4 research outputs found

    Visuelle Analyse großer Partikeldaten

    Get PDF
    Partikelsimulationen sind eine bewährte und weit verbreitete numerische Methode in der Forschung und Technik. Beispielsweise werden Partikelsimulationen zur Erforschung der Kraftstoffzerstäubung in Flugzeugturbinen eingesetzt. Auch die Entstehung des Universums wird durch die Simulation von dunkler Materiepartikeln untersucht. Die hierbei produzierten Datenmengen sind immens. So enthalten aktuelle Simulationen Billionen von Partikeln, die sich über die Zeit bewegen und miteinander interagieren. Die Visualisierung bietet ein großes Potenzial zur Exploration, Validation und Analyse wissenschaftlicher Datensätze sowie der zugrundeliegenden Modelle. Allerdings liegt der Fokus meist auf strukturierten Daten mit einer regulären Topologie. Im Gegensatz hierzu bewegen sich Partikel frei durch Raum und Zeit. Diese Betrachtungsweise ist aus der Physik als das lagrange Bezugssystem bekannt. Zwar können Partikel aus dem lagrangen in ein reguläres eulersches Bezugssystem, wie beispielsweise in ein uniformes Gitter, konvertiert werden. Dies ist bei einer großen Menge an Partikeln jedoch mit einem erheblichen Aufwand verbunden. Darüber hinaus führt diese Konversion meist zu einem Verlust der Präzision bei gleichzeitig erhöhtem Speicherverbrauch. Im Rahmen dieser Dissertation werde ich neue Visualisierungstechniken erforschen, welche speziell auf der lagrangen Sichtweise basieren. Diese ermöglichen eine effiziente und effektive visuelle Analyse großer Partikeldaten

    Spatial CPU-GPU data structures for interactive rendering of large particle data

    Get PDF
    In this work, I investigate the interactive visualization of arbitrarily large particle data sets which ft into system memory, but not into GPU memory. With conventional rendering techniques, interactivity of visualizations is drastically reduced when rendering tens- or hundreds of millions of objects. At the same time, graphics hardware memory capabilities limit the size of data sets which can be placed in GPU memory for rendering. To circumvent these obstacles, a progressive rendering approach is employed, which gradually streams and renders all particle data to the GPU without reducing or altering the particle data itself. The particle data is rendered according to a visibility sorting derived from occlusion relations between different parts of the data set, leading to a rendering order of scene contents guided by importance for the rendered image. I analyze and compare possible implementation choices for rendering particles as opaque spheres in OpenGL, which forms the basis of the particle rendering application developed within this work. The application utilizes a multi-threaded architecture, where data preprocessing on a CPU-thread and a rendering algorithm on a GPU-thread ensure that the user can interact with the application at any time. In particular it is guaranteed that the user can explore the particle data interactively, by ensuring minimal latency from user input to seeing the effects of that input. This is achieved by favoring user inputs over completeness of the rendered image at all stages during rendering. At the same time the user is provided with an immediate feedback about interactions by re-projecting all currently visible particles to the next rendered image. The re-projection is realized with an on-GPU particle-cache of visible particles that is built during particle data streaming and rendering, and drawn upon user interaction using the most recent camera confguration according to user inputs. The combination of the developed techniques allows interactive exploration of particle data sets with up to 1.5 billion particles on a commodity computer.In dieser Arbeit wird die interaktive Visualisierung beliebig großer Partikeldaten untersucht, wobei die Partikeldaten im Arbeitsspeicher hinterlegt sind, aber nicht zwangsläufig in den Grafikspeicher passen. Mit üblichen Rendering Methoden büßen Visualisierungen drastisch an Interaktivität ein, wenn mehrere zehn- bis hunderte Millionen Objekte dargestellt werden. Gleichzeitig ist die Größe möglicher zu visualisierender Datensätze begrenzt durch den Videospeicher von Grafikkarten, auf dem zu visualisierende Daten vorliegen müssen. Um diese Einschränkungen zu umgehen, wird in dieser Arbeit ein progressiver Rendering Ansatz verfolgt, der sukzessive alle Partikeldaten zur Grafikkarte hochlädt und rendert, ohne die Partikeldaten zu reduzieren oder anderweitig zu verändern. Die Partikeldaten werden entsprechend einer vorgenommenen Sichtbarkeitssortierung gerendert, die aus gegenseitigen Verdeckungen verschiedener Teile des Partikeldatensatzes berechnet wird. Dies führt dazu, dass Teile der Szene nach ihrer Wichtigkeit für das aktuelle Bild sortiert und dargestellt werden. Es werden verschiedene Möglichkeiten analysiert und verglichen, Partikel als opake Kugeln in OpenGL zu rendern. Dies formt die Grundlage für die Partikel-Rendering Software, die in dieser Arbeit entwickelt wurde. Die Architektur der Rendering-Software benutzt mehrere Threads, sodass durch eine Daten-Vorverarbeitung auf einem CPUThread und durch Rendering-Algorithmen auf einem GPU-Thread sichergestellt ist, dass der Benutzer mit der Software jederzeit interagieren kann. Insbesondere ist sichergestellt, dass der Benutzer die Partikeldaten interaktiv untersuchen kann, indem die Latenz zwischen Benutzereingaben und dem Anzeigen der daraus resultierenden Veränderungen minimal gehalten wird. Dies wird erreicht indem der Verarbeitung von Benutzereingaben an allen Stellen des Rendering-Prozesses höhere Priorität eingeräumt wird als der Vollständigkeit des gerenderten Bildes. Gleichzeitig wird dem Benutzer eine sofortige Rückmeldung über getätigte Benutzereingaben gegeben, indem alle sichtbaren Partikel in das nächste gerenderte Bild neu projeziert werden. Diese Neu-Projektion wird durch einen GPU-seitigen Partikel-Cache aller aktuell sichtbaren Partikel realisiert, der während des sukzessiven Partikelstreamings und -renderns aufgebaut wird. Sobald der Benutzer eine Eingabe tätigt, wird der auf der GPU liegende Partikel-Cache unter der aktuellsten benutzerdefinierten Kameraposition neu gerendert. Die Kombination dieser entwickelten Methoden erlaubt ein interaktives Betrachten von Partikeldaten mit bis zu 1,5 Milliarden Partikeln auf einem handelsüblichen Computer

    Temporal Lossy In-Situ Compression for Computational Fluid Dynamics Simulations

    Get PDF
    Während CFD Simulationen für Metallschmelze im Rahmen des SFB920 fallen auf dem Taurus HPC Cluster in Dresden sehr große Datenmengen an, deren Handhabung den wissenschaftlichen Arbeitsablauf stark verlangsamen. Zum einen ist der Transfer in Visualisierungssysteme nur unter hohem Zeitaufwand möglich. Zum anderen ist interaktive Analyse von zeitlich abhängigen Prozessen auf Grund des Speicherflaschenhalses nahezu unmöglich. Aus diesen Gründen beschäftigt sich die vorliegende Dissertation mit der Entwicklung sog. Temporaler In-Situ Kompression für wissenschaftliche Daten direkt innerhalb von CFD Simulationen. Dabei werden mittels neuer Quantisierungsverfahren die Daten auf ~10% komprimiert, wobei dekomprimierte Daten einen Fehler von maximal 1% aufweisen. Im Gegensatz zu nicht-temporaler Kompression, wird bei temporaler Kompression der Unterschied zwischen Zeitschritten komprimiert, um den Kompressionsgrad zu erhöhen. Da die Datenmenge um ein Vielfaches kleiner ist, werden Kosten für die Speicherung und die Übertragung gesenkt. Da Kompression, Transfer und Dekompression bis zu 4 mal schneller ablaufen als der Transfer von unkomprimierten Daten, wird der wissenschaftliche Arbeitsablauf beschleunigt
    corecore