1,637 research outputs found

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    An Efficient Hybrid Fuzzy-Clustering Driven 3D-Modeling of Magnetic Resonance Imagery for Enhanced Brain Tumor Diagnosis

    Get PDF
    Brain tumor detection and its analysis are essential in medical diagnosis. The proposed work focuses on segmenting abnormality of axial brain MR DICOM slices, as this format holds the advantage of conserving extensive metadata. The axial slices presume the left and right part of the brain is symmetric by a Line of Symmetry (LOS). A semi-automated system is designed to mine normal and abnormal structures from each brain MR slice in a DICOM study. In this work, Fuzzy clustering (FC) is applied to the DICOM slices to extract various clusters for di erent k. Then, the best-segmented image that has high inter-class rigidity is obtained using the silhouette fitness function. The clustered boundaries of the tissue classes further enhanced by morphological operations. The FC technique is hybridized with the standard image post-processing techniques such as marker controlled watershed segmentation (MCW), region growing (RG), and distance regularized level sets (DRLS). This procedure is implemented on renowned BRATS challenge dataset of di erent modalities and a clinical dataset containing axial T2 weighted MR images of a patient. The sequential analysis of the slices is performed using the metadata information present in the DICOM header. The validation of the segmentation procedures against the ground truth images authorizes that the segmented objects of DRLS through FC enhanced brain images attain maximum scores of Jaccard and Dice similarity coe cients. The average Jaccard and dice scores for segmenting tumor part for ten patient studies of the BRATS dataset are 0.79 and 0.88, also for the clinical study 0.78 and 0.86, respectively. Finally, 3D visualization and tumor volume estimation are done using accessible DICOM information.Ministerio de Desarrollo de Recursos Humanos, India SPARC/2018-2019/P145/SLUniversidad Politécnica de Tomsk, Rusia RRSG/19/500

    An Information Theoretic Approach For Feature Selection And Segmentation In Posterior Fossa Tumors

    Get PDF
    Posterior Fossa (PF) is a type of brain tumor located in or near brain stem and cerebellum. About 55% - 70 % pediatric brain tumors arise in the posterior fossa, compared with only 15% - 20% of adult tumors. For segmenting PF tumors we should have features to study the characteristics of tumors. In literature, different types of texture features such as Fractal Dimension (FD) and Multifractional Brownian Motion (mBm) have been exploited for measuring randomness associated with brain and tumor tissues structures, and the varying appearance of tissues in magnetic resonance images (MRI). For selecting best features techniques such as neural network and boosting methods have been exploited. However, neural network cannot descirbe about the properties of texture features. We explore methods such as information theroetic methods which can perform feature selection based on properties of texture features. The primary contribution of this dissertation is investigating efficacy of different image features such as intensity, fractal texture, and level - set shape in segmentation of PF tumor for pediatric patients. We explore effectiveness of using four different feature selection and three different segmentation techniques respectively to discriminate tumor regions from normal tissue in multimodal brain MRI. Our research suggest that Kullback - Leibler Divergence (KLD) measure for feature ranking and selection and Expectation Maximization (EM) algorithm for feature fusion and tumor segmentation offer the best performance for the patient data in this study. To improve segmentation accuracy, we need to consider abnormalities such as cyst, edema and necrosis which surround tumors. In this work, we exploit features which describe properties of cyst and technique which can be used to segment it. To achieve this goal, we extend the two class KLD techniques to multiclass feature selection techniques, so that we can effectively select features for tumor, cyst and non tumor tissues. We compute segemntation accuracy by computing number of pixels segemented to total number of pixels for the best features. For automated process we integrate the inhomoheneity correction, feature selection using KLD and segmentation in an integrated EM framework. To validate results we have used similarity coefficients for computing the robustness of segmented tumor and cyst

    Efficient framework for brain tumor detection using different deep learning techniques

    Get PDF
    The brain tumor is an urgent malignancy caused by unregulated cell division. Tumors are classified using a biopsy, which is normally performed after the final brain surgery. Deep learning technology advancements have assisted the health professionals in medical imaging for the medical diagnosis of several symptoms. In this paper, transfer-learning-based models in addition to a Convolutional Neural Network (CNN) called BRAIN-TUMOR-net trained from scratch are introduced to classify brain magnetic resonance images into tumor or normal cases. A comparison between the pre-trained InceptionResNetv2, Inceptionv3, and ResNet50 models and the proposed BRAIN-TUMOR-net is introduced. The performance of the proposed model is tested on three publicly available Magnetic Resonance Imaging (MRI) datasets. The simulation results show that the BRAIN-TUMOR-net achieves the highest accuracy compared to other models. It achieves 100%, 97%, and 84.78% accuracy levels for three different MRI datasets. In addition, the k-fold cross-validation technique is used to allow robust classification. Moreover, three different unsupervised clustering techniques are utilized for segmentation

    Biomedical Image Processing and Classification

    Get PDF
    Biomedical image processing is an interdisciplinary field involving a variety of disciplines, e.g., electronics, computer science, physics, mathematics, physiology, and medicine. Several imaging techniques have been developed, providing many approaches to the study of the human body. Biomedical image processing is finding an increasing number of important applications in, for example, the study of the internal structure or function of an organ and the diagnosis or treatment of a disease. If associated with classification methods, it can support the development of computer-aided diagnosis (CAD) systems, which could help medical doctors in refining their clinical picture

    Advanced Brain Tumour Segmentation from MRI Images

    Get PDF
    Magnetic resonance imaging (MRI) is widely used medical technology for diagnosis of various tissue abnormalities, detection of tumors. The active development in the computerized medical image segmentation has played a vital role in scientific research. This helps the doctors to take necessary treatment in an easy manner with fast decision making. Brain tumor segmentation is a hot point in the research field of Information technology with biomedical engineering. The brain tumor segmentation is motivated by assessing tumor growth, treatment responses, computer-based surgery, treatment of radiation therapy, and developing tumor growth models. Therefore, computer-aided diagnostic system is meaningful in medical treatments to reducing the workload of doctors and giving the accurate results. This chapter explains the causes, awareness of brain tumor segmentation and its classification, MRI scanning process and its operation, brain tumor classifications, and different segmentation methodologies

    Fast and Robust Automatic Segmentation Methods for MR Images of Injured and Cancerous Tissues

    Get PDF
    Magnetic Resonance Imaging: MRI) is a key medical imaging technology. Through in vivo soft tissue imaging, MRI allows clinicians and researchers to make diagnoses and evaluations that were previously possible only through biopsy or autopsy. However, analysis of MR images by domain experts can be time-consuming, complex, and subject to bias. The development of automatic segmentation techniques that make use of robust statistical methods allows for fast and unbiased analysis of MR images. In this dissertation, I propose segmentation methods that fall into two classes---(a) segmentation via optimization of a parametric boundary, and: b) segmentation via multistep, spatially constrained intensity classification. These two approaches are applicable in different segmentation scenarios. Parametric boundary segmentation is useful and necessary for segmentation of noisy images where the tissue of interest has predictable shape but poor boundary delineation, as in the case of lung with heavy or diffuse tumor. Spatially constrained intensity classification is appropriate for segmentation of noisy images with moderate contrast between tissue regions, where the areas of interest have unpredictable shapes, as is the case in spinal injury and brain tumor. The proposed automated segmentation techniques address the need for MR image analysis in three specific applications:: 1) preclinical rodent studies of primary and metastatic lung cancer: approach: a)),: 2) preclinical rodent studies of spinal cord lesion: approach: b)), and: 3) postclinical analysis of human brain cancer: approach: b)). In preclinical rodent studies of primary and metastatic lung cancer, respiratory-gated MRI is used to quantitatively measure lung-tumor burden and monitor the time-course progression of individual tumors. I validate a method for measuring tumor burden based upon average lung-image intensity. The method requires accurate lung segmentation; toward this end, I propose an automated lung segmentation method that works for varying tumor burden levels. The method includes development of a novel, two-dimensional parametric model of the mouse lungs and a multifaceted cost function to optimally fit the model parameters to each image. Results demonstrate a strong correlation: 0.93), comparable with that of fully manual expert segmentation, between the automated method\u27s tumor-burden metric and the tumor burden measured by lung weight. In preclinical rodent studies of spinal cord lesion, MRI is used to quantify tissues in control and injured mouse spinal cords. For this application, I propose a novel, multistep, multidimensional approach, utilizing the Classification Expectation Maximization: CEM) algorithm, for automatic segmentation of spinal cord tissues. In contrast to previous methods, my proposed method incorporates prior knowledge of cord geometry and the distinct information contained in the different MR images gathered. Unlike previous approaches, the algorithm is shown to remain accurate for whole spinal cord, white matter, and hemorrhage segmentation, even in the presence of significant injury. The results of the method are shown to be on par with expert manual segmentation. In postclinical analysis of human brain cancer, access to large collections of MRI data enables scientifically rigorous study of cancers like glioblastoma multiforme, the most common form of malignant primary brain tumor. For this application, I propose an efficient and effective automated segmentation method, the Enhanced Classification Expectation Maximization: ECEM) algorithm. The ECEM algorithm is novel in that it introduces spatial information directly into the classical CEM algorithm, which is otherwise spatially unaware, with low additional computational complexity. I compare the ECEM\u27s performance on simulated data to the standard finite Gaussian mixture EM algorithm, which is not spatially aware, and to the hidden-Markov random field EM algorithm, a commonly-used spatially aware automated segmentation method for MR brain images. I also show sample results demonstrating the ECEM algorithm\u27s ability to segment MR images of glioblastoma
    • …
    corecore