parameter η > 0, or η-maximal, if at most η · |M | edges can be added to it while
keeping it a valid matching for G. A (1 + ε)-maximal matching sparsifier for G is a subgraph
H of G, such that any η-maximal matching for H is an (ε+O(η))-maximal matching for G;
in particular, a maximal matching for H is ε-maximal for G, and a ε-maximal matching for
H is O(ε)-maximal for G.

For a vertex v in G, let ΓG(v) denote the set of neighbors (or neighborhood) of v in G.
For any vertex set V ′ ⊆ V in G, denote by G[V ′] the subgraph induced by V ′.

A graph G = (V,E) has arboricity α if α = maxU⊆V
⌈
|E(U)|
|U |−1

⌉
, where

E(U) = {(u, v) ∈ E | u, v ∈ U}. Alternatively, the arboricity of a graph is the minimum
number of edge-disjoint forests into which it can be partitioned. The family of bounded
arboricity graphs contains planar and bounded genus graphs, bounded tree-width graphs,
and in general all graphs excluding fixed minors.

As mentioned in Section 1.1, for any ∆ ≥ 1, we write V ∆
high and V ∆

low to denote the sets
of vertices of degree ≥ ∆ and < ∆, respectively, omitting ∆ from the superscript when it is
clear from the context. Define Ghigh = G[Vhigh] and Glow = G[Vlow].

3 Our Sparsifiers

Note that a graph with arboricity α has an average degree at most 2α. Throughout we use
α as an arboricity parameter and β as an average degree parameter. The next observation
will be useful.

I Observation 1. Let G = (V1 ∪ V2, E) be a graph with average degree bounded by β, and
suppose that each vertex of V1 has degree at least (c+ 1)β, for any c. Then |V1| ≤ |V2|/c.

Proof. Observe that 2|E| ≤ β(|V1|+|V2|). Since every vertex in U has degree at least (c+1)β,
we have 2|E| ≥ |V1| · (c+ 1)β, hence |V1| · (c+ 1)β ≤ β(|V1|+ |V2|), and so |V1| ≤ |V2|/c. J

3.1 The matching sparsifier
Let G be a graph of arboricity bounded by α, set ∆ = 5(5/ε + 1)2α, and define the sets
Vhigh, Vlow and the subgraphs Glow, Ghigh accordingly. We assume that ε ≤ 1; the argument
works also for larger ε, by increasing ∆ appropriately. (We did not try to optimize the
constants in the definition of ∆.)

Recall our definition of the matching sparsifier G∆: Mark up to ∆ arbitrary adjacent
edges on every vertex v, and add to G∆ all edges that are marked by both endpoints. It is
clear that the degree of G∆ is at most ∆. To prove that G∆ is a matching sparsifier, we use
Hall’s marriage theorem.

I Theorem 2 (Hall’s marriage theorem [33]). Let G be a bipartite graph with sides X and
Y . There is a matching that entirely covers X if and only if for every subset W of X,
|W | ≤ |ΓG(W )|, where ΓG(W ) =

⋃
v∈W ΓG(v) is the neighborhood of W .

The following theorem shows that G∆ is a (1 + ε)-maximum matching sparsifier.

I Theorem 3. Let G be a graph of arboricity bounded by α and define G∆ as above, for
∆ = 5(5/ε+ 1)2α, ε ≤ 1. Also, denote byM∗ andM∗∆ the maximum matchings for G and
G∆, respectively. Then |M∗| ≤ (1 + ε) · |M∗∆|. (In particular, any t-matching for G∆ is a
t(1 + ε)-matching for G.)
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Proof. We shall construct a matchingM∆ for G∆ satisfying |M∗| ≤ (1 + ε) · |M∆|.
LetM∗1 be the subset ofM∗ of all edges that belong to G∆, and initializeM∆ toM∗1.

DefineM∗2 =M∗ \M∗1 as the complementary subset ofM∗. We next show that sufficiently
many additional edges of G∆ can be added toM∆ while keeping it a valid matching.

Note that any edge with two endpoints in Vlow must belong to G∆. Since the edges of
M∗2 do not belong to G∆ by definition, any edge ofM∗2 is adjacent on at least one vertex of
Vhigh.

Let V in = V inhigh be the subset of Vhigh of all vertices with at least 2∆/5 neighbors in
Vhigh, and let V out = V outhigh = Vhigh \ V in be the complementary subset of Vhigh. Observe
that Ghigh has arboricity at most α, and thus average degree at most 2α. Moreover, every
vertex in V in has degree at least 2∆/5 = 2(5/ε+ 1)2α ≥ (10/ε+ 1)2α in Ghigh. Observation
1 thus yields

|V in| ≤ ε/10 · |V out|. (1)

I Observation 4. Each vertex in V out has more than 3∆/5 neighbors in Vlow within G∆.

Proof. First, note that any vertex in Vlow marks all its < ∆ adjacent edges. Since each
vertex in V out has < 2∆/5 neighbors in Vhigh but a degree of ≥ ∆, the remaining > 3∆/5
neighbors must be in Vlow. Each vertex of V out marks ∆ edges, and any of the > 3∆/5 edges
adjacent to a vertex of Vlow is also marked by that endpoint in Vlow, and is thus added to
G∆. J

For a vertex v, we will refer to its neighbors within G∆ as its G∆-neighbors. Let U = Uout

be the set of vertices in V out that are free w.r.t.M∗1. By Observation 4, each vertex of U
has more than 3∆/5 G∆-neighbors in Vlow. Denote by Γ = Γ(U) the set of all G∆-neighbors
of vertices from U in Vlow. We next partition Γ into two sets, the sets Γmatched and Γfree of
vertices that are matched and free w.r.t.M∗1, respectively. A vertex u ∈ U is called risky if
at least 2∆/5 of its G∆-neighbors in Γ are in Γmatched, otherwise it is safe, and then more
than ∆/5 of its G∆-neighbors are in Γfree. Let Urisky and Usafe be the sets of all risky and
safe vertices of U , respectively.

I Claim 5. |Urisky| ≤ ε/5 · |M∗1|.

Proof. For each vertex u ∈ Urisky, let Γmatched(u) be the set of its at least 2∆/5 G∆-
neighbors in Γmatched. Let Γrisky =

⋃
u∈Urisky

Γmatched(u) denote the union of the sets
Γmatched(u) over all vertices u ∈ Urisky. Since all vertices in Γrisky are matched w.r.t.
the matchingM∗1, |Γrisky| ≤ 2|M∗1|. Observe that the subgraph Grisky of G∆ induced by
Urisky ∪Γrisky has arboricity at most α, and thus average degree at most 2α. Moreover, each
vertex in Urisky has at least 2∆/5 neighbors in Γrisky, and thus its degree in Grisky is at least
2∆/5 = 2(5/ε+ 1)2α ≥ (10/ε+ 1)2α. Observation 1 thus yields |Urisky| ≤ ε/10 · |Γrisky| ≤
ε/5 · |M∗1|. J

Note that any edge in G∆ between a vertex in Usafe and a vertex in Γfree is vertex-disjoint
to all edges ofM∗1. Consequently, the following claim implies that at least |Usafe| edges of
G∆ can be added to the matchingM∆ while preserving its validity.

I Claim 6. There exists a matchingMsafe in G∆ that entirely covers Usafe by edges between
Usafe and Γfree. In particular, |Msafe| = |Usafe|.
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Proof. For each vertex u ∈ Usafe, let Γfree(u) be the set of its at least ∆/5 G∆-neighbors in
Γfree. Let Γsafe =

⋃
u∈Usafe

Γfree(u) denote the union of the sets Γfree(u) over all vertices
u ∈ Usafe. Consider the induced bipartite subgraph Gsafe of G∆ with sides Usafe and Γsafe.
We argue that for any subset W ⊆ Usafe, its neighborhood in Gsafe, namely,

ΓGsafe
(W ) =

⋃
v∈W

ΓGsafe
(v) =

⋃
v∈W

Γfree(v),

is of larger size. Obsserve that the subgraph GWsafe of Gsafe induced by the vertex set
W ∪ ΓGsafe

(W ) has arboricity at most α, and thus average degree at most 2α. Moreover,
each vertex of W has at least ∆/5 neighbors in ΓGsafe

(W ), i.e., its degree in GWsafe is at least
∆/5 = (5/ε+ 1)2α. Observation 1 thus yields |W | ≤ ε/5 · |ΓGsafe

(W )| < |ΓGsafe
(W )|. By

Hall’s marriage theorem (Theorem 2), there exists a matchingMsafe in Gsafe that entirely
covers Usafe. Claim 6 follows. J

We add all edges in the matching Msafe guaranteed by Claim 6 to M∆, so that M∆ =
M∗1∪Msafe. SinceM∗ is a maximum matching for G that is a disjoint union ofM∗1 andM∗2
and asM∆ is a disjoint union ofM∗1 andMsafe, it follows that |M∗2| ≥ |Msafe|. Although
the vertices of V in may be matched w.r.t.M∗2, we have |V in| ≤ ε/10 · |V out| by Equation
(1). By definition, all vertices of V out \ U are matched w.r.t. M∗1, thus |V out \ U | ≤ 2|M∗1||.
Hence |V out| ≤ 2|M∗1|+ |U |, and so

|V in| ≤ ε/10 · |V out| ≤ ε/10 · (2|M∗1|+ |Urisky|+ |Usafe|). (2)

Since any edge ofM∗2 is adjacent on at least one vertex of Vhigh and as all vertices of V out \U
are matched w.r.t. M∗1, |M∗2| ≤ |V in|+ |Urisky|+ |Usafe|. Combined with Equation (2) and
Claim 5,

|M∗
2| ≤ |V in|+ |Urisky|+ |Usafe| ≤ ε/10 · (2|M∗

1|+ |Urisky|+ |Usafe|) + |Urisky|+ |Usafe|
≤ ε/10 · (2|M∗

1|+ ε/5 · |M∗
1|+ |M∗

2 |) + ε/5 · |M∗
1|+ |Msafe|

= (ε/5 + ε2/50 + ε/5) · |M∗
1|+ ε/10 · |M∗

2 |+ |Msafe|
≤ ε/2 · |M∗

1 |+ ε/10 · |M∗
2 |+ |Msafe|,

yielding

|M∆| = |M∗1|+ |Msafe| ≥ |M∗1|+ |M∗2| − ε/2 · |M∗1| − ε/10 · |M∗2|
≥ (1− ε/2) · (|M∗1|+ |M∗2|) = (1− ε/2) · |M∗|.

To complete the proof of Lemma 3, observe that

|M∗| ≤ 1
1− ε/2 · |M∆| ≤ (1 + ε) · |M∆| ≤ (1 + ε) · |M∗∆|. J

The following theorem shows that G∆ is a (1 + ε)-maximal matching sparsifier.

I Theorem 7. Let G be a graph of arboricity bounded by α and G∆ defined as above, for
∆ = 5(5/ε+ 1)2α, ε ≤ 1. Any η-maximal matching for G∆ is an (ε+ 3η)-maximal matching
for G, for any η > 0.

Proof. The proof of this theorem is similar to that of Theorem 3, thus we aim for conciseness.
Consider an arbitrary η-maximal matching M∆ = Mη

∆ for G∆, and let M′∆ be any
matching for G obtained by adding edges to M∆. We will show that |M′∆ \ M∆| ≤
(ε+ 2η) · |M∆|.



S. Solomon 52:11

SinceM∆ is η-maximal w.r.t. G∆, at most η · |M∆| edges ofM′∆ \M∆ may belong to
G∆; in what follows we refer to those edges as special edges and to the remaining edges of
M′∆ \M∆ as ordinary edges. Denote the set of ordinary edges inM′∆ \M∆ by O. Since
any edge with two endpoints in Vlow belongs to G∆, it follows that any edge of O has at
least one endpoint in Vhigh. Denote the set of vertices in Vhigh that are free w.r.t.M∆ by
Fhigh, and note that |O| ≤ |Fhigh|.

Defining the sets V in and V out as in the proof of Theorem 3, Equation (1) yields
|V in| ≤ ε/10 · |V out|. Notice that |V out| ≤ 2|M∆|+ |Fhigh ∩ V out|, hence

|Fhigh ∩ V in| ≤ |V in| ≤ ε/10 · |V out| ≤ ε/10 · (2|M∆|+ |Fhigh ∩ V out|). (3)

Observation 4 from the proof of Theorem 3 remains valid, and it implies that each vertex
in Fhigh ∩ V out has more than 3∆/5 G∆-neighbors in Vlow. Denote by Γ = Γ(Fhigh ∩ V out)
the set of all G∆-neighbors of vertices from Fhigh ∩ V out in Vlow. We next partition Γ into
two sets, the sets Γmatched and Γfree of vertices in Γ that are matched and free w.r.t.M∆,
respectively. A vertex f ∈ Fhigh∩V out is called risky if at least 2∆/5 of its G∆-neighbors are
in Γmatched, otherwise it is safe, and then more than ∆/5 of its G∆-neighbors are in Γfree.
Let Frisky and Fsafe be the sets of all risky and safe vertices of Fhigh ∩ V out, respectively.
Following similar lines as those in the proof of Claim 5, we get |Frisky| ≤ ε/5 · |M∆|. Also,
following similar lines as those in the proof of Claim 6, we establish the existence of a
matchingMsafe in G∆ that entirely covers Fsafe by edges between Fsafe and Γfree. Since
all edges ofMsafe belong to G∆ and can be added toM∆ while keeping it a valid matching
for G∆, the fact that M∆ is η-maximal w.r.t. G∆ yields |Fsafe| ≤ η · |M∆|. It follows
that |Fhigh ∩ V out| = |Frisky|+ |Fsafe| ≤ ε/5 · |M∆|+ η · |M∆|. Recall that |O| ≤ |Fhigh|.
Combined with Equation (3), we conclude that

|O| ≤ |Fhigh| = |Fhigh ∩ V in|+ |Fhigh ∩ V out|
≤ ε/10 · (2|M∆|+ |Fhigh ∩ V out|) + ε/5 · |M∆|+ η · |M∆|
≤ ε/10 · (2|M∆|+ ε/5 · |M∆|+ η · |M∆|) + ε/5 · |M∆|+ η · |M∆|
≤ (ε/5 + ε2/50 + ε · η/10 + ε/5 + η) · |M∆| < (ε+ 2η) · |M∆|,

i.e., the number |O| of ordinary edges inM′∆ \M∆ is at most (ε+2η) · |M∆|. Recall that the
number of special edges inM′∆\M∆ is at most η·|M∆|, thus |M′∆\M∆| ≤ (ε+3η)·|M∆|. J

3.2 The VC sparsifier
Let G be a graph of arboricity bounded by α, set ∆ = (1/ε + 1) · 2α, and define the sets
Vhigh, Vlow and the subgraph Glow accordingly. To prove that the pair (Glow, Vhigh) is a VC
sparsifier, we use the next lemma.

I Lemma 8. Let V C be an arbitrary VC for G, and let U = Uhigh be the set of vertices in
Vhigh that are not in V C. Then |U | ≤ ε · |V C|.

Proof. Denote by Γ = Γhigh the set of neighbors in G \ U of all vertices of U , and note
that Γ ⊆ V C, as otherwise V C cannot be a VC for G. Observe that the subgraph G′ =
(U ∪ Γ, E′) = G[U ∪ Γ] induced by U ∪ Γ has arboricity at most α, and thus average degree
at most 2α. Moreover, every vertex in U has degree at least ∆. Observation 1 thus yields
|U | ≤ ε · |Γ| ≤ ε · |V C|. J

The following theorem shows that (Glow, Vhigh) is a (1 + ε)-VC sparsifier.
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I Theorem 9. Let G be a graph of arboricity bounded by α. Also, let V C∗ be a minimum
VC for G, let V Ctlow be a t-VC for Glow, for any t ≥ 1, and define Ṽ C = V Ctlow ∪ Vhigh.
Then Ṽ C is a (t+ ε)-VC for G.

Proof. Since V C∗ is a VC for G, V C∗ ∩ Vlow must be a VC for Glow. Hence |V Ctlow| ≤ t ·
|V C∗ ∩ Vlow|. Denoting by U = Uhigh the set of vertices in Vhigh that are not in V C∗,
we have |Vhigh| = |V C∗ ∩ Vhigh| + |U |. Also, Lemma 8 yields |U | ≤ ε · |V C∗|. Since
|V Ctlow| ≤ t · |V C∗ ∩ Vlow|, it follows that

|Ṽ C| = |V Ctlow|+ |Vhigh| = |V Ctlow|+ |V C∗ ∩ Vhigh|+ |U |
≤ t · |V C∗ ∩ Vlow|+ |V C∗ ∩ Vhigh|+ ε · |V C∗| ≤ (t+ ε) · |V C∗|. J

3.3 The IS sparsifier
Let G be a graph of average degree bounded by β (the arboricity may be much larger
than β). Set ∆ = ((β + 1)/ε + 1) · β, and define the sets Vhigh, Vlow and the subgraph
Glow accordingly. We assume that β ≥ 1, as we may ignore isolated vertices (adding all of
them to the independent set). To show that Glow is an IS sparsifier, we make the following
observation.

I Observation 10. Let V1 be any set of vertices in an arbitrary graph G = (V,E), and let
V2 be the complementary subset of V . Let IS∗, IS∗1 and IS∗2 be maximum independent sets
for the graph G and its subgraphs G[V1] and G[V2], respectively. Then |IS∗1 |+ |IS∗2 | ≥ |IS∗|.

Proof. Both IS∗ ∩V1 and IS∗ ∩V2 are ISs, hence |IS∗ ∩V1| ≤ |IS∗1 |, |IS∗ ∩V2| ≤ |IS∗2 |. J

The following theorem shows that Glow is an (1 + ε)-IS sparsifier

I Theorem 11. Let G be a graph of average degree bounded by β. Also, let IS∗ (respectively,
IS∗low) be a maximum IS for G (resp., Glow), let IStlow be a t-IS for Glow, for any t ≥ 1.
Then IStlow is a t(1 + ε)-IS for G, for any ε < β.

Proof. Since IStlow is an IS for Glow, it must also be an IS for G.
Since the average degree in G = (Vlow ∪ Vhigh, E) is bounded by β and as every vertex

in Vhigh has degree at least ∆ = ((β + 1)/ε + 1) · β, Observation 1 implies that |Vhigh| ≤
ε · (|Vlow|/(β + 1)).

Since ε < β, we have ∆ = ((β + 1)/ε + 1) · β > β, hence there is at least one vertex
of degree less than ∆, i.e., Vlow is non-empty. Denote the average degree in Glow by
βlow. Since every vertex in Vhigh has degree at least ∆ = ((β + 1)/ε + 1) · β, we have
|Vhigh| · ((β + 1)/ε + 1) · β + |Vlow| · βlow ≤ 2|E| ≤ β(|Vlow| + |Vhigh|). It follows that
|Vhigh| · ((β+ 1)/ε) ≤ |Vlow|(1− βlow

β ), which, together with the fact that Vlow is non-empty,
yields βlow ≤ β. By Turan’s theorem, |IS∗low| ≥ Vlow/(βlow + 1), hence

|Vhigh| ≤ ε · (|Vlow|/(β + 1)) ≤ ε · (|Vlow|/(βlow + 1)) ≤ ε · |IS∗low|.

By Observation 10, |IS∗| ≤ |Vhigh|+|IS∗low|, so |IS∗| ≤ (1+ε)·|IS∗low| ≤ t(1+ε)·|IStlow|. J

4 Applications

4.1 Local computation algorithms
Each vertex v is represented as a unique ID from {1, . . . , n}, and the graph G = (V,E) is
given through an adjacency list oracle OG that answers neighbor queries: given a vertex
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v ∈ V and an index i, the ith neighbor of v is returned if v’s degree is ≥ i; otherwise a null
sign is returned. Consider first our matching sparsifier G∆, obtained by marking up to ∆
arbitrary adjacent edges on every vertex v, and adding to G∆ all edges that are marked
by both endpoints. Recall that ∆ = O(α/ε), where α is a bound on the arboricity of G.
Our goal is to simulate the execution of any local computation algorithm for approximate
matching entirely within our bounded degree sparsifier, and in this way to reduce the problem
from bounded arboricity graphs to bounded degree graphs. To this end we simply need to be
consistent about the adjacent edges of a vertex v that we mark, e.g., for every vertex v, mark
its first ∆ neighbors on its adjacency list. Whenever a vertex is queried/probed, there is no
need to probe any other neighbor of this vertex besides the first ∆ on its adjacency list, since
none of the edges that lead to the other neighbors is in the sparsifier. To determine which
among these neighbors is also its neighbor in the sparsifier, we perform a symmetric probe for
each of the (at most) ∆ neighbors. In this way any probing procedure of the original graph
(which may contain high degree vertices) is restricted to the matching sparsifier, at the cost of
increasing the time complexity by at most a factor of ∆; this loss is considered negligible, since
all the time and space complexities of algorithms in this area are anyway at least polynomial
in ∆. Moreover, by Theorems 3 and 7, any (1 + ε)-maximum (respectively, ε-maximal)
matching computed for G∆ provides a (1 +O(ε))-maximum (resp., O(ε)-maximal) matching
for the original graph, thus there is only a negligible loss in the approximation guarantee. We
remark that the local computation algorithm of [28] is actually an almost-maximal matching
algorithm, and the (2+ε)-approximation guarantee holds as any ε-maximal matching is also a
(2+O(ε))-maximum matching. In this way we reduce the problems of approximate-maximum
matching and almost-maximal matching from graphs of arboricity bounded by α to graphs
of degree bounded by O(α/ε).

I Corollary 12. For any graph G with arboricity bounded by α and for any constant ε > 0:
There is a deterministic local computation algorithm for (1 + ε)-maximum matching with
time complexity O(log∗ n) · exp(α) and zero space complexity. (An extension of [26].)
There is a randomized local computation algorithms for (1 + ε)-maximum matching with
time and space complexities of poly(logn, α). (An extension of [40].)
There is a deterministic local computation algorithm for (2 + ε)-maximum matching with
time complexity O(log∗ n) · 2O(α2). (An extension of [28].)

For our VC and IS sparsifiers, things are even simpler. The IS sparsifier is simply Glow, i.e.,
the subgraph induced on the low degree vertices, hence simulating the execution of a local
computation algorithm entirely within the sparsifier can be naturally done without having
to probe more than ∆ neighbors of any vertex. As for the VC sparsifier, we also need to
reason about the validating set V high, but for any vertex we can determine if it belongs to
V high or not by making one query to the oracle OG.

4.2 Dynamic centralized algorithms
In this section we employ our sparsifiers to get efficient dynamic algorithms. The starting
point is a “lazy scheme” due to [30] for maintaining approximate maximum matching for
general graphs, which was refined for bounded arboricity graphs in [48]. This scheme exploits
a basic stability property of matchings: The size of the maximum matching changes by at
most 1 following each update. Thus if we have a large matching of size close to the maximum,
it will remain close to it throughout a long update sequence, or formally:

I Lemma 13 (Lemma 3.1 in [30]). Let ε, ε′ ≤ 1/2. Suppose thatMi is a (1 + ε)-MCM for
Gi. For j = i, i+ 1, . . . , i+ bε′ · |Mi|c, letM(j)

i denote the matchingMi after removing from
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it all edges that got deleted during the updates i+1, . . . , j. ThenM(j)
i is a (1+2ε+2ε′)-MCM

for the graph Gj.

Hence, we can compute a (1 + ε/4)-maximum matchingMi at a certain update i, and
use the same matching M(j)

i throughout all updates j = i, i + 1, . . . , i′ = i + bε/4 · |Mi|c.
(By Lemma 13,M(j)

i is a (1 + ε)-maximum matching for all graphs Gj .) Next compute a
fresh (1 + ε/4)-maximum matchingMi′ following update i′ and use it throughout all updates
i′, i′ + 1, . . . , i′ + bε/4 · |Mi′ |c, and repeat.

In this way the static time complexity of computing a (1 + ε)-maximum matchingM is
amortized over 1 + bε/4 · |M|c = Ω(ε · |M|) updates. The key insight behind the schemes of
[30, 48] is not to compute the approximate matching on the entire graph, but rather on a
matching sparsifier, which is derived from an O(1)-VC that is maintained dynamically by
other means. [48] showed that an ε-maximal matching, and thus a (2 + ε)-VC, denoted by
Ṽ C, can be maintained with O(α/ε) update time, and the argument used by [48] was quite
tricky; we will get back to this point soon. Specifically, the sparsifier G̃ of [48] contains (1)
all edges in the subgraph G[Ṽ C] induced by Ṽ C, and (2) for each vertex v ∈ Ṽ C, (up to)
O(α/ε) edges connecting it with arbitrary neighbors outside Ṽ C. Although the resulting
sparsifier may have large degree, it is easy to verify that it contains O(|M| · α/ε) edges, and
it can be computed in time linear in its size. Since a (1 + ε)-maximum matching can be
computed for the sparsifier G̃ in time O(|G̃|/ε) = O(|M| · α/ε2) [36, 42, 54], the resulting
amortized update time is O(α · ε−3). Also, one can easily translate the amortized bound into
a worst-case bound, as shown in [30].

The aforementioned stability property also applies to the minimum VC and maximum IS
problems. We next consider the minimum VC problem; see Section 4.2.1 for a discussion on
the maximum IS problem. Thus the size of the minimum VC changes by at most 1 following
each update. In extending the lazy scheme [30, 48] to the minimum VC problem, the challenge
is to efficiently compute a high quality VC sparsifier. In particular, the (1 + ε)-matching
sparsifier G̃ of [48] cannot be used as such a VC sparsifier, since a VC for it (regardless of its
approximation guarantee) may not provide a valid VC for the graph G.

Fix an arbitrary parameter t ≥ 1. Consider an arbitrary (sub)family of n-vertex graphs
G with arboricity bounded by α that is closed under edge removals (such as the family of
planar graphs), and suppose that we can compute a t-VC from scratch in time T (n) for any
graph in this family. (More generally, we assume that for any j-vertex subgraph H of any
G ∈ G, for any 1 ≤ j ≤ n, we can compute in time T (j) a t-VC for H.) Next, we adapt the
lazy scheme [30, 48] to maintain a (t+ 2ε)-VC in dynamically changing graphs of G.

Lemma 13 easily extends to the minimum VC problem and to any approximation t ≥ 1,
i.e., any (t+ ε)-VC continues to provide a (t+ 2ε)-VC throughout a long update sequence.
Once the approximation guarantee of that VC, denoted by V Cold, becomes too poor (i.e.,
reaches t+ 2ε), we shall amplify it (i.e., reduce it back to t+ ε) by computing a (t+ ε)-VC
within time close to linear in |V Clow|. Having done that, we can then re-use the new amplified
VC, denoted by V Cnew, throughout the subsequent ε · |V Cnew| update steps, and repeat.

The computation of the new amplified cover V Cnew employs the old cover V Cold and our
VC sparsifier from Section 3.2 as follows. Recall that the vertex set Vhigh is the validating set
of our VC sparsifier. It is straightforward to maintain all vertices in Vhigh dynamically with
O(α/ε) worst-case update time; we initialize V Cnew as Vhigh. We next need to compute the
subgraph Glow induced on the vertices Vlow of degree < ∆ = O(α/ε). This can be done by
simply adding, for each vertex of V Cold of degree < ∆, all its adjacent edges to vertices of
degree < ∆. Although some vertices of Vlow may not belong to V Cold, we must have added all
edges of Glow, as V Cold is a VC for G. Clearly, the number |Vlow| of vertices in Glow, as well



S. Solomon 52:15

as the time needed to compute it, are bounded by O(|V Cold| ·α/ε). We proceed by computing
a t-VC for Glow, denoted by V Ctlow; the runtime of this static computation is T (|Vlow|).
Finally, we add all vertices of V Ctlow to V Cnew, thus we have V Cnew = V Ctlow ∪ Vhigh. By
Theorem 9, V Cnew is a (t+ ε)-VC for the entire graph G.

Observe that the overall runtime of computing V Cnew is bounded by O(|V Cold| · α/ε) +
T (|Vlow|) ≤ T (O(|V Cold| · α/ε)). Since this runtime is amortized over Θ(ε · |V Cold|) update
steps, the amortized update time is bounded by T (O(|V Cold| · α/ε))/Θ(ε · |V Cold|), which is
no greater than T (n)

O((n/α)·ε2) . Note that the amortized number of changes to the VC is also
bounded by T (n)

O((n/α)·ε2) . Moreover, one can easily translate the amortized update time into
the same (up to a constant factor) worst-case update time, as shown in [30].

Summarizing, we have proved the following result.

I Theorem 14. Fix arbitrary t ≥ 1, ε > 0. If a t-VC can be computed in time T (n) in an
arbitrary (sub)family of n-vertex graphs with arboricity bounded by α that is closed under edge
removals, then a (t+ ε)-VC can be maintained with a worst-case update time of T (n)

O((n/α)·ε2) .
Moreover, the amortized number of changes to the VC is also bounded by T (n)

O((n/α)·ε2) .

Remarks.
1. For planar graphs, one can compute a (1 + ε)-VC in time O(n), for any constant ε > 0

[7]. By Theorem 14, we can maintain a (1 + ε)-VC with a constant worst-case update
time for any constant ε > 0.

2. For the family of graphs with arboricity bounded by α, one can compute a (2− 2
β+1 )-

VC in time O(n3/2 · α), where β is the average degree in some (carefully computed)
subgraph, and is thus bounded by 2α [35]. By Theorem 14, we can maintain a VC with
an approximation of roughly 2− 1

α and a worst-case update time of O(
√
n · α2).

Our matching sparsifier from Section 3.1 can be used to simplify the algorithms of [48] and
their analysis. First, as mentioned, [48] used a tricky argument to maintain a (2 + ε)-VC with
O(α/ε) update time. An alternative simpler approach is to maintain a maximal matching on
top of our bounded degree matching sparsifier, which can be done naively with update time
linear in the degree of the sparsifier, namely, O(α/ε). By Theorem 7, this yields an ε-maximal
matching, which is translated into an (2 + ε)-VC in the obvious way. Second, as explained in
[48], the lazy scheme of [30] is inherently non-local. Since local algorithms are advantageous,
[48] also devised a local algorithm for maintaining a (1 + ε)-maximum matching, which is
quite intricate. An alternative simpler approach is to maintain a (1 + ε)-maximum matching
on top of our bounded degree matching sparsifier, by dynamically excluding augmenting
paths of length O(1/ε). By Theorem 3, this yields an (1 +O(ε))-maximum matching, and
the update time of the resulting algorithm is (α/ε)O(1/ε), just as in [48].

4.2.1 The dynamic approximate maximum IS problem
The size of the maximum IS changes by at most 1 following each update, hence we can
apply the lazy scheme of [30, 48] also for this problem. Notice, however, that there is
no need to compute a sparsifier here, since the maximum IS is of size at least n/(β + 1)
by Turan’s theorem, where β is the average degree in the graph. Hence, one can simply
compute an approximate maximum IS on the entire graph, and amortize the cost of this
static computation over Θ(ε · (n/β)) update steps. Consequently, using the lazy scheme, we
get a simple reduction from the dynamic to the static case: The update time (both amortized
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and worst-case) for maintaining a (t + ε)-IS is smaller than the static time complexity of
computing a t-IS by a factor of Ω((n/β) · ε), for any t ≥ 1 and ε > 0.

Remarks.
1. For planar graphs, one can compute a (1 + ε)-IS in time O(n), for any constant ε > 0

[7]. We can thus maintain a (1 + ε)-IS with a constant worst-case update time for any
constant ε > 0.

2. For graphs with average degree bounded by β, one can compute a (k + 1)/2-IS in time
O(n3/2 · β) [35]. We can thus maintain an IS with an approximation of roughly (k + 1)/2
and a worst-case update time of O(

√
n · β2).

4.3 Distributed networks
We consider the standard LOCAL and CONGEST models of communication (cf. [47]), which
are standard distributed computing models capturing the essence of spatial locality and
congestion. All processors wake up simultaneously, and computation proceeds in fault-free
synchronous rounds during which every processor exchanges messages of either unbounded
size (in the LOCAL model) or of O(logn)-bit size (in the CONGEST model). It is easy
to see that our sparsification algorithms can be implemented in distributed networks using
a single communication round, even using O(1)-bit messages, during which each processor
sends messages along at most ∆ of its adjacent edges, where ∆ is the degree bound of the
sparsifier. Hence, the results mentioned in Section 1.4 hold w.r.t. both the LOCAL and the
CONGEST models of communication. In this way we provide a clean and simple reduction
from either bounded arboricity graphs (for the distributed approximate maximum matching
and minimum VC problems) or from bounded average degree graphs (for the distributed
approximate maximum IS problem) to bounded degree graphs.

For the distributed approximate VC problem, [8] showed that a (2 + ε)-VC can be
computed in O(log ∆/(ε log log ∆)) rounds, where ∆ is the maximum degree in the graph.
We can plug our reduction to extend the result of [8] to graphs of arboricity bounded by α.

I Theorem 15. For any graph of arboricity bounded by α and any ε > 0, there is a distributed
algorithm for computing a (2 + ε)-VC in O(log(α/ε)/(ε log log(α/ε))) rounds.

As mentioned in Section 1.4, for the distributed approximate maximum matching problem,
a reduction from bounded arboricity graphs to bounded degree graphs was already given
in [22]. The reduction of [22] starts by computing carefully chosen vertex sets in the graph,
using which a bounded degree subgraph is computed, in O(1) communication rounds. A
distributed approximate matching algorithm is then run on that subgraph. Based on the
matching returned as output to that algorithm, another carefully chosen bounded degree
subgraph is computed, in O(1) more communication rounds. A distributed approximate
matching algorithm is then run on the new subgraph, and the final matching is the union
of the first matching and the second. Our reduction is obtained as an immediate corollary
of our matching sparsifier from Section 3.1, and it has several advantages over the one
of [22]. First and foremost, our reduction is much simpler. Second, it requires a single
communication round, whereas the number of rounds in the reduction of [22] depends on
the time required to compute an approximate matching. In particular, throughout the
computation of our sparsifier, the load (as well as node congestion) on all processors is
low, since any vertex sends messages only along ∆ of its adjacent edges is a single round,
where ∆ is the degree bound of the sparsifier. Moreover, the load on processors will remain
low by definition throughout the subsequent run of any distributed approximate matching
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algorithm, since that algorithm is run on a bounded degree subgraph. In contrast, the
computation of the subgraphs in [22] involves the exchange of messages between high degree
vertices, and this “high-load” message exchange proceeds throughout O(1) rounds; then a
distributed approximate matching algorithm is run on a bounded degree subgraph, which
may require many rounds to complete, and later another “high-load” message exchange
proceeds throughout O(1) more rounds. Third, the degree of our matching sparsifier is at
most O(α/ε), whereas the degree bound of the subgraphs of [22] is O(α/ε2), i.e., there is
a gap of factor 1/ε, and this gap may be amplified significantly in applications where the
runtime of the distributed algorithm depends exponentially on the maximum degree. In
particular, [27] devised a distributed algorithm for computing a (1 + ε)-maximum matching
in ∆O(1/ε) + O(ε−2) · log∗ n rounds, for graphs with degree bounded by ∆. Due to our
matching sparsifier, we extend the result of [27] to graphs of arboricity bounded by α to
get a (1 + ε)-maximum matching in (α/ε)O(1/ε) +O(ε−2) · log∗ n rounds, which has a better
dependence on ε than if the reduction of [22] were to be used.
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