6 research outputs found

    Priority based energy efficient hybrid cluster routing protocol for underwater wireless sensor network

    Get PDF
    A little change in the environment that goes unnoticed in an underwater communication network might lead to calamity. A little alteration in the environment must also be adequately analyzed in order to deal with a potential crisis. A priority-based routing protocol is required to ensure that the vital data perceived by the sensor about the environment changes. The priority-based routing system guarantees that vital data packets are delivered at a quicker pace to the destination or base station for further processing. In this work, we present a priority-based routing protocol based on the energy efficient hybrid cluster routing protocol (EEHRCP) algorithm. The suggested approach keeps two distinct queues for lower and higher priority data packets. In order to ensure that these packets get at their destination without any information loss and at a quicker rate, all of the crucial sensed data is passed through a higher priority queue. Test findings show that the suggested technique increases throughput, delivery percentage, and reduces latency for the crucial data packets

    A Survey on Efficient Routing Strategies For The Internet of Underwater Things (IoUT)

    Get PDF
    The Internet of Underwater Things (IoUT) is an emerging technology that promised to connect the underwater world to the land internet. It is enabled via the usage of the Underwater Acoustic Sensor Network (UASN). Therefore, it is affected by the challenges faced by UASNs such as the high dynamics of the underwater environment, the high transmission delays, low bandwidth, high-power consumption, and high bit error ratio. Due to these challenges, designing an efficient routing protocol for the IoUT is still a trade-off issue. In this paper, we discuss the specific challenges imposed by using UASN for enabling IoUT, we list and explain the general requirements for routing in the IoUT and we discuss how these challenges and requirements are addressed in literature routing protocols. Thus, the presented information lays a foundation for further investigations and futuristic proposals for efficient routing approaches in the IoUT

    Underwater Resurrection Routing Synergy using Astucious Energy Pods

    Get PDF
    The accomplishment of sustainable communication among source and destination sink node is a rigors challenge and even establishing bodacious communication link between these nodes is nothing short of a miracle because data routes are governed by the underwater environment. Energy consumption has a significant influence as all active devices rely on the battery. As cost-effective data packet transmission is established as a norm, no charging or replacement can be achieved. Hop link evaluation and shrewd connection discovery by way of a resurrecting linking element were just a genuinely grim task, and only feasible to create the extra powered energy pods (URR-SAEP) that had never been carried out before after detailed study. After packet transfer, the sensor node performs the link inspection process, and when a link is deemed shaky at less than or equivalent to 50 percent of capacity, the target node incorporates its residual capacity status and returns it to the source node that attaches other unoptimizable energy pods to improve only the targeted node link from 50 percent to 90 percent. Performance evaluation using NS2 with Aqua-Sim 2.0 simulator has been obtained comparing with DBR and EEDBR protocols in terms of point-to-point delay, Packet dissemination ratio, Network lifespan and Energy Diminution

    Void avoidance opportunistic routing density rank based for underwater sensor networks

    Get PDF
    Currently, the Underwater Sensor Networks (UWSNs) is mainly an attractive area due to its technological ability to gather valuable data from underwater environments such as tsunami monitoring sensors, military tactical applications, and environmental monitoring. However, UWSNs are suffering from limited energy, high packet loss, and the use of acoustic communication which have very limited bandwidth and slow transmission. In UWSNs, the energy consumption used is 125 times more during the forwarding of the packet data from source to destination as compare to during receiving data. For this reason, many researchers are keen to design an energy-efficient routing protocol to minimize the energy consumption in UWSNs while at the same time provide adequate packet delivery ratio and less cumulative delay. As such, the opportunistic routing (OR) is the most promising method to be used in UWSNs due to its unique characteristics such as high path loss, dynamic topology, high energy consumption, and high propagation delay. However, the OR algorithm had also suffered from as higher traffic load for selection next forwarding nodes in the progression area, which suppressed the redundant forwarding packet and caused communication void. There are three new proposed algorithms introduced to address all three issues which resulted from using the OR approach in UWSNs. Firstly, the higher traffic load for selection next forwarding nodes in the problematic progression area problem was addressed by using the Opportunistic Routing Density Based (ORDB) algorithm to minimize the traffic load by introducing a beaconless routing to update the neighbor node information protocol. Secondly, the algorithm Opportunistic Routing Density Rank Based (ORDRB) was developed to deal with redundant packet forwarding by introducing a new method to reduce the redundant packet forwarding while in dense or sparse conditions to improve the energy consumption effectively. Finally, the algorithm Void Avoidance Opportunistic Routing Density Rank Based (ORDRB) was developed to deal with the communication void by introducing a simple method to detect a void node and avoid it during the forwarding process. Simulation results showed that ORDB has improved the network performance in terms of energy tax average (25%, 40%), packet delivery ratio (43%, 23%), and cumulative delay (67%, -42%) compared to DBR and UWFlooding routing protocols. While for ORDRB, the network performance improved in terms of energy tax average (0.9%, 53%, 62%), packet delivery ratio (100%, 83%, 58%) and cumulative delay (-270%, -94%, 55%) compared to WDFAD-DBR, DBR and UWFlooding. Lastly, for VAORDRB, the network performance improved in terms of energy tax average (3%, 8%), packet delivery ratio (167%, 261%), and cumulative delay (68%, 57%) compared to EVA-DBR and WDFAD-DBR. Based on the findings of this study, the protocol VAORDRB is a suitable total solution to reduce the cumulative delay and increase the packet delivery ratio in sparse and dense network deployment

    Energy efficient Routing Protocols for Underwater Acoustic Wireless Sensor Network

    Get PDF
    Technological advancement regarding oceanic world discovery and monitoring has led to autonomous communication, which results in the emergence of the Internet of underwater things (IoUT). Underwater acoustic wireless sensor networks have become one of the most recently researched within the IoUT. An underwater acoustic wireless sensor network consists of sensor nodes, autonomous vehicles, and remotely operated vehicles which are normally deployed to carry out a collaborative task within an underwater region. Underwater acoustic wireless sensor networks have become one of the most recently researched area which supports long transmission range. However, acoustic signals experience deformation due to factors which consist of noise, propagation delay, and low bandwidth. Sensor nodes are battery dependent which mean they are difficult to recharge or replace once deployed. Routing protocols play important role in the communication process between these sensor nodes. As a result, this research aims to develop an energy efficient routing protocol that can bring about optimal policies for energy consumption in the process of data aggregation and transmission. The developed routing protocol focused on sparse and dense network architectures by examining the popular ad-hoc routing protocol action on demand distance vector routing protocol (AODV) for sparse networks and low energy adaptive clustering hierarchy (LEACH) for dense network. For a sparse architecture this research identifies current energy and overhead challenges facing AODV which in turn modifies the protocol by creating a new energy aware and overhead friendly routing protocol called action on demand distance vector sparse underwater acoustic routing protocol (AODV-SUARP) for underwater communication. AODV-SUARP introduces the mechanism of route stability function (RSF) by colour mode to select the most energy efficient route to forwards packets. For dense architecture this research identifies the energy challenge facing the conventional LEACH routing protocol which in turn leads to its modification by creating a new energy aware routing protocol called low energy adaptive clustering hierarchy dense underwater acoustic routing protocol (LEACH-DUARP). Furthermore, for the optimal selection of eligible cluster head in a subsequent round LEACH-DUARP introduces a concept called the stability function value (SFV). The developed routing protocols (AODV-SUARP and LEACH-DUARP) were implemented in NS-3 and validated using mathematical modelling. Results obtained indicated both AODV-SUARP and LEACH-DUARP achieves a considerable result compared to other routing protocols in terms of residual energy, packet delivery ratio, and number of dead nodes
    corecore