
Distrib. Comput. (2010) 22:349–361
DOI 10.1007/s00446-010-0097-1

An optimal maximal independent set algorithm
for bounded-independence graphs

Johannes Schneider · Roger Wattenhofer

Received: 18 September 2008 / Accepted: 31 January 2010 / Published online: 10 March 2010
© Springer-Verlag 2010

Abstract We present a novel distributed algorithm for the
maximal independent set problem (This is an extended jour-
nal version of Schneider and Wattenhofer in Twenty-seventh
annual ACM SIGACT-SIGOPS symposium on principles
of distributed computing, 2008). On bounded-independence
graphs our deterministic algorithm finishes in O(log∗ n)

time, n being the number of nodes. In light of Linial’s
Ω(log∗ n) lower bound our algorithm is asymptotically opti-
mal. Furthermore, it solves the connected dominating set
problem for unit disk graphs in O(log∗ n) time, exponen-
tially faster than the state-of-the-art algorithm. With a new
extension our algorithm also computes a δ + 1 coloring and
a maximal matching in O(log∗ n) time, where δ is the max-
imum degree of the graph.

Keywords Ad Hoc network · Sensor network · Radio
network · Unit disk graph · Growth bounded graph ·
Bounded-independence graph · Local algorithm · Parallel
algorithm · Maximal independent set · Maximal matching ·
Dominating set · Connected Dominating Set · Coloring ·
Symmetry breaking

1 Introduction

Minimum dominating sets (MDS) and connected dominating
sets (CDS) are well-studied theoretical problems in wireless
multi-hop networks, such as ad hoc, mesh, or sensor net-
works. In hundreds of papers they have been identified as

J. Schneider (B) · R. Wattenhofer
Computer Engineering and Networks Laboratory,
ETH Zurich, 8092 Zurich, Switzerland
e-mail: jschneid@tik.ee.ethz.ch; schneider@tik.ee.ethz.ch

R. Wattenhofer
e-mail: wattenhofer@tik.ee.ethz.ch

key to efficient routing, media access control, or coverage,
to just name three popular examples of usage. Consequently,
the networking community has suggested a great number of
algorithms towards computing CDS et al.; almost all of these
algorithms are distributed, as wireless networks tend to be
unreliable and dynamic, and conventional global algorithms
seem too slow to cope with this constant churn. However,
most algorithms are also heuristic in nature, and have been
shown to perform poorly in efficacy and/or efficiency, when
analyzed rigorously. However, there are exceptions; we will
discuss them in detail in Sect. 2.

Given the huge impetus from the application side, recent
research mostly concentrated on special graph classes that
represent the geometric nature of wireless networks well.
The classic theoretical model for wireless networks is the
so-called unit disk graph (UDG) model, where the nodes
are points in the plane, and two nodes are neighbors in the
graph if and only if their Euclidean distance is at most 1.
However, wireless radios will never transmit in perfect cir-
cles, and hence the UDG model has recently gotten a lot of
stick. Instead the community started looking into generalized
models, e.g. the quasi unit disk graph (QUDG) model, or
the unit ball graph (UBG) model. In Sect. 3 we adopt the
so-called bounded-independence graph (BIG) model (also
called growth-bounded graph (GBG) model [14]); the BIG
model only restricts the number of independent nodes in each
neighborhood and is therefore a generalization of the UDG,
QUDG and UBG models.

In Sect. 4 we present a novel distributed algorithm for
the maximal independent set (MIS) problem. On bounded-
independence graphs our algorithm finishes in O(log∗ n)

time, n being the number of nodes. As we will discuss in more
detail in Sect. 2, our algorithm beats all existing algorithms
for geometric models such as UDG or BIG by an exponential
factor. Indeed, thanks to a lower bound argument by Linial

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159148927?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

350 J. Schneider, R. Wattenhofer

[18], our algorithm is asymptotically optimal. In the BIG
model a MIS is a constant approximation of a MDS, hence
our algorithm gives the fastest constant MDS approximation.
In Sect. 6 we will also quickly mention how to compute a
CDS, how to obtain a polynomial time approximation scheme
(PTAS), and an asymptotically optimal algorithm for com-
puting a δ + 1 coloring, as well as a distance two coloring.

2 Related work

Symmetry breaking is one of the main problems in distrib-
uted computing. Deterministic algorithms need a way to dis-
tinguish between nodes, i.e. I Ds. In their pioneering work
Cole and Vishkin [8] established the “deterministic coin toss-
ing” method. They applied it to compute a MIS in a ring
graph. For more than two decades their deterministic coin
tossing technique has been a method of choice for breaking
symmetries. Consequently it has been used in various algo-
rithms [3,11,13–15]. In [8] each node v has a successor s(v),
which is a neighbor of v. Based on its own serial number rv

(initially, the I D of node v) and the one of its successor rs(v),
it iteratively computes a new serial number r ′

v , which is the
least bit number i in which both serial numbers differ with the
bit at position i in rv appended. For example, if rv := 10110
and rs(v) := 11110, we have i = 3 = 11 (binary) for little
endian notation with bit 3 of rv being 0 and thus r ′

v := 110.
After O(log∗ n) computation node v’s color corresponds to
its serial number. However, this only allows for a node to
get a new serial number, which is distinct from its succes-
sor (but not necessarily from other neighbors). Thus it seems
that the technique is limited to simple graphs of low degree
such as rings or other constant-degree graphs. In contrast to
Cole/Vishkin our technique extends to unbounded degree.
Roughly speaking, in our algorithm a node does not monoto-
nously stick to the same successor but takes into account the
serial numbers of all nodes whenever a new serial number
is computed based on the previous one. More precisely, a
node’s “successor” is the node with current minimum serial
number. Furthermore, we allow a node to pause for a while,
i.e. it does not compute a new serial number for a couple of
rounds. Additionally, a node might restart the computation
of a serial number, e.g., a new serial number based on its own
I D and the I Ds of its (non-pausing) neighbors is computed.

The MIS problem has also been studied in graphs beyond
the ring (and other constant degree graphs). In sparse graphs,
such as planar graphs, an algorithm based on Nash-Williams
decompositions computes a MIS in a sublogarithmic number
of communication rounds [6]. In general graphs the simple
and elegant randomized algorithm by Luby [19] with running
time of O(log n) (see as well [1,12]) outperforms the fastest
known deterministic distributed algorithm [20] which is in

O
(

n
√

c/ log n
)

with constant c. In Luby’s algorithm neigh-

bors try to enter the MIS based on their degrees, the deter-
ministic algorithm uses network decompositions introduced
in [4]. In general graphs every algorithm requires at least
Ω

(√
log n/ log log n

)
or Ω(log Δ/ log log Δ) communica-

tion rounds for computing a MIS [16].
In this paper we concentrate on geometric graph classes

that are relevant in wireless networking, breaking the lower
bound for general graphs. For these geometric graphs the rel-
evant lower bound is by Linial [18]. He showed that even on
a ring topology at least time Ω(log∗ n) is required to com-
pute a MIS. Only very recently (and probably stirred by the
interest in wireless networking) MIS algorithms for geomet-
ric graphs (such as UDG or BIG) have been discovered. The
currently fastest randomized algorithm by Gfeller and Vicari
[10] runs in O(log log n · log∗ n) time. Using randomization a
set S is created, where every node v ∈ S has at most O(log5 n)

neighbors in S. Thereafter the fastest deterministic algorithm
up to now [13] with time complexity O(log Δ·log∗ n) is used,
which computes an O(log Δ)-ruling independent set in time
O(log Δ · log∗ n) in the first phase. (For an α-ruling inde-
pendent set, every two nodes in the set have distance at least
two and any node not in the set has a node in the set within
distance α.) The O(log Δ)-ruling independent set is trans-
formed into an 3-ruling independent set, and this set in turn
is taken to compute a MIS using again the deterministic coin
tossing technique. Our algorithm is not only exponentially
faster than the state-of-the-art [10], it is also deterministic,
and last not least simpler. Thanks to Linial’s lower bound we
know that it is asymptotically optimal. If a node knows the
distances to its neighbors, then [15] also achieves asymptotic
optimality for computing a MIS in BIG. The main idea is to
maintain a set of active nodes (initially, all nodes are active)
and only consider edges between active nodes of distance at
most r . In every iteration the radius r is doubled (up to 1/2)
and a MIS is computed on all active nodes. Only nodes in
the MIS stay active. The degrees in the considered graphs
are small and thus a MIS can be computed efficiently (via a
coloring). It is rather surprising that we can match the bound
of [15] without any distance information.

3 Model and definitions

The communication network is modeled with a graph G =
(V, E). For a node v its neighborhood Nr (v) represents all
nodes within r hops of v (not including v itself). A set T ⊆ V
is said to be independent in G if no two nodes u, v ∈ T are
neighbors. A set T ⊆ V is said to be independent in G
if no two nodes u, v ∈ T are neighbors. A set is (α, β)-
ruling if every two nodes in the set have distance at least
α and any node not in the set has a node in the set within
distance β. A set S ⊆ V is a maximal independent set (MIS),
if it is (2,1)-ruling. A MIS S of maximum cardinality, i.e.

123

An optimal maximal independent set algorithm 351

|S| ≥ maxMIS T |T |, is called a maximum independent set
(MaxIS). We consider bounded-independence graphs, which
are defined as:

Definition 1 A graph G = (V, E) is of bounded-indepen-
dence if there is a bounding function f (r) such that for each
node v ∈ V , the size of a MaxIS in the neighborhood Nr (v)

is at most f (r),∀r ≥ 0. We say that G if of polynomially
bounded-independence if f (r) is a polynomial p(r).

Equivalently, one might use the notion of a d-local α-dou-
bling metric, i.e. a metric is d-local α-doubling if any ball of
radius r ≤ d can be covered by at most α balls of radius r/2.
A graph G = (V, E) is of bounded-independence if it obeys
the d-local f (d)-doubling metric for some function f .

In particular, this means that for a constant c the value
f (c) is also a constant. A subclass of bounded-indepen-
dence graphs are quasi unit disk graphs and unit disk graphs,
which are often used to model wireless communication net-
works and have f (r) ∈ O(r2). However, we do not require
the graph to be of polynomially bounded-independence, e.g.,
f (r) might as well be exponential in r .

Our algorithm is uniform, i.e. it does not require any
knowledge of the total number of nodes n. Communication
among nodes is done in synchronous rounds without colli-
sions, i.e. each node can exchange one distinct message of
size O(log n) bits with each neighbor. We understand that
such a powerful communication layer is unrealistic in many
application domains; in wireless networks for instance trans-
mission collisions will happen, and must be addressed. We
will discuss this in detail in the conclusions.

Definition 2 The function log∗() is defined recursively as
follows log∗ 0 = log∗ 1 = log∗ 2 = 0 and log∗ n = 1 +
log∗
log n� for n > 2.

Expressed differently, log∗ n describes how often one has
to take the logarithm to end up with at most 2. We denote by
log(j) n the binary logarithm taken j times recursively. Thus
log(1) n = log n, log(2) n = log log n, etc.

Every node has a unique I D represented by l bits, where
l is upper bounded by log n. An I D and all other binary
numbers are in little endian notation and have the form:
xl , xl−1, . . . , x1, where xi ∈ {0, 1}. Observe that for techni-
cal reasons the low order bit has index 1 (not 0).

4 MIS Algorithm

Let us start by giving an informal description of our deter-
ministic MIS algorithm. Each node performs a series of com-
petitions against neighbors, such that more and more nodes
drop out until only nodes joining the MIS remain. For all

nodes not in the MIS or not adjacent to a node in the MIS,
the process is repeated.

To get a deeper understanding of a competition we take a
closer look at the very first competition. A node v competes
against the neighbor u with minimum I D. If I Du is larger
than I Dv , i.e. node v has the smallest I D among all neigh-
bors, the result is 0. If I Dv is not the smallest of all neigh-
bors, the result of the competition is the maximum position
for which v’s I D has a bit equal to 1 and u’s I D has a bit
equal to 0. For I Dv being 11101 and I Du being 10001, the
two differing positions are 3 and 4 and thus the result of the
competition for v is 4, i.e. rv = 4.

The result rv of the first competition forms the basis for
the next competition, the result of that competition in turn is
used for the following competition and so forth.

A node can be in one of five states, which it might alter
after each competition (see Algorithm Update State). Initially
each node is a competitor. If the result of the competition
for node v is (strictly) smaller than that of all its competing
neighbors, node v becomes a dominator and joins the MIS.
All adjacent nodes of a dominator become dominated. Both
dominators and dominated nodes are not involved in further
competitions. In case the result of a node is as small as that of
all its neighbors and at least one neighbor has the same result,
the node becomes a ruler. A neighbor of a ruler gets ruled (if
not dominated). A ruler immediately ends the current phase
of becoming a dominator (lines 4 to 14 in Algorithm MIS),
becomes a competitor again and proceeds to the next phase.
After a node has advanced to the cth phase (where c is some
number depending on the function f ()—see Definition 1)
by changing back and forth between competitor and ruler
only, i.e. without ever being ruled, it must be dominated or
a dominator. A ruled node, ends the phase and stays quiet
until all neighbors are ruled (or dominated). Then it starts
the algorithm again as competitor, i.e. it is again in its first
phase (of becoming a dominator). During a phase a node exe-
cutes at most log∗ n + 2 recursive competitions (as will be
shown in Sect. 5.1) and every competing node must change
its state. In the subsequent competition (the first one of a
new phase) all competitors compete again by using I Ds. For
some more examples including updates of states consider
Fig. 1.

Next, we give a more formal definition of a competition
to clarify our notation. Let r j

v denote the result of the j th
(recursive) competition for node v. The first competition is
always based on the I Ds. Thus we define r0

v := I Dv . Any

number r j−1
v consists of l bits (l ≤ log(j) n as shown in

Lemma 2) and has the form r j−1
v = yt

v, yt−1
v , . . . , y1

v . A
competitor only competes against nodes that are also compet-
itors, i.e. the results of ruled or dominated nodes are not con-
sidered. In order to perform the j th (recursive) competition
with j ≥ 1 node v chooses a competitor u ∈ N (v), s.t.

123

352 J. Schneider, R. Wattenhofer

Fig. 1 Graph showing a complete execution of Algorithm MIS. Dominators and dominated nodes are shown with a dotted line. Ruled nodes with
a dashed line

r j−1
u = minw∈N (v) r j−1

w . In case the length of r j−1
u and r j−1

v

differ, we make them equal by prepending zeros to the smaller
number r j−1. The result r j

v for node v gives the maximum

position, s.t. the (r j
v)th bit of number r j−1

v is 1 (i.e. yr j
v

v = 1)

and the (r j
v)th bit of r j−1

u is 0 (i.e. yr j
v

u = 0). If r j−1
v is a

minimum of all r j−1 (i.e. r j−1
v ≤ r j−1

u), then we set r j
v = 0.

Taking into account both cases yields: r j
v := max({k|(yk

v >

yk
u) ∧ (r j−1

v > r j−1
u)} ∪ {0}). Observe that by definition all

bits higher than the (r j
v)th bit are the same (i.e. yi

u = yi
v for

r j
v < i ≤ log(j) n) if r j−1

v ≥ r j−1
u .

Fast termination of Algorithm MIS will be shown in
Sect. 5.1 for bounded-independence graphs. However, the
algorithm is robust in the sense that it is correct for general
graphs as well (see Sect. 5.2).

A node executes phases in a synchronous manner with
its neighbors (see also Lemma 3). For a reader not famil-
iar with distributed computing this might seem a too strong
assumption. A simple way to solve the problem is that
we let all nodes know an upper bound of n. With that all
nodes can execute all steps of the algorithm in lock-step,
even if some of the nodes are not participating in some
of the steps (because they are not competing anymore, for
instance). On the one hand this guarantees global synchroni-
zation, on the other hand our algorithm is not uniform any-
more.

A better solution is to use a local synchronizer (i.e. syn-
chronizer α). With that, all messages can be exchanged com-
pletely asynchronously; the only constraint is that nodes need
to wait until their neighbors have signalled that they are okay
with executing the next step of the algorithm. Using a syn-
chronizer it may happen that some nodes already are two
rounds ahead of others, however, locally all nodes are always
within one step.

Algorithm MIS

For each node v ∈ V
1: repeat
2: state sv := competitor
3: repeat
4: {Phase start} r0

v := I Dv

5: if sv = ruler then sv := competitor end if
6: j :=0
7: repeat
8: {Competition start} j := j+1
9: if sv = competitor then
10: Select competitor u ∈ N (v) with r j−1

u = minw∈N (v) r j−1
w

11: r j
v := max({k|(yk

v > yk
u) ∧ (r j−1

v > r j−1
u)} ∪ {0})

12: end if
13: Execute Update State sv {Competition end}
14: until �u ∈ (N (v) ∪ v) with su = competitor {Phase end}
15: until �u ∈ (N (v) ∪ v) with su = ruler
16: until sv ∈ {dominator,dominated}

123

An optimal maximal independent set algorithm 353

Algorithm Update State

1: if sv = competitor then
2: Exchange r j with competing neighbors T ⊆ N (v)

3: if ∀t ∈ T holds r j
t > r j

v then
4: sv := dominator
5: else if ∀t ∈ T holds r j

t ≥ r j
v then

6: sv := ruler
7: end if
8: end if
9: Exchange state s with all neighbors t ∈ N (v)

10: if ∃ t ∈ N (v) with st = dominator then
11: sv := dominated
12: else if (sv �= ruler) ∧ (∃ t ∈ N (v) with st =ruler) then
13: sv := ruled
14: end if

5 Analysis

We analyze Algorithm MIS for bounded-independence
graphs as well as for general graphs.

5.1 Bounded-independence graphs

The proof for Algorithm MIS is done by showing correctness
of the computed MIS first, i.e. dominators are independent
and every node has a dominator as a neighbor in case the
algorithm finishes. Then we focus on termination and give
evidence that a node ends a phase after at most log∗ n + 2
competitions. In other words no node can be a competitor
for more than log∗ n + 2 consecutive competitions without
ever changing its state. In addition we prove that after every
phase some nodes near a competitor v stop competing with v

(at least) until v becomes ruled. As a next step, we prove that
after the f (2)th phase every competing node must end up in
exactly one clique of rulers and thus in the (f (2)+1)st phase
the node in the clique with smallest I D becomes a dominator.
Then we show that every non-dominated node and non-dom-
inator has another dominator within hop distance f (2) + 3
after O(log∗ n) rounds of communication. Since dominators
are independent and the number of independent nodes within
distance f (2) + 3 is constant, it follows that after O(log∗ n)

the MIS is computed.

Lemma 1 No dominators can be adjacent. On termination
of Algorithm MIS every node is either a dominator or must
have at least one dominator as a neighbor.

Proof When a node v becomes a dominator, no neighbor
u ∈ N (v) turns into a dominator in the same competition,
since result rv is smallest for all neighbors.

When a node v becomes a dominator, no neighbor can
become a dominator or a ruler in a later competition. This
follows from the facts that a dominator does not alter its state
and that all neighbors u ∈ N (v) have su = dominated after

executing Algorithm Update State. They will remain in that
state, as long as they are adjacent to a dominator.

The property that every node gets dominated or is a dom-
inator after the execution of Algorithm MIS follows directly
from the condition in line 16.

The upcoming lemma bounds the number of competitions
per phase and furthermore says that all competitors must
change their states during a phase. Since nodes that have
become rulers immediately start the next one, the following
lemma also bounds the time until rulers progress to the next
phase.

Lemma 2 After a phase, i.e. after at most log∗ n + 2 recur-
sive competitions, no node is a competitor.

Proof The first competition is based on the I Ds, which
have at most log n bits. The result of the first competition
r1 gives an index of a bit of the I D and thus requires at
most
log log n� bits. The result r2 of the second compe-
tition is a number less than
log log n� and uses at most

log log log n� bits etc. In general r j needs up to
log(j+1) n�
bits. After log∗ n+1 (see Definition 2) competitions the result

will be a single bit, i.e. 0 or 1. If (r log∗ n+1
v = 0) ∨ (∀u ∈

N (v) holds r log∗ n+1
u = 1

)
then sv ∈ {dominator, ruler} else

sv ∈ {dominated, ruled}. Thus every node becomes a non-
competitor once. Since within the loop (lines 7–14) no node
turns from a non-competitor into a competitor, the lemma
follows.

The next Lemma 3 essentially guarantees that phases are
started and executed locally synchronously. Recall that once
a node has become ruled, it stays quiet until all its neighbors
are ruled or dominated and then starts the algorithm again as
competitor in the first phase (of becoming a dominator).

Lemma 3 If node v is a competitor in the i th phase (of
becoming a dominator) all competing neighbors must also
be in the i th phase. Moreover, for a node v executing the j th
competition, all competing neighbors must also execute the
j th competition.

Proof Since we assume synchronous wake-up the very first
competition and phase is started by all nodes in parallel. So
assume all nodes execute the same phase and the same com-
petition. As long as node v is a competitor all neighbors must
be competing in the same competition or be dominated. If
node v has been ruled and starts again with the first competi-
tion of the first phase (of becoming a ruler), then all neighbors
must be ruled or dominated as well and thus if a neighbor
starts a new phase it must also be the first phase and the first
competition. If a node becomes a ruler in the j th competition
of phase i , then all neighbors u ∈ N (v) that have become
rulers in the same competition, will start phase i + 1 con-
currently. All other neighbors must be ruled or dominated

123

354 J. Schneider, R. Wattenhofer

and thus cannot start a new phase until all neighbors become
ruled or dominated.

Definition 3 Let the set U ⊆ V be a connected set of
competitors of maximal size, s.t. no competitor w /∈ U is
a neighbor of a node v ∈ U . For any vertex v, let Ui

v denote
a connected set of competitors of maximal size that contains
v in the beginning of the i th phase of node v.

Lemma 4 ensures that all nodes of a set of connected rulers
have the same result r (and the results in the previous compe-
tition have the same prefix). Afterwards, Lemma 5 shows that
in each phase some nodes near every ruler stop competing
with it.

Definition 4 A node u ∈ V can be reached by a path p of
rulers from v in competition j of phase i , if ∃p = (v =
t0, t1, . . . , u = tq), s.t. ∀(0 ≤ k < q) holds that node tk has
become a ruler in competition j of phase i .

Lemma 4 If nodes Ui
v with i > 0 became rulers in competi-

tion j in phase i − 1 of node v then for any node u ∈ Ui
v, r j

u

is the same as r j
v , and the prefixes of r j−1

v are the same as
those of r j−1

u , i.e. yi
v = yi

u for rv
j < i ≤ log n.

Proof Assume u was reachable by the path p = (v =
t0, t1, . . . , u = tq) of rulers from v and r j

v �= r j
u . Due to the

maximality of Ui
v (see Definition 3) all rulers ti are in Ui

v ,
i.e. ti ∈ Ui

v for 0 ≤ i < q. By assumption there would have

to exist two neighboring rulers tl , tl+1 ∈ Ui
v with r j

tl �= r j
tl+1

.

Since either r j
tl > r j

tl+1
or the other way round, they could

not both have become rulers in the same competition (This
would contradict Lemma 3). Assume their prefixes differed,
i.e. yi

v �= yi
u for r j

v < i ≤ log n. Then r j
v could not be equal

to r j
u .

The next lemma gives evidence that for a ruler v after every
phase one node w at hop distance two and all its neighbors
N (w) will not compete with v (at least) until it gets ruled.
Since there are at most f (2) of such nodes w (see Lemma 8)
only f (2) + 1 phases are needed until a ruler has no two
hop neighbors and thus must be in a clique. After the first
competition of the next phase a dominator is chosen in every
clique (see Lemma 9) and all other nodes in the clique are
dominated.

Definition 5 Let the set W i
v ⊆ Ui

v be the set of nodes at dis-
tance two from node v that compete with v in phase i , i.e.
W i

v := (N 2(v)\N (v)) ∩ Ui
v .

Lemma 5 Consider a node v in phase i , which has become
a ruler in the j th competition for any j ≥ 0. If |W i

v| > 0
then ∃w ∈ W i

v , which cannot be reached by a path of rulers
from v.

Proof Case j = 0, i.e. let us investigate the first competition,
which is based on I Ds. Consider the value r1

v of node v. If
r1
v = 0, then v has a smaller I D than all its neighbors and thus

is a dominator. If r1
v = log n, then by definition ylog n

v = 1

and node v must have had a neighbor u with ylog n
u = 0. This

neighbor u must have r1
u < log n and thus v cannot be a ruler.

So assume r1
v ∈ [1, log n − 1].

Due to Lemma 4 all rulers s reachable by a path of rulers
from v must have r j

s = r j
v and their values r j−1 must have

the same prefix as v. By definition of r j
v there must exist

a node u ∈ N (v), s.t. yi
v = yi

u for r j
v < i ≤ log n and

1 = yr j
v

v > yr j
v

u = 0. Thus I Dv > I Du . Since nodes u and
v differ in position r1

v , we have r1
u �= r1

v . Since v is a ruler,
r1
v < r1

u . Because r1
v < r1

u and I Dv > I Du , this neighbor u
must itself have a neighbor w with I Dw < I Du and yi

w = yi
u

for r1
u < i ≤ log n and 1 = y

r1
u

u > y
r1

u
w = 0. Apart from that,

v and u have an I D with the same prefix from bit (at most)
log n down to bit r1

v + 1. The node w cannot be a neighbor
of any ruler x ∈ Ui

v with value r1
x = r1

v , since otherwise

r1
v ≥ r1

u because 1 = y
r1

u
v = y

r1
u

u > y
r1

u
w = 0, i.e. the prefix of

w is smaller than that of v. See Fig. 2.
Case j > 0, i.e. let us look at the j th competition for

j > 0. Assume node v was competing in all previous com-
petitions and was in particular not a ruler after the (j − 1)st
one. The arguments are similar to those of the first competi-
tion.

Assume 0 < r j
v ≤ log(j) n then the same reasoning

applies as for the first competition – only the value for r1
v has

to be substituted by r j
v , I Dv by r j−1

v and log n by log(j) n.
Assume r j

v = 0. Since v was not a ruler (or dominator)
in competition j − 1, there exists a neighbor u ∈ N (v) with
r j−1

u < r j−1
v . Neighbor u cannot participate in competition

j , since otherwise by definition r j
v > 0. Since v is a ruler, u

must have become dominated or ruled in competition j − 1
by a neighbor w ∈ N (u). If w became a dominator in round
j − 1, all neighbors s ∈ N (w) became dominated in round
j − 1 as well. Thus w cannot be reached by a path of rulers
from v. If w turned into a ruler in competition j − 1 and v

in competition j , then due to Lemma 3 nodes w, v cannot be
in the same connected set of rulers and thus node w cannot
be reached by a path of rulers from v.

Figure 3 illustrates that no edge can exist between a node
w having been a ruler in competition j − 1 and a ruler v in
current competition j , since otherwise node v would have
been already ruled (or dominated).

Lemma 6 shows that every connected set of competitors,
containing node v in phase j , must be a subset of a previous
connected set of competitors, containing node v in phase i
with i < j . This will be used by Lemma 7 to show that if
a set of arbitrary nodes does not have a common node with

123

An optimal maximal independent set algorithm 355

Fig. 2 Graph of some nodes that participated with node v in the first competition. Assume nodes v, x, y became rulers and furthermore I Dv >

I Du > I Dw . In this case w cannot be reachable by a path P of rulers, such as P = (v, y, w) or P = (v, y, x, w)

Fig. 3 Graph of some nodes that participated with node v in competi-
tion j − 1 and j

a set of connected competitors in some phase, then this will
hold for all proceeding phases.

Lemma 6 If node v has been either a ruler or a competitor
during j phases, then U j

v ⊆ Ui
v for i < j .

Proof Let the neighborhood N (T) of a set of nodes T ⊆ V
be the set {s | ∃u ∈ T : s ∈ N (u)\T }.

Let w ∈ Ui
v be the (or one of the) first node(s) that become

a ruler or dominator in phase i (say in competition k). By defi-
nition all nodes N (Ui

v) have been ruled or dominated in com-
petition k and thus cannot become rulers. Thus Ui+1

w ⊆ Ui
v

and all neighboring nodes N (Ui+1
w) of Ui+1

w are ruled or
dominated as well. Consider the next competition l with l >

k, where some node t ∈ (Ui
v\(Ui+1

w ∪ N (Ui+1
w)) becomes a

dominator or ruler. Ten we have that Ui+1
v ⊆ (Ui

v\(Ui+1
w ∪

N (Ui+1
w)) ⊆ Ui

v . The argument proceeds in the same man-

ner. Thus we have that Ui+1
v ⊆ Ui

v . Analogously, it follows
that Ui+2

v ⊆ Ui+1
v ⊆ Ui

v a.s.o.

Lemma 7 For a set T ⊂ V , s.t. U i ∩ T = ∅ holds that
U j

v ∩ T = ∅ with i < j .

Proof Due to Lemma 6, we have that U j
v ⊆ Ui

v . Due to the

disjointedness of Ui
v and T, U j

v and T must also be disjoint.

The next two lemmas together give an upper bound of
the number of (consecutive) phases until a node becomes a
dominator.

Lemma 8 If a nodev has become a ruler in the f (2)th phase,
then it is in a clique of competitors in phase f (2) + 1.

Proof Let a node w, as defined in Lemma 5, for phase i
be denoted by wi ∈ W i

v . Lemma 5 implies that no neighbor
t ∈ N (wi) can be a ruler reachable by a path of rulers from v.
Thus by definition Ui+1

v ∩ N (wi) = {}. Due to Lemma 7, no
node t ∈ N (wi)∪wi will be reachable by a path of competi-
tors fromv until (at least)v has become ruled. Since by defini-
tion W i

v ⊆ Ui
v , this implies that W i+1

v ⊆ (W i
v\(N (wi)∪wi)).

As a consequence nodes wi ∈ W i
v and wk ∈ W k

v with i �= k
(i.e. from different phases) are independent. The size of a
maximum independent set in N 2(v) is upper bounded by
f (2). In every phase i , at least one node wi ∈ W i

v at distance
two from v is removed. Thus after at most f (2) phases, node
v cannot reach any competitor at hop distance at least 2 by a
path of competitors, i.e. W f (2)+1

v = {} and the nodes U f (2)+1
v

form a clique.

Lemma 9 If a node v is still competing in the (f (2) + 1)st
phase then either v or a neighbor of v will become a domi-
nator in that phase.

123

356 J. Schneider, R. Wattenhofer

Fig. 4 Algorithm MIS on an instance of a UDG. It shows the state of
each node after the very first competition. For dominators and rulers a
circle indicating the transmission range is shown. Rulers are depicted
by diamonds, ruled nodes by big crosses, dominated nodes by small
crosses, dominators by small circles and competitors by boxes. As can
easily be seen, most nodes are already dominated after the first compe-
tition. After the second there are no competitors left and after the first
competition of the next phase the algorithm is done

Proof Using Lemma 8, we have that each competitor v is
in a clique in the beginning of the (f (2) + 1)st phase. Thus
in the first competition the node with the smallest I D of the
clique will become a dominator.

Next we show that for every non-dominated node v a dom-
inator is chosen within constant distance from v. Essentially
this is because a node cannot end a phase as a ruled node with-
out having a ruler advancing to the next phase in its neighbor-
hood (see Algorithm Update State). Due to Lemma 9 after a
constant number of phases a node must become a dominator
or dominated (See Fig. 4).

Since dominators are independent (see Lemma 1) and
in a bounded-independence graph the number of indepen-
dent nodes within constant distance is also a constant, only
O(log∗ n) rounds of communication are needed (see Theo-
rem 1).

Lemma 10 After O(log∗ n) rounds of communication each
node v either becomes a dominator or there exists an addi-
tional node that has become a dominator within hop distance
f (2) + 3.

Proof We will show that the distance between a ruler in phase
i and node v is at most i . After the first phase, every node v

is a ruler itself or adjacent to a ruler.

Assume the distance was at most i − 1 after the (i − 1)st
phase. In the i th phase only rulers become competitors again
(line 5) and participate in the competitions. Thus after the i th
phase, every competitor will become a ruler or a dominator
or have at least one of the two in its neighborhood. Thus the
distance between a ruler and a ruled node grows at most by
1 per phase.

Due to Lemma 9 every competitor or one of its neighbors
must become a dominator in the (f (2)+1)st phase. Assume
node u ∈ U 0

v started competing with v. Since a phase has
at most log∗ n + 2 competitions (see Lemma 2) and to per-
form a competition the algorithm requires three communi-
cation rounds, after at most 3 · (f (2) + 1) · (log∗ n + 2) ∈
O(log∗ n) rounds, node u must have got a dominator within
distance f (2)+2. Assume node u is ruled, then at least one of
its neighbor must be competing or it starts competing again
itself. Thus after at most O(log∗ n) rounds of communication
it must have got an additional dominator within hop distance
f (2) + 3.

Theorem 1 The total time to compute a MIS is in O(f
(f (2) + 3) log∗ n) and each message is of size O(log n).

Proof Due to Lemma 10 within O(log∗ n) every node gets
a dominator within distance f (2) + 3. Since dominators are
independent (Lemma 1), the number of dominators within
distance f (2) + 3 is upper bounded by the size of a maxi-
mum independent set in N f (2)+3(v), which is f (f (2) + 3).
This yields that f (f (2) + 3) · O(log∗ n) rounds of commu-
nication are needed.

For initialization all I Ds (of maximum length log n) have
to be exchanged among neighbors requiring one communi-
cation round for the first competition to execute. The fol-
lowing update of the state needs every message to be of
size O(log log n) and takes three rounds of communication.
Namely, exchanging the result of the prior competition which
also serves as input for the next. Additionally, a request and
possibly delayed reply of the current state of all neighbors.
Apart from that no communication has to take place for ini-
tialization and the first competition. In an analogous deriva-
tion the second competition requires only messages of size
O(log log log n) etc. and three communication rounds. Thus
each message is of size at most O(log n).

5.2 General graphs

For a general graph the size of a MaxIS in the neighborhood
Nr (v) of a node v can be bounded by a function g(|Nr (v)|),
since the size of a MaxIS including nodes up to distance r
cannot be larger than the size of the neighborhood Nr (v).

Theorem 2 Let the function g(Δr) be such that for each
node v ∈ V , the size of a MaxIS in the neighborhood Nr (v)

is at most g(Δr),∀r ≥ 0. Then algorithm MIS needs at most
O(min(n, g(g(Δ2) + 3)) time.

123

An optimal maximal independent set algorithm 357

Fig. 5 Algorithm MIS running on a unbounded-independence graph, taking time O(n). The solid lines show competitors. The dotted lines are
dominators and dominated nodes. The dashed lines indicate ruled nodes

Proof To see that the running time is in O(g(g(Δ2)+3)) the
same analysis as in Sect. 5.1 can be used. Thus let us focus
on the case that the number of rounds is also in O(n).

While not all nodes are dominated or dominators, there
always exists at least one set U of connected competitors
(or rulers that become competitors immediately). Consider
the connected set of competitors Ui

v (see Definition 3) for
phase i . For a competition we can distinguish two outcomes:
First, all nodes u ∈ Ui

v become rulers, ruled, dominated or
dominators. Second, at least one node w ∈ Ui

v remains a
competitor and at least one node u ∈ Ui

v becomes a ruler or
a dominator. (Observe, that it is not possible that all nodes
remain competing, since the node with minimum result will
become a ruler or dominator.) In case, some nodes W ⊂ Ui

v

became rulers, say node s ∈ Ui
v for instance, then due to

Lemma 5 in phase i + 1 there exists a node w ∈ W\Ui+1
s .

Therefore, there exist two independent non-empty sets Ui+1
s

and Ui
v\Ui+1

s (at least w ∈ Ui
v\Ui+1

s). Apart from that the
set Ui

v\Ui+1
s either contains a dominator or a ruler. In the

next competition (the first of phase i + 1) the node with
minimum I D in Ui+1

s becomes a dominator and if the set
Ui

v\Ui+1
s contained a ruler also the node with minimum I D

in this set. Assume for phase i it takes j > 1 competitions
until all nodes in Ui

v become non-competitors. The num-
ber of dominators u ∈ Ui

v obtained during the last j − 1
competitions in phase i plus the number of dominators in
the first competition of phase i + 1 of nodes u ∈ Ui

v , is
at least max{ j − 1, 1}. Thus, in the worst case all nodes
u ∈ Ui

v become non-competitors after two competitions and
only one dominator can be accredited to these two compe-
titions which yields at most 2 · n competitions. To perform
a competition the algorithm requires three communication
rounds.

The running time can indeed be O(n) as shown by the fol-
lowing graph: Each node v with 0 < I Dv < n −1 has edges

to nodes u, w with I Du = I Dv − 1 and I Dw = I Dv + 1.
A node v having its last two bits equal to 1 (i.e. I Dv mod
100 = 11) is additionally connected to all nodes with higher
I D and to the node u with I Du = I Dv − 2 (see Fig. 5).
The states of the nodes during the execution of the algo-
rithm follow a pattern which repeats every three rounds
of communication. In the first round the node with small-
est I D (with the last two bits being 00) becomes a dom-
inator and its neighbor becomes dominated (its ID ends
with 01). All other nodes remain competitors. In the sec-
ond round the two nodes with smallest I Ds (having the
last two bits 10 and 11) change to rulers and all others
become ruled. In the third round the node with smallest I D
(ending with 10) turns into a dominator and its neighbor
becomes dominated. All ruled nodes switch back to compet-
itors again.

6 Applications of MIS

Our MIS algorithm serves as a key building block to tackle
many other problems for bounded-independence graphs.

6.1 CDS and MDS

In order to obtain a CDS given a MIS S, each node v ∈ S
chooses a shortest path to every node u ∈ (N 3(v) ∩ S) with
I Du < I Dv and adds all nodes from the path to the CDS.
Because the size of the set N 3(v)∩ S is at most f (3) and the
length of any chosen path is at most 3, at most 3· f (3)·|S|+|S|
nodes form the CDS. Since S is a constant approximation of
the MDS in a bounded-independence graph, we get a constant
approximation of the Minimum CDS (MCDS) in O(log∗ n)
time. See also [2]. Due to a lower bound [9,17] of Ω(log∗ n)
to get a constant approximation of an MDS, our algorithm

123

358 J. Schneider, R. Wattenhofer

Fig. 6 Illustration showing that the distance between two nodes con-
currently coloring their neighbors must be at least 4

has asymptotically optimal time complexity for the MDS and
MCDS problem. (Observe that the lower bound is also valid
for the MCDS problem, since a MCDS is a constant approx-
imation of an MDS in a bounded-independence graph.)

6.2 PTAS for MDS and MaxIS

By using the clustering technique from [14] together with
our MIS algorithm, a (1 + ε)-approximation for the MDS
and MaxIS problem is computed in O(log∗ n/εO(1)) time.
More precisely, we use Theorem 5.8 from [14]:

Theorem 3 (Theorem 5.8 [14]) Let G = (V, E) be a poly-
nomially bounded-independence graph. Then, there exist
local, distributed (1+ε)—approximation algorithms, ε > 0,
for the MaxIS and MDS problems on G. The number of com-
munication rounds needed for the respective construction of
the subsets is O

(
TM I S + log∗ n/εO(1)

)
, where TM I S is the

time to compute a MIS in G.

6.3 δ + 1 Coloring

We state two methods for computing a δ + 1 coloring, both
relying on the same observation that a node v can color all
its neighbors if no other node u ∈ N 3(v) does so at the same
time. See Fig. 6.

In the first procedure a node v competes against a neigh-
bor u ∈ N 3(v), i.e. we compute a MIS S on the graph
G ′ = (V, E ′) with E ′ = E ∪ {(u, v)|{(u, s), (s, v)} ⊆
E} ∪ ({(u, v)|{(u, s), (s, t), (t, v)} ⊆ E}). All MIS nodes
v ∈ S color all their neighbors in G and themselves,
taking into account already used colors of colored nodes
w ∈ N 2(v). This procedure is repeated for all uncolored
nodes. In each iteration i a MIS Si is computed and an
uncolored node u ∈ V either gets colored or has distance
at most three in G to a node v ∈ Si . The union of MIS

Si and S j with i �= j forms an independent set in G. The
number of independent nodes for node v at distance at most
three is bounded by f (3). Thus after at most f (3) com-
putations of a MIS in G ′ node v gets colored. The graphs
G ′ is also bounded-independence with f ′(r) ≤ f (3 · r),
yielding an overall running time of O(log∗ n). Due to Li-
nial’s Ω(log∗ n) [18] lower bound our algorithm is asymp-
totically optimal. Observe that in order to compete against
all nodes in N k(v) messages of size O(log n) are sufficient,
since a node only needs to know the minimum result of
a competition. At first a node broadcasts its own result to
all neighbors and from then on forwards the smallest result
it received so far for k − 1 rounds. A distance two col-
oring with the same message and time complexity can be
obtained, when every node v competes against all nodes
u ∈ N 6(v) instead of N 3(v) and colors its two hop neigh-
borhood.

Alternatively to the above method a MIS S on G = (V, E)

can be computed first. Next we consider the graph G ′
defined by nodes S and edges between two nodes u, v ∈
S, if they can reach each other by a path of length at
most three, i.e. G ′ = (S, E ′) with E ′ = {(u, v)|u, v ∈
S ∧ (

(∃s ∈ (V \S)({(u, s), (s, v)} ⊆ E) ∨ (∃s, t ∈
(V \S)({(u, s), (s, t), (t, v)} ⊆ E)

)}. We compute a MIS
S′ ⊆ S on G ′. Every node v ∈ S′ colors all its neighbors,
respecting already used colors. The process is repeated for
all uncolored nodes. Thus in an iteration a node v either
gets colored or a neighbor u ∈ N 4(v) ∩ S′ colors itself
and all its neighbors. Since colored nodes are not considered
any more, for a node v there are at most f (4) such neigh-
bors u ∈ N 4(v). Therefore in total at most 2 · f (4) MIS
computations are required, giving an overall running time of
O(log∗ n).

6.4 Maximal matching

We can use the same idea as for the coloring in Sect. 6.3. We
compute a MIS S such that all nodes in the MIS have distance
at least 6. This allows a node v in the MIS S to compute a
maximal matching for all nodes u ∈ N (v) ∪ v, i.e. it can
pick any edge e = (u, w) with w ∈ N 2(v) and add it to the
matching. All nodes adjacent to an edge in the matching and
those that have no unmatched neighbors are removed and
the process repeats, i.e. again a MIS S′ is computed for the
remaining nodes, such that all nodes in the MIS have distance
at least 6.

Whenever a MIS S is computed, any node is either
matched and stops or a node within distance 6 matches all
its neighbors. Since the number of nodes that can match all
their neighbors within distance 6 corresponds to the size of
a maximum independent set, we need to compute at most
O(f (6)) MIS S, giving an overall running time of O(log∗ n).

123

An optimal maximal independent set algorithm 359

Fig. 7 Simulations on Erdős Rényi graphs of 1500 nodes; The prob-
ability of an edge between two nodes is indicated on the x-axis. The
y-axis shows the number of communication rounds. The dashed line

shows the rounds needed for Luby’s algorithm, the dotted one for Algo-
rithm MAX and the solid one for our Algorithm MIS

Fig. 8 Simulations on UDGs of 1500 nodes. The probability of an
edge between two nodes is indicated on the x-axis. The y-axis shows
the number of communication rounds. The dashed line shows the rounds

needed for Luby’s algorithm, the dotted one for Algorithm MAX and
the solid one for our Algorithm MIS

6.5 Others

Our algorithm MIS has been used in the area of self-assem-
bling systems [25], to compute a PTAS for minimum clique
partition in the UDG model [22], to approximate the robot
assignment [7] and the facility location problem [21] just to
name a few.

7 Experimental results

We compared three algorithms namely Algorithm MIS,
Luby’s [19] and Algorithm MAX, where a node joins the
MIS if its I D is maximum among all neighbors. In fact,
we slightly adapted algorithm MIS, such that before it per-
forms the first competition, it updates the state based on the
I Ds, i.e., all nodes become dominators that have minimum
I D among their neighbors and dominated nodes inform their

neighbors. For a competition our algorithm needs three com-
munication rounds: One to exchange the result of a compe-
tition and two more to let all neighbors know about the new
state. Algorithm MAX needs two rounds to inform all neigh-
bors about the new states. Both algorithms MIS and MAX
need an initial round to exchange the IDs among the neigh-
boring nodes. For Luby’s algorithm the update of the states
takes two rounds and we assumed that one initial round is
needed to get to know the degree of the nodes.

We considered random graphs, where an edge between
two nodes was added with probability p. Our experiments
were conducted for UDG and random graphs with 1500
nodes. They indicate that Luby’s algorithm performs worst
in general. Algorithm MIS and MAX perform relatively sim-
ilar (see Figs. 7 and 8), however Algorithm MAX lacks
good worst case guarantees for UDG graphs. In particular
for loosely connected networks, the chance that there are
long chains of nodes with increasing IDs increases with the

123

360 J. Schneider, R. Wattenhofer

network size and thus algorithm MAX performs worse in
such scenarios.

Due to the random arrangement of nodes the first selection
of dominators in Algorithm MIS and MAX is similar to the
one of Luby, except for the fact that Algorithm MIS and MAX
do not face the problems of multiple neighbors joining the
MIS at the same time and that no nodes join at all. If there are
many small (unconnected) subgraphs of nodes not covered
by the MIS, Luby’s algorithm has a high chance that at least
for some of them, no node decides to join the MIS, whereas
Algorithm MIS and MAX both will select at least one.

8 Conclusions

In this paper we have presented a novel deterministic coin
tossing technique which enables us to achieve an asymp-
totically optimal distributed algorithm for computing a MIS
in bounded-independence graphs. Although the hidden con-
stants in the analysis are significant, our simulations indicate
that the constants will be small in practice. Indeed, quite sur-
prisingly, the example of Fig. 4 was completed after 3 rounds
of communication only. Our algorithm has been applied
in various settings beyond the MIS problem, for instance
for computing a δ + 1 coloring, an asymptotically optimal
CDS in O(log∗ n) or for solving the facility location problem
[21].

We believe that our paper strikes a chord with symmetry
breaking. Randomized symmetry breaking has the problem
of only producing results “in expectation”. Often however
symmetry breaking algorithms are used as building blocks,
and then they need to work “with high probability” which reg-
ularly causes a logarithmic overhead. In other words, when
it comes to “ultra-fast” distributed algorithms, determinism
may have an advantage over randomization

Finally, as promised in Sect. 3, let us discuss the com-
munication model in more detail. We presented our algo-
rithm in the classic local model, where each node can talk to
each neighbor in each round. In some application domains,
in particular in wireless networks, this assumption is too
demanding, as it asks for a perfect (and hence non-existent!)
media access control (MAC) protocol. In reality MAC pro-
tocols are quite unreliable, with messages not being received
because of wireless channel fluctuations, or message colli-
sions. One way to address this is to study the problem in a
model that includes the MAC layer, in the sense that the algo-
rithm designer has to exactly specify at what time the nodes
transmit or receive. This is a cumbersome job, especially
since the result is often related to the algorithm in the clean
local model, e.g., the without collision detection model [24]
uses the local algorithm presented in this paper as a building
block.

What about situations where the software engineer has
no control over the MAC layer? How should our algorithm
be implemented? We argue that one should simply simulate
our algorithm in the ”rollback compiler“ self-stabilization
framework [5]. Note that our algorithm does not use all the
flexibility provided by the local model, instead the result
messages r i

v can be broadcast in the neighborhood. In the
self-stabilization framework our protocol then boils down to
repeatedly transmitting the same single message, contain-
ing information about the relevant result values computed in
the individual phases/competitions. This message is of log-
arithmic size, and resilient to a whole array of failures and
dynamics, e.g., message collisions, message failures, even
nodes rebooting and topology changes due to mobility or
late node wake-ups. Nodes will always have a correct MIS
at most O(t log∗ n) time after the last failure, assuming that
each node can successfully transmit a message at least once
in time t !

References

1. Alon, N., Babai, L., Itai, A.: A fast and simple randomized paral-
lel algorithm for the maximal independent set problem. J. Algo-
rithms 7(4), 567–583 (1986)

2. Alzoubi, K., Li, X., Wang, Y., Wan, P., Frieder, O.: Geometric span-
ners for wireless ad hoc Networks. IEEE Trans. Parallel Distributed
Syst. 14(5), 408–421 (2003)

3. Andersson, A., Hagerup, T., Nilsson, S., Raman, R.: Sorting in
linear time. J. Comput. Syst. Sci. 57, 74–93 (1998)

4. Awerbuch, B., Goldberg, A.V., Luby, M., Plotkin, S.A.: Network
decomposition and locality in distributed computation. In: Proceed-
ings of the 30th Symposium on Foundations of Computer Science
(FOCS), pp. 364–369 (1989)

5. Awerbuch, B., Varghese, G.: Distributed program checking: a par-
adigm for building self-stabilizing distributed protocols. In: Pro-
ceedings of the 32nd Annual Symposium on Foundations of Com-
puter Science (FOCS) (1991)

6. Barenhoim, L., Elkin, M.: Sublogarithmic Distributed MIS Algo-
rithm for Sparse Graphs using Nash-Williams Decomposition. In:
Journal of Distributed Computing Special Issue of selected papers
from PODC 2008 (2010)

7. Bonorden, O., Degener, B., Kempkes, B., Pietrzyk, P.: Complexity
and approximation of a geometric local robot assignment problem.
In: ALGOSENSORS (2009)

8. Cole, R., Vishkin, U.: Deterministic coin tossing with applications
to optimal parallel list ranking. Inf. Control 70(1), 32–54 (1986)

9. Czygrinow, A., Hanckowiak, M., Wawrzyniak, W.: Fast distributed
approximations in planar graphs. In: DISC (2008)

10. Gfeller, B., Vicari, E.: A randomized distributed algorithm for the
maximal independent set problem in growth-bounded graphs. In:
Proceedings of the 26th ACM Symposium on Principles of Dis-
tributed Computing (PODC) (2007)

11. Goldberg, A., Plotkin, S., Shannon, G.: Parallel symmetry-break-
ing in sparse graphs. SIAM J. Discrete Math.(SIDMA) 1(4), 434–
446 (1988)

12. Israeli, A., Itai, A.: A fast and simple randomized parallel algorithm
for maximal matching. Inf. Process. Lett. 22, 77–80 (1986)

13. Kuhn, F., Moscibroda, T., Nieberg, T., Wattenhofer, R.: Fast
deterministic distributed maximal independent set computation on

123

An optimal maximal independent set algorithm 361

growth-bounded graphs. In: Proceedings of the 19th International
Symposium on Distributed Computing (DISC) (2005)

14. Kuhn, F., Moscibroda, T., Nieberg, T., Wattenhofer, R.: Local
approximation schemes for ad hoc and sensor networks. In: Pro-
ceedings of the 3rd ACM Joint Workshop on Foundations of Mobile
Computing (DIALM-POMC) (2005)

15. Kuhn, F., Moscibroda, T., Wattenhofer, R.: On the locality of
bounded growth. In: Proceedings of the 24th ACM Symposium on
Principles of Distributed Computing (PODC), pp. 60–68 (2005)

16. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be com-
puted locally! In: Proceedings of the 23rd ACM Symposium on
Principles of Distributed Computing (PODC), pp. 300–309 (2005)

17. Lenzen, C., Wattenhofer, R.: Leveraging linial’s locality limit. In:
22nd International Symposium on Distributed Computing (DISC)
September (2008)

18. Linial, N.: Locality in distributed graph algorithms. SIAM J. Com-
put. 21(1), 193–201 (1992)

19. Luby, M.: A simple parallel algorithm for the maximal independent
set problem. SIAM J. Comput. 15, 1036–1053 (1986)

20. Panconesi, A., Srinivasan, A.: Improved distributed algorithms for
coloring and network decomposition problems. In: Proceedings
of the 24th Annual ACM Symposium on Theory of Computing
(STOC), pp. 581–592. ACM Press (1992)

21. Pandit, S., Pemmaraju, S.: Finding facilities fast. In: Proceedings of
the 10th International Conference on Distributed Computing and
Networking (ICDCN) (2009)

22. Pirwani, I.A., Salavatipour, M.R.: A ptas for minimum clique par-
tition in unit disk graphs. CoRR (2009)

23. Schneider J., Wattenhofer, R.: A log-star distributed maximal inde-
pendent set algorithm for growth-bounded graphs. In: 27th Annual
ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing, August (2008)

24. Schneider, J., Wattenhofer, R.: Coloring unstructured wireless
multi-hop networks. In: Proceedings of the 28th ACM Symposium
on Principles of Distributed Computing (PODC) (2009)

25. Sterling, A.: Self-assembling systems are distributed systems.
CoRR (2009)

123

	An optimal maximal independent set algorithm for bounded-independence graphs
	Abstract
	1 Introduction
	2 Related work
	3 Model and definitions
	4 MIS Algorithm
	5 Analysis
	5.1 Bounded-independence graphs
	5.2 General graphs

	6 Applications of MIS
	6.1 CDS and MDS
	6.2 PTAS for MDS and MaxIS
	6.3 δ+1 Coloring
	6.4 Maximal matching
	6.5 Others

	7 Experimental results
	8 Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

