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ABSTRACT OF THE DISSERTATION

Fast and Robust Automatic Segmentation Methods for MR Images of
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Magnetic Resonance Imaging (MRI) is a key medical imaging technology. Through in vivo

soft tissue imaging, MRI allows clinicians and researchers to make diagnoses and evaluations

that were previously possible only through biopsy or autopsy. However, analysis of MR

images by domain experts can be time-consuming, complex, and subject to bias. The devel-

opment of automatic segmentation techniques that make use of robust statistical methods

allows for fast and unbiased analysis of MR images.

In this dissertation, I propose segmentation methods that fall into two classes—(a) segmenta-

tion via optimization of a parametric boundary, and (b) segmentation via multistep, spatially

constrained intensity classification. These two approaches are applicable in different segmen-

tation scenarios. Parametric boundary segmentation is useful and necessary for segmentation

of noisy images where the tissue of interest has predictable shape but poor boundary delin-

eation, as in the case of lung with heavy or diffuse tumor. Spatially constrained intensity

xi



classification is appropriate for segmentation of noisy images with moderate contrast be-

tween tissue regions, where the areas of interest have unpredictable shapes, as is the case in

spinal injury and brain tumor. The proposed automated segmentation techniques address

the need for MR image analysis in three specific applications: (1) preclinical rodent studies

of primary and metastatic lung cancer (approach (a)), (2) preclinical rodent studies of spinal

cord lesion (approach (b)), and (3) postclinical analysis of human brain cancer (approach

(b)).

In preclinical rodent studies of primary and metastatic lung cancer, respiratory-gated MRI is

used to quantitatively measure lung-tumor burden and monitor the time-course progression

of individual tumors. I validate a method for measuring tumor burden based upon average

lung-image intensity. The method requires accurate lung segmentation; toward this end,

I propose an automated lung segmentation method that works for varying tumor burden

levels. The method includes development of a novel, two-dimensional parametric model of

the mouse lungs and a multifaceted cost function to optimally fit the model parameters to

each image. Results demonstrate a strong correlation (0.93), comparable with that of fully

manual expert segmentation, between the automated method’s tumor-burden metric and

the tumor burden measured by lung weight.

In preclinical rodent studies of spinal cord lesion, MRI is used to quantify tissues in con-

trol and injured mouse spinal cords. For this application, I propose a novel, multistep,

multidimensional approach, utilizing the Classification Expectation Maximization (CEM)

algorithm, for automatic segmentation of spinal cord tissues. In contrast to previous meth-

ods, my proposed method incorporates prior knowledge of cord geometry and the distinct

information contained in the different MR images gathered. Unlike previous approaches, the

algorithm is shown to remain accurate for whole spinal cord, white matter, and hemorrhage

xii



segmentation, even in the presence of significant injury. The results of the method are shown

to be on par with expert manual segmentation.

In postclinical analysis of human brain cancer, access to large collections of MRI data enables

scientifically rigorous study of cancers like glioblastoma multiforme, the most common form

of malignant primary brain tumor. For this application, I propose an efficient and effective

automated segmentation method, the Enhanced Classification Expectation Maximization

(ECEM) algorithm. The ECEM algorithm is novel in that it introduces spatial information

directly into the classical CEM algorithm, which is otherwise spatially unaware, with low

additional computational complexity. I compare the ECEM’s performance on simulated data

to the standard finite Gaussian mixture EM algorithm, which is not spatially aware, and to

the hidden-Markov random field EM algorithm, a commonly-used spatially aware automated

segmentation method for MR brain images. I also show sample results demonstrating the

ECEM algorithm’s ability to segment MR images of glioblastoma.
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Chapter 1

Introduction

“Without the aid of statistics nothing like real medicine is possible.”
(Pierre Charles Alexandre Louis, 1837 [38])

Magnetic Resonance Imaging (MRI) is a key medical imaging technology. Through in vivo

soft tissue imaging, MRI allows clinicians and researchers to make diagnoses and evaluations

that were previously possible only through biopsy or autopsy. Moreover, the high-quality

scans produced by MRI have the potential to provide crucial new insights into complex

biological processes. Therefore, a critical research challenge faced in a wide number of

medical applications is to correctly and reliably interpret MR image data. By addressing

this challenge via precise characterization and quantification of soft tissue, clinicians and

researchers will be able to make decisions based on statistically sound measurement, rather

than subjective interpretation.

1.1 MR Imaging

MRI has gained widespread use in medicine because of its ability to image tissue without

radiation, unlike imaging technologies like computed tomography (CT) or positron emis-

sion tomography (PET). Instead, MRI works by measuring the response of tissue to radio

frequency (RF) pulse sequences in the presence of a strong, uniform magnetic field. Its im-

portance was underscored by the 2003 Nobel Prize in Physiology and Medicine awarded to

Paul Lauterbur and Sir Peter Mansfield for their pioneering work in the field of MRI.

1



An MRI scan typically produces a series of 2D image ‘slices,’ which together form a 3D

image. Each 2D slice has depth in addition to width and height; therefore, each 2D image

is composed of voxels that correspond to 3D volumes within the imaged region. The image

intensity at each voxel gives the magnitude of the corresponding tissue volume’s response to

the RF pulse sequence. By varying the pulse sequence or adding contrast agents, different MR

images can be acquired. For instance, two basic MRI scans are T1- and T2-weighted scans,

which record the longitudinal and transverse relaxation times of tissue voxels, respectively.

Numerous other specialized MRI scans exist.

The various MRI scanning methods can be used to differentiate tissues based on their

structural and molecular properties. For instance, diffusion weighted imaging (DWI) cap-

tures information about the diffusion characteristics of tissues—e.g., white matter is highly

anisotropic in its diffusivity, while gray matter is more or less isotropic, which translates to

a difference in DW image intensity between the two tissue types. Thus, in some directions,

white matter is bright, in others dark, while gray matter has a medium intensity in all direc-

tions. The various MRI scans can each differentiate with greater or lesser contrast between

different tissues. Frequently, several MRI scans are used during a single scanning session to

produce multiple ‘channels’ of data, all corresponding to the same imaged region.

MRI technology continues to develop, as does its range of medical applications. Advances in

MR imaging include the development of new contrast agents that selectively target specific

tissue types, new pulse sequences that better differentiate tissues of interest, and the use

of stronger magnetic fields to increase signal to noise ration and image resolution. These

factors have given clinicians and researchers an unparalleled wealth of data. However, the

sheer quantity and complexity of MR data makes interpretation difficult.

Analysis of MR images by domain experts can be time-consuming, complex, and subject

to bias. A common first step for analysis is the segmentation of regions of interest for

quantification and characterization. However, the information necessary to segment a region

of interest may be masked by noise or spread among several different channels. Multiple

channels present an especially difficult challenge for a manual segmenter. It is difficult for a

manual segmenter to jointly consider even two different channels of data, let alone data that

may contain numerous channels. In an attempt to simplify the data for manual segmentation,

various computed maps have been developed that aggregate multi-channel data into a single

2



image. However, by its very nature this transformation is lossy, i.e., information is discarded.

The development of automatic segmentation techniques that make use of robust statistical

methods is necessary, not only to save the time and effort currently needed for manual

segmentation, but also to overcome the problems of noisy, multichannel data and allow for

the fast and unbiased analysis of MR images.

1.2 Contributions

In this dissertation, I propose segmentation methods that fall into two classes—(a) segmenta-

tion via optimization of a parametric boundary, and (b) segmentation via multistep, spatially

constrained intensity classification. These two approaches are applicable in different segmen-

tation scenarios. Parametric boundary segmentation is useful and necessary for segmentation

of noisy images where the tissue of interest has predictable shape but poor boundary delin-

eation, as in the case of lung with heavy or diffuse tumor. Spatially constrained intensity

classification is appropriate for segmentation of noisy images with moderate contrast be-

tween tissue regions, where the areas of interest have unpredictable shapes, as is the case in

spinal injury and brain tumor. The proposed automated segmentation techniques address

the need for MR image analysis in three specific applications: (1) preclinical rodent studies

of primary and metastatic lung cancer (approach (a)), (2) preclinical rodent studies of spinal

cord lesion (approach (b)), and (3) postclinical analysis of human brain cancer (approach

(b)).

In preclinical rodent studies of primary and metastatic lung cancer, respiratory-gated MRI is

used to quantitatively measure lung-tumor burden and monitor the time-course progression

of individual tumors. In Chapter 2, I validate a method for measuring tumor burden based

upon average lung-image intensity. The method requires accurate lung segmentation; to-

ward this end, I propose an automated method that accurately segments lungs with varying

tumor burden levels. This proposed segmentation method includes development of a novel,

two-dimensional parametric model of the mouse lungs and a multifaceted cost function to

optimally fit the model parameters to each image. This chapter was previously published in

a peer-reviewed journal—minor changes have been made to the published version.
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In preclinical rodent studies of spinal cord lesion, MRI is used to quantify tissues in control

and injured mouse spinal cords. In Chapter 3, I propose a novel, multistep, multidimensional

approach, utilizing the Classification Expectation Maximization (CEM) algorithm, for auto-

matic segmentation of spinal cord tissues. While methods have previously been proposed for

whole spinal cord and white matter segmentation of uninjured cords, the proposed algorithm

quickly and accurately generates whole spinal cord, white matter, and also hemorrhage seg-

mentations, even in the presence of significant injury. In contrast to previous methods, my

proposed method incorporates prior knowledge of cord geometry and the distinct information

contained in the different MR images gathered. This chapter was previously published in a

peer-reviewed journal—no substantive changes have been made from the published version.

In postclinical analysis of human brain cancer, access to large collections of MRI data enables

scientifically rigorous study of cancers like glioblastoma multiforme, the most common form

of malignant primary brain tumor. In Chapter 4, I expand upon the method in Chapter 3

with the development of the Enhanced CEM (ECEM) algorithm. My proposed ECEM algo-

rithm incorporates spatial information directly into the CEM framework, which is otherwise

spatially unaware, with minimal additional computational complexity, allowing efficient and

effective automated segmentation of large data collections.
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Chapter 2

Quantitative Analysis of Tumor

Burden in Mouse Lung via MRI

This chapter was previously published in Magnetic Resonance in Medicine:

V. K. Tidwell, J. R. Garbow, A. S. Krupnick, J. A. Engelbach, and A. Nehorai. Quantitative

analysis of tumor burden in mouse lung via MRI. Magnetic Resonance in Medicine, 67:572–

579, 2012.

Minor changes have been made since publication, including the addition of Section 2.4.

The proposed methodology was also published in Nature Protocols :

A. S. Krupnick / V. K. Tidwell, J. A. Engelbach, V. V. Alli, A. Nehorai, M. You, H. G.

Vikis, A. E. Gelman, D. Kreisel, J. R. Garbow. Quantitative monitoring of murine lung

tumors by magnetic resonance imaging. Nature Protocols, 7:128–142, 2012.

I designed, implemented, and tested the parametric lung model and the automatic segmenta-

tion algorithm. A.S.K., J.R.G., and I designed the imaging experiments, performed the data

analysis, and wrote the manuscript; J.A.E. collected all the MR images; A.E.G. and D.K.

helped with experimental design; A.N. helped with data analysis; V.V.A. provided technical

support; M.Y. and H.G.V. provided lung tumor-bearing animals and were instrumental in

initial efforts to use MRI for monitoring primary mouse lung tumors.
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Lung cancer is the leading cause of cancer death in the United States. Despite recent

advances in screening protocols, the majority of patients still present with advanced or dis-

seminated disease. Preclinical rodent models provide a unique opportunity to test novel

therapeutic drugs for targeting lung cancer. Respiratory-gated MRI is a key tool for quanti-

tatively measuring lung-tumor burden and monitoring the time-course progression of individ-

ual tumors in mouse models of primary and metastatic lung cancer. However, quantitative

analysis of lung-tumor burden in mice by MRI presents significant challenges. Herein, a

method for measuring tumor burden based upon average lung-image intensity is described

and validated. The method requires accurate lung segmentation; its efficiency and through-

put would be greatly aided by the ability to automatically segment the lungs. A technique

for automated lung segmentation in the presence of varying tumor burden levels is presented.

The method includes development of a new, two-dimensional parametric model of the mouse

lungs and a multi-faceted cost function to optimally fit the model parameters to each image.

Results demonstrate a strong correlation (0.93), comparable with that of fully manual expert

segmentation, between the automated method’s tumor-burden metric and the tumor burden

measured by lung weight.

2.1 Introduction

Lung cancer is the leading cause of cancer death in the United States [45]. In 2006, the

most recent year for which statistics are available, nearly 200,000 men and women were

diagnosed with lung cancer, and almost 160,000 people died from the disease [59]. Despite

recent advances in screening protocols, the majority of patients still present with advanced

or disseminated disease [57]. While early detection might offer the potential to improve

patient survival, the lack of adequate adjuvant therapy after surgical resection hampers

long-term survival [25]. Preclinical rodent models provide a unique opportunity to test novel

therapeutic drugs to target lung cancer.

The ability to noninvasively record patterns of lung-tumor growth and response to therapy in

situ, rather than in orthotopically implanted flank tumors, would greatly enhance the utility

of small-animal models of lung pathology. This is especially true in light of recent demonstra-

tions that subcutaneous malignancies may undergo progressive growth and regression after
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the development of an anti-tumor immune response [6]. A major limitation in the study of

murine thoracic tumors, and a potential reason for the paucity of such studies, is the diffi-

culty in the detection and serial growth analysis of malignant and premalignant lung lesions.

Unlike injected flank tumors or primary subcutaneous malignancies, which can be palpated

and whose growth can be measured with calipers, the ability to monitor tumor growth or

response to therapy in lung is limited [12, 7, 42, 22, 18, 63, 50, 23]. Serial measurement of

lung tumors requires in vivo imaging. While high-resolution microCT is a valuable imaging

modality for studying murine lung [33], the scan itself delivers a significant dose of radiation,

which can markedly affect tumor growth and tumor immune response. In many studies,

small-animal MRI, which employs only non-ionizing radiation, is the imaging modality of

choice for characterizing lung-tumor growth and therapeutic response [20]. Recently, we

have demonstrated the use of respiratory-gated MRI to quantitatively measure lung-tumor

burden and to monitor the time-course progression of individual tumors in mouse models of

primary and metastatic lung cancer [7, 22, 23].

Analysis of tumor burden, particularly for heavy or diffuse tumor, by MRI presents sig-

nificant challenges beyond those associated with data collection. In our previous stud-

ies [7, 22, 23], we visually identified individual tumors or groups of tumors (bright signal

against the background of dark lung), encircled these tumors with appropriate regions of

interest, and measured the corresponding volumes of the identified regions. While time con-

suming, this approach works well for well-defined tumor masses (Fig. 2.1.b) and the volumes

so-derived correlate well with tumor volumes measured histologically. However, this type of

process is impractical for diffuse metastatic disease that results in the replacement of the

majority of lung parenchyma with tumor (Fig. 2.1.c). Instead, taking advantage of the large

difference in MR image intensity between tumor and healthy lung parenchyma, we propose

average lung-image intensity as a quantitative measure of tumor burden. (A related metric,

the hyperintense-to-total lung volume (HTLV) ratio, has been used to quantify inflamma-

tion in an inflammation-mediated lung injury mouse model [54]). Herein, we describe the

implementation and validation of such an approach, in which tumor burden, derived from

MR lung-image intensity, is correlated with lung mass, which has recently been used as a

quantitative measure of tumor in mice [19].
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Figure 2.1: Example MRI slices for (a) control mouse with no visible lung tumor, (b) mouse

with several discrete lung tumors, and (c) mouse with diffuse metastatic tumor.

A key to the success of our approach for measuring tumor burden is the ability to accurately

and reproducibly segment the lungs across the many slices of a 2D multi-slice image. In our

0.5 mm-thick, coronal-slice images, lungs are often represented in 15-20 total slices. As with

drawing regions of interest around individual tumors, the manual segmentation of lungs can

be slow and time-consuming. The efficiency and throughput of the analysis would be greatly

aided by the ability to automatically segment the lungs.

A variety of algorithms for automated and semi-automated tissue segmentation have previ-

ously been developed for and applied to lung MR images [49, 44, 36, 37, 4, 53], though none

have been applied to the segmentation of lung in the presence of either heavy tumor burden

or diffuse tumor. These methods generally rely on the high contrast between healthy lung

tissue, which has very low intensity in MR images, and surrounding tissue. Due to the strong

intensity gradients at the lung boundary, active contours have been applied successfully in

healthy lungs [49, 44]. Threshold-based methods have also been developed [53]. However,

these methods are not appropriate for segmentation of lungs with diffuse tumor (Fig. 2.1.c),

as the intensity characteristics upon which they rely may not be valid in such images. For

example, lung edges may be weak or undetectable, as in the upper-right quadrant of the

lung in Figure 2.1.c. Motion artifacts and partial volume effects can lead to elevated inten-

sity levels in voxels within the lungs, contributing an additional source of potential error for

threshold-based methods.
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Model-based lung segmentation methods have also been proposed [36, 37]. However, the

method proposed is suitable only for coarse segmentation of a collection of objects, rather

than locally accurate segmentation of a single object, as in our study. Finally, atlas-based

3D segmentation methods have been developed [31, 35]; however, such methods assume that

the image area to be segmented is very similar to the atlas, and can be aligned with the

atlas through a series of registration steps, which may not be the case for tumor-filled lung.

For lungs with diffuse tumor (Fig. 2.1.c), new segmentation methods are required.

To address the challenges of lung segmentation in the presence of varying tumor burden,

we developed a new, two-dimensional parametric model of the mouse lungs. The model

preserves the overall shape of the lungs, avoiding the inclusion or exclusion of large sections

of lung that might occur with non-parametric, threshold-based approaches or edge-detection

methods. The parameters of this model are iteratively fit to each MRI slice by utilizing

optimization of a multi-faceted cost function. This cost function is novel in that it is evaluated

as a function of the intensity distributions both inside and outside the parametric model.

While specifically developed and tested in mouse lung, we expect that this new algorithm

will have broad application to a variety of segmentation problems.

The dual goals of this chapter are to: 1) validate average lung-image intensity as a quan-

titative measure of lung-tumor burden and 2) develop and validate a new algorithm for

automated lung segmentation. MRI measurements of lung-tumor burden are validated by

correlating lung-image intensities with corresponding lung weights, while the results of au-

tomated segmentation are validated by direct comparison with manual image segmentations

performed by a series of four experts. Excellent congruence is observed between lung volumes

derived from the automated and manual lung segmentations, and average image intensities

derived from these segmentations correlate well with measured lung weights.

In Section 2.2, we introduce the proposed parametric lung model and segmentation algo-

rithm. In Section 2.3, we present both manual and automatic MRI-based tumor-burden

estimation results. In Section 2.4, we discuss the convergence behavior of the proposed

segmentation algorithm.
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2.2 Materials and Methods

2.2.1 MRI

All studies were performed in accordance with the guidelines of the Washington University

Animal Studies Committee and in accordance with protocols approved by the Washington

University Division of Comparative Medicine that met or exceeded American Association

for the Accreditation of Laboratory Animal Care standards. Respiratory-gated, spin-echo

MR images of mice were collected with a small-animal MR scanner based on an Oxford

Instruments (Oxford, UK) 4.7 tesla, 40-cm bore magnet. The magnet is equipped with

Agilent/Magnex Scientific (Yarnton, UK) actively shielded, high-performance (21 cm inner

diameter, ∼30 G/cm, ∼200 µs rise-time) gradient coils and International Electric Company

(Helsinki, Finland) gradient power amplifiers and is interfaced with an Agilent/Varian NMR

Systems (Santa Clara, CA) DirectDriveTM console. All data were collected using a Stark

Contrast (Erlangen, Germany) 2.5 cm birdcage-style rf coil. Prior to the imaging experi-

ments, mice were anesthetized with isoflurane and were maintained on isoflurane/O2 (1-1.25

% v/v) throughout data collection. Animal core-body temperature was maintained at 37

± 1 ◦C by circulation of warm air through the bore of the magnet. During the imaging

experiments, the respiration rates for all mice were regular and ∼2 sec−1. Synchronization

of MR data collection with animal respiration was achieved with a home-built respiratory-

gating unit [21] and all images were collected during post-expiratory periods. Twenty-four

contiguous coronal slices, ventral to dorsal, were collected for each mouse. Imaging param-

eters were TR ∼3 s, TE = 20 ms, FOV 2.5 cm × 2.5 cm2, slice thickness = 0.5 mm, 128 ×
128 data matrix, 4 averages. These scan parameters were chosen to maximize the contrast

between healthy lung tissue and tumor.

2.2.2 Algorithm Development

Our algorithm for lung segmentation is based upon a 2D parametric lung-shape model. A

2D model was chosen over 3D modeling because (1) our data are composed of 2D MRI slices,

and (2) the number of parameters to jointly optimize is fewer than in a 3D model, without
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loss of fidelity. Simpler models, i.e., models with fewer parameters, are both more robust

and are more efficiently optimized.

To fit our proposed parametric model to each torso slice, we propose an objective function,

described in detail below, with which we can find locally optimal parameter values using the

Nelder-Mead simplex method [46]. The Nelder-Mead simplex method is appropriate here

because is it an unconstrained, non-linear optimization method for objective functions in

high-dimensional spaces.

This section is organized as follows. First, we introduce our proposed parametric lung model.

Next, we describe how our algorithm is initialized. Finally, we introduce our objective

function and its components.

Parametric Model We introduce a lung model composed of four curves – parabolic seg-

ments AC and CB, and mixed parabolic segments AD and DB, shown in Figure 2.2.a.

These curves are defined by their endpoints and by 6 curvature parameters – aAC, aCB, aAD,1,

aAD,2, aDB,1, and aDB,2. The equation for any parabolic segment JK with curvature parameter

aJK and endpoints (xJ , yJ) and (xK, yK), with xJ < xK, is

JK = {(x, y)|y = aJKx
2 + bJKx+ cJK, xJ ≤ x ≤ xK}, (2.1)

where parameters bJK and cJK are defined by

bJK =
yK − yJ − aJK(x2K − x2J)

xK − xJ

(2.2)

cJK =yJ − bJKxJ − aJKx
2
J . (2.3)

The mixed parabolic segments are weighted sums of two such parabolic segments. For

example, AD is defined as

AD = {(x, y)|y =
x− xA

xD − xA

(aAD,1x
2 + bAD,1x+ cAD,1)+(

1− x− xA

xD − xA

)
(aAD,2x

2 + bAD,2x+ cAD,2), xA ≤ x ≤ xD}. (2.4)
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Because the center line of the lungs is also the approximate symmetry line of the overall lung

shape, we reduce the number of parameters by setting xD = xC.

Figure 2.2: Illustration of fitted parametric model: (a) threshold-based segmentation of

mouse lung slice from Figure 2.1.a; (b) parabolic segments AC, CB, AD, and DB; (c) mask

defined by two vertical bounds at xL and xR and a parabola centered between the two bounds

at yT ; and (d) rotation parameter φ.

To allow for a tighter fit over all images, we also impose a mask (Fig. 2.2.b), with edges

defined by two vertical bounds, at xL and xR, and a parabola with curvature parameter aLR,

centered at (xC, yT ). Only pixels that lie within both the lung model and this mask are

classified as lung. In addition, we include a rotation parameter φ, shown in Figure 2.2.c,

which allows for variation in mouse position within the imaging FOV. Due to contraints on

how the mouse can be placed within the scanner, for our data the rotation parameter varies

roughly between -10° and +10°. Thus, the full set of parameters defining the lung shape, θ,

is defined as

θ = {xA, yA, xB, yB, xC, yC, yD, aAC, aCB, aAD,1, aAD,2, aDB,1, aDB,2, xL, xR, aLR, yT , φ} (2.5)

Initialization We manually initialize our algorithm with a rough segmentation of one

interior MRI slice. We fit our model parameters to the manual segmentation using the

simplex optimization method, maximizing the overlap of the manual segmentation, Sman,

and the parametric segmentation, S(θ).

Overlap (Sman, S(θ)) =
|Sman ∩ S(θ)|
|Sman ∪ S(θ)|

(2.6)
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The parameters are propagated forward and backward from the chosen starting slice and

used as initializations for the adjacent slices. Using the simplex method, we fit the model

parameters to the new slices by minimizing an objective function, which is discussed be-

low. The optimized parameters are then propagated to the next adjacent slices, until the

segmentation is complete.

Objective Function To fit our model parameters to the current slice, we minimize an

objective function, O(θ), that is a sum of several ‘goodness of fit’ metrics: an intensity-

weighted overlap metric, Oweight; the Manhattan distance between the interior and exterior

voxel distributions, Odistribution; a measure of the magnitude and direction of changes in

parameter values from the adjacent slice to the current slice, Ochange; and the symmetry and

concavity of the model given the current parameter values, Oshape. We define O(θ) as

O(θ) = Oweight(θ) +Odistribution(θ) +
∑
n

Ochange(θn) +
∑
m

Oshape(θm), (2.7)

where Oweight and Odistribution take values between zero and one, and Ochange and Oshape take

values greater than or equal to zero.

Oweight We want to reward inclusion and exclusion of voxels based on the likelihood that

the intensities came from lung or non-lung, given the manual initialization. To this end, we

first construct a new image with intensity W.

Let I(x, y) be the image intensity at voxel (x, y) of the current slice, as in Figure 2.3.a.

We fit a cubic polynomial p, shown in Figure 2.3.b, to the difference in histograms of the

manually-segmented lung and non-lung.

W(x, y) =

p(I(x, y)) if |p(I(x, y))| > 0.2

0 else
(2.8)

In this new image W, as in Figure 2.3.c, most positive areas should be within the lung

segmentation, while most negative areas should be outside the segmentation.
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Figure 2.3: Illustration of the construction of weight image W: (a) example original image

I; (b) graph of the difference between the histogram of manually-segmented lung and that

of non-lung, along with the fitted cubic polynomial p; and (c) the new weight image W.

Let θ be the current set of parameter values, Min(θ) the set of voxels within the current

parametric lung segmentation and Mout(θ) the set outside the segmentation. Note that

Mout(θ) does not include ‘background,’ voxels outside the body of the mouse, which are

removed as a preprocessing step. We define Oweight(θ) as

Oweight(θ) =0.75

(
1−

∑
(x,y)∈Min(θ)

W+(x, y)∑
all (x,y) W+(x, y)

)

+0.25

(
1−

∑
(x,y)∈Mout(θ)

W−(x, y)∑
all (x,y) W−(x, y)

)
, (2.9)

where we define W+ and W− as

W+(x, y) =

W(x, y) ∀ (x, y) : W(x, y) > 0

0 else
(2.10)

W−(x, y) =

W(x, y) ∀ (x, y) : W(x, y) < 0

0 else
. (2.11)
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Thus, Oweight(θ) is zero when all positive voxels in W lie within the parametric segmentation

and all negative voxels lie outside the segmentation. Note that the weightings for the two

components of Oweight(θ) in (2.9) are unequal. The first component rewards inclusion within

the lung segmentation of voxels with ‘lung-like’ intensities. The second rewards exclusion

from the segmentation of voxels with ‘non-lung’ intensities. The first component is weighted

more heavily because, due to noise and partial-volume effects, it is expected that some voxels

within the lungs will have ‘non-lung’ intensities, while extra-lung tissues are, in general, less

likely to resemble lung tissue. However, the final segmentation is relatively insensitive to the

choice of these weightings - comparison of segmentations found using the 0.75/0.25 weightings

and equal 0.5/0.5 weightings had an average overlap of 94%.

Odistribution Because our approach is based on differing intensity distributions inside and

outside the lung, we also directly compute this difference in distributions, rewarding large

differences. We define Odistribution(θ) as

Odistribution(θ) = 1− 0.5
N∑
n=1

|hout(θ)− hin(θ)|, (2.12)

where hin(θ) is a normalized histogram of the voxel intensities in Min(θ), and hout(θ) is a

normalized histogram of the voxel intensities in Mout(θ). Hence, Odistribution(θ) is equal to

one when the histograms inside and outside the parametric segmentation match exactly, and

its value decreases to a minimum of zero as the difference between the histograms increases.

Ochange Since adjacent lung slices must form a continuous 3D lung surface, we penalize

parameters with large changes from one slice to the next. For each parameter θn, with value

θn,0 in the adjacent slice, we define Ochange(θn) as

Ochange(θn) =

0 if |θn − θn,0| < c

|θn − θn,0| else
(2.13)

where c is a threshold on the magnitude of the parameter change from one slice to the next.
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To enforce proper relative size of slices, we include an additional term in Ochange(yC) and

Ochange(yD) that penalizes expansion of the lungs as the algorithm progresses toward the

back and contraction of the lungs as it progresses toward the chest. For example, we define

Ochange(yC) as

Ochange(yC) =

0 if |yC − yC,0| < c

|yC − yC,0| else
+

0 if yC < yC,0

yC − yC,0 else.
(2.14)

Oshape In general, the boundary of the lungs is roughly left/right symmetric, so we penalize

large asymmetries in the fitted lung shape. For each of the three pairs of curvature parameters

ai and aj, where aj is the corresponding value for ai from the opposite side of the lung, we

define Oshape,sym(ai, aj) as

Oshape,sym(ai, aj) =

0 if |ai − aj| < c

|ai − aj| else
(2.15)

where c is a threshold on the asymmetry of the segmentation. Similarly, each curvature

parameter contributes a term Oshape,conc that penalizes convexity of the lung curves.

2.2.3 Pathology

Two tumor cell lines, B16 murine malignant melanoma from the ATCC (Manassas, VA) and

WT9614 3-methylchlantherene fibrosarcoma (kindly provided by Robert Schreiber, Washing-

ton University in St. Louis), were injected intravenously into age matched C57Bl6 male mice

at 2.5x105 cells per animal. These animals were sacrificed, along with age- and sex-matched,

saline-injected control mice, at various points after tumor injection ranging from 10 days to

three weeks. Upon sacrifice, the lung block was removed through a sternotomy and trimmed

free of the mediastinal tissue, leaving only lung parenchyma and airways attached. The

tumor bearing lung block was weighed (Series 320 XT Analytical balance, Precisa, Golden

CO) and the total tumor burden calculated by subtracting the weight of non-tumor bearing

control lungs from that of the tumor bearing lungs.
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2.2.4 Evaluation Criteria

To validate the performance of our segmentation method, we first show that our automatic

lung segmentation is comparable to that of expert human segmenters. We then show that

the average intensities of the segmented lungs in both the automatic and manual segmenter

cases correlate well with the tumor burden measured using lung weight. All validation studies

were conducted using only data sets that were not used for algorithm development.

Manual segmentations of the lungs were generated independently by four experts for 6 of

the 27 imaged mice. These mice were selected in an unbiased manner so as to cover, as

uniformly as possible, the full spectrum of tumor burdens present in the data.

To compare segmentations from two different segmenters, we use the following overlap metric:

Overlap(A,B) =
A ∩B

A ∪B
, (2.16)

where A and B are the two sets of voxels designated as lung by the two segmenters. This

metric is useful in this case because we do not have a ground truth segmentation and,

therefore, cannot use a metric like percent error.

2.3 Results

In this chapter, we present a method for accurate and reproducible lung segmentation in

mice with heavy and/or diffuse tumor (Fig. 2.4). This method allows nearly fully automatic

measurement of tumor burden in the lungs. Table 2.1 shows the average overlap between

each pair of independently drawn manual segmentations. Table 2.2 shows the total average

overlap of our automatic segmentation results with each of the manual segmenters. In all the

results, the initializations for the automatic segmentation were generated by an additional

segmenter, independently from the expert segmentations. As can be seen from the tables,

there is generally good agreement amongst the results for human segmenters, as well as

between the human segmenters and the automatic result, in terms of which areas in the MR

images are classified as lung.
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Figure 2.4: Three example MRI slices with results from the automatic MRI tissue segmen-

tation method outlined in red.

Table 2.1: Average Percent Overlap between the Four Manual MRI Tissue Segmentations

Expert A B C D

A 100 84.70± 6.34 74.39± 9.66 79.33± 7.69

B 100 76.30± 8.03 82.52± 7.56

C 100 75.61± 8.44

D 100

Values are given as the mean ± standard deviation

Table 2.2: Average Percent Overlap between the Automatic MRI Tissue Segmentation and

the Four Manual Segmentations

Expert A B C D

76.03± 3.72 78.72± 2.61 68.87± 8.68 71.97± 7.69

Values are given as the mean ± standard deviation

Because the goal is to quantify tumor via image intensity, a fairer metric of the correspon-

dence between two segmentations may be derived by comparing the average image intensities

within the two segmentations. Table 2.3 shows the average percent difference in intensity

between each pair of independently drawn manual segmentations. Table 2.4 shows the total
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percent difference in intensity between our automatic segmentation results and each of the

manual segmenters. As these tables show, there is good agreement in the average image

intensities derived from the expert manual segmenters and the automatic result.

Table 2.3: Average Percent Difference in Intensity between the Four Manual MRI Tissue

Segmentations

Expert A B C D

A 0 5.06± 6.46 19.24± 15.49 8.34± 5.76

B 0 14.86± 10.67 9.38± 6.78

C 0 16.34± 10.54

D 0

Values are given as the mean ± standard deviation

Table 2.4: Average Percent Difference in Intensity between the Automatic MRI Tissue Seg-

mentation and the Four Manual Segmentations

Expert A B C D

12.96± 11.29 10.69± 9.32 20.77± 10.15 16.29± 14.53

Values are given as the mean ± standard deviation

The key validation of our method is the correlation between total tumor burden measured by

lung weight and the average intensities of the manual and automatic results. Table 2.5 shows

the correlation of each segmenter’s computed average intensities with the lung weights of the

six mice. Outlier intensities were present both in the full set of mice and in the subset of 6

manually segmented mice. We noted that in these outlier images, the overall intensity of the

images for a particular animal was either darker or brighter than the average image in the set.

To correct for this variation, lung-image intensities were normalized based upon the image

intensity of the liver with the same mouse. The liver intensity was calculated by manual

selection of a region of interest (ROI) containing only liver. Outlier voxels, which may be

due to liver tumor or liver vasculature, with intensities beyond one standard deviation from

the mean intensity, were automatically discarded prior to computing the average intensity

within the ROI. Table 2.6 shows corrected correlations, in which the same normalizing liver
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intensities were used for each segmenter’s average intensities. The results shown in these

tables demonstrate an excellent correlation between these corrected lung intensities and

tumor burden, as measured by lung weight. The correlation between the corrected average

intensities found by the automatic method and the lung weights for the complete set of 27

mice was 0.93 (Fig. 2.5.a). Bland-Altman analysis of the lung weight and the automated

corrected average intensities shows that the limits of agreement are 0.3mg ± 168.9 (defined

as the bias ± 1.96 times the standard deviation of the difference). A plot of this analysis is

shown in Figure 2.5.b.
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Figure 2.5: (a) Plot of corrected average intensity versus tumor burden for the automatic

MRI tissue segmentation method, with the least squares linear fit (R2 = 0.86) shown. For

each mouse, lung-image intensities were normalized based upon the corresponding liver-

image intensity for that mouse. (b) Bland-Altman plot for the same data, where average

intensity has been converted into mg tumor following the least squares linear regression in

(a).
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Table 2.5: Correlation between Average Intensities and Lung Weights

Automatic Expert A Expert B Expert C Expert D

0.765 0.776 0.766 0.749 0.741

Table 2.6: Correlation between Corrected Average Intensities and Lung Weights

Automatic Expert A Expert B Expert C Expert D

0.955 0.965 0.962 0.932 0.943

In summary, Table 2.2 demonstrates the excellent congruence between our automated lung

segmentations and those generated manually by a panel of four experts in a series of six

mice. As reported in this table, the percent overlap of lung pixels amongst automated and

manual segmentations ranges from 72.0 to 78.7%, compared to a range of 79.3 to 84.7%

between manual segmentations. The identification of tumor in lung is dependent upon the

relatively bright image intensity of tumor compared with healthy lung tissue. As shown

in Table 2.4, differences in average lung-image intensity between automated and manual

segmentations in these same mice are relatively small, ranging from 10.7 to 16.3% across the

panel of segmenters. Finally, the correlation between average lung image intensity generated

by automated lung segmentation and measured lung weight is greater than 0.93 (Fig. 2.5.a),

which corresponds to a coefficient of determination greater than 86%, demonstrating clearly

that average lung image intensity provides a useful measure of tumor burden in lung with

diffuse or heavy tumor burden.

2.4 Discussion

2.4.1 Segmentation Convergence

Despite the large number of parameters to be optimized, 18 per slice, and the non-convexity

of the optimization formulation, the proposed algorithm converges to an accurate full lung
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segmentation very reliably, with little sensitivity to the manual initialization. This low

initialization sensitivity is primarily due to the fact that small changes in initial segmentation

result in very small changes in the intra-lung and extra-lung voxel intensity distributions.

Conversely, the segmentation algorithm is somewhat sensitive the the symmetry axis of the

manual segmentation. The versatility of the mouse-lung model proposed herein allows for

a tight fit of the parametric model to a manual segmentation even with a relatively large

error in the rotation parameter φ. However, if φ differs sufficiently from the angle of the

true symmetry axis, as the segmentation progresses beyond the initial slice, the segmenta-

tion will continuously degrade. This degradation occurs because the asymmetry penalty is

predisposing the optimized parameters to symmetry along an incorrect axis. Thus, given a

sufficiently poor initialization, moving from the initial slice toward the mouse’s chest and

back, the segmentations will generally become less and less accurate.

In theory, any slice can be used for the manual initialization. In practice, the best results are

obtained when initializing with a slice from the center of the mouse. There are two reasons

for this. First, using a central mouse slice minimizes the physical distance that the automatic

segmentation algorithm moves away from the manual segmentation. Second, slices at the

extremes of the lung (far into the chest or the back) exhibit shape characteristics that make

them poor choices for initialization. For instance, near the chest of the mouse, the two curves

forming the upper lung boundary blend into a single curve, as seen in Figure 2.4. Accurate

segmentation of these MR slices can be achieved by adjustment to the curvature parameters

of AD and DB or via the additional mask, by adjusting aLR and yT . Therefore, only one of

these two parameter sets must have a ‘good’ value for the parametric segmentation to match

the initializing manual segmentation well. Given the likelihood of ‘bad’ initial values for

the other parameter set, manual initialization using such a slice is unlikely to yield accurate

segmentations.

2.4.2 Impact

In Section 2.3, we showed that the results of the proposed automatic segmentation algorithm

are on par with expert manual segmentation. Given the reliability of the automatic results,

two benefits are apparent. First, the automatic method can be used in place of manual
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segmentation in order to reduce the time and effort currently spent by experts on manual

segmentation. Second, the results from the automatic segmentation method can be used to

generate a calibration curve with which the MR image intensity metric for tumor burden

can be converted into an absolute measure of tumor burden, e.g., mg of tumor. This second

point is important because, as shown in Tables 2.6 and 2.3, the expert segmentation-derived

tumor burdens each correlated well with the tumor weight, but they were inconsistent with

each other. Because of this, it would not be advisable to use one expert’s results to generate

a calibration curve, and then use that curve to convert a second expert’s results from average

intensity to mg tumor. Having an automatic method removes the difficulty of requiring one

expert to segment all the MR images.

2.5 Conclusion

The use of mouse models to aid in the development and monitoring of new therapies for

lung cancer requires the ability to accurately measure lung tumor burden in vivo. In this

chapter, we have demonstrated that corrected average MR image intensity in mouse lung

is an accurate metric of total tumor burden. The tumor measurements were validated by

correlating MR image intensities with the weight of the excised lungs. By measuring average

MR lung intensity, tumor burden can be estimated in vivo, even in cases of diffuse disease

where individual tumors cannot be segmented from the MR images. Thus, relative measures

of tumor burden for a single animal can be established simply by comparing average lung

intensities from images collected at different time points. As described herein, absolute

tumor burden measures can also be determined following establishment of a calibration

curve between MR image intensities and lung weights. Because this average image intensity

approach requires accurate lung segmentation, efficiency and throughput of analysis would

be greatly improved through use of an automated segmentation routine.

We have described a novel method for automated segmentation and analysis of the MR

images of murine lungs and pulmonary tumors. We have developed a new, two-dimensional

parametric model for mouse lung that accurately preserves the overall shape of the lungs,

and a novel cost function for optimization of the model parameter values for each lung

image. Qualitatively, our segmentation results are well fitted to the lungs. Quantitatively,
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the correlation between the corrected average intensity tumor-burden metric and the lung

weight is excellent, and comparable to that of fully-manual expert segmentation.

Future work includes fully automating the segmentation software to further improve through-

put. The lung segmentation method could be successfully adapted to other problems where

parametric models are of use, including prostate cancer analysis.

2.6 Acknowledgements

This work was supported by a Mr. and Mrs. Spencer T. Olin Fellowship for Women in

Graduate Study; NSF Grant CCF-0963742; the NIH/NCI Small Animal Imaging Resource

Program (U24 CA83060); the Alvin J. Siteman Cancer Center at Washington University in

St. Louis, an NCI Comprehensive Cancer Center (P30 CA91842); an NIH/NCI Grant (KO8

CA131097); and an American Thoracic Society/Lungevity Foundation Research Grant.

25



Chapter 3

Automatic Segmentation of Rodent

Spinal Cord Diffusion MR Images

This chapter was previously published in Magnetic Resonance in Medicine:

V. K. Tidwell, J. H. Kim, S.–K. Song, and A. Nehorai. Automatic segmentation of rodent

spinal cord diffusion MR images. Magnetic Resonance in Medicine, 62:893–901, 2010.

I designed, implemented, and tested the automatic segmentation algorithm. J.H.K. and I

performed the data analysis and wrote the manuscript. J.H.K. and S.K.S. designed the

imaging experiments and collected the MR images; A.N. helped with data analysis.

MRI is a key tool for noninvasive spinal cord lesion analysis; however, accurate, quantitative

methods for this analysis are lacking. A new, multistep, multidimensional approach, utilizing

the Classification Expectation Maximization algorithm, is proposed for MRI segmentation

of spinal cord tissues. Diffusion tensor imaging is used to generate multiple images of each

spinal slice, with different diffusion direction weightings. The maximum likelihood tissue

classifications are then jointly estimated to produce a binary classification image, corre-

sponding to voxels containing either spinal cord or background. Edge detection is employed

to find a nonparametric curve encapsulating the entire spinal cord. The algorithm is eval-

uated using data from in vivo diffusion tensor imaging of control and injured mouse spinal

cords. The algorithm is shown to remain accurate for whole spinal cord, white matter, and
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hemorrhage segmentation in the presence of significant injury. The results of the method

are shown to be at least on par with expert manual segmentation.

3.1 Introduction

In spinal cord injury, the amount of total parenchyma or surviving white matter is known to

be strongly related to post-injury neurological function [51, 40, 2, 1]. Objective quantification

of these regions of interest is critical in both fundamental pathophysiological study and the

development of effective treatment. The most universally accepted method for accurate

segmentation analysis is histology [43, 41, 3], but its use is limited to postmortem study

due to its invasive nature. In contrast, MRI is well suited for noninvasive diagnosis of

living tissue. MRI-based spinal cord lesion reporting, both in vivo and ex vivo, shows good

agreement with conventional histology validation and reflects clinical disabilities [32, 39, 10,

52]. However, there is a lack of objective and precise quantitative methods for segmentation

of total parenchyma or white matter in MR images.

Existing methods for in vivo transaxial spinal cord segmentation in MRI can generally be

categorized into two broad classes. The first, most common class requires significant hu-

man intervention, and ranges from entirely manual segmentation to computer-aided manual

edge selection. These segmentation methods are subject to human bias and are therefore

unreliable and generally not reproducible. They are also slow and therefore impractical for

analyzing large data sets. The second class seeks to define a contour around the cord au-

tomatically, based on image gradients and pixel intensities within and outside the contour,

with minimal human intervention. These approaches generally use contour methods such

as snakes [30] or level-sets [47], and they vary in speed but are in general much faster than

manual segmentation. A recent example of this second class is presented in Deng et al. [14],

which uses a B-spline snake approach to find the spinal cord contour from in vivo MR im-

ages of healthy and mildly injured rat spines. This method relies on human intervention to

select the midpoint of the spine as the seed point for the snake algorithm, and it generates

segmentations in an average of 1.6 seconds per slice [14].

The automatic methods outlined above all make assumptions about the cord shape that do

not necessarily hold in the case of an injured spinal cord. Injured cords shrink as the tissue
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atrophies and can assume very irregular shapes. Contour-based methods such as snakes or

manual edge tracing assume relatively smooth edges. Additionally, severely injured cords

may have voids or hemorrhage within the spinal cord, which violates the basic assumption

of contour-based methods—that a single continuous boundary can be found to separate the

tissue of interest from the rest of the image. Robust methods that eliminate these faulty

assumptions are needed.

We propose a multidimensional, multistep Classification Expectation Maximization (CEM)–

based algorithm for spinal cord segmentation. Our algorithm is multidimensional in that it

segments the cord based on a set of MR images collected for diffusion tensor imaging (DTI)

analysis. This joint segmentation incorporates significantly more data than is available in a

single MR image and thus is more robust to noise in individual images.

We also extend our algorithm to automatic in vivo segmentation of spared white matter and

regions of hemorrhage in injured spines. Previous studies of automatic MRI segmentation

of spinal white/gray matter have only attempted to validate their algorithms for uninjured

cords [16, 17], or excised cords, imaged ex vivo [61]. To our knowledge, no previous work

has been done on automatically segmenting areas of spinal hemorrhage.

Our method is novel in medical image segmentation due to its multistep approach, which

allows improved segmentation accuracy by incorporating both prior knowledge of cord ge-

ometry and the distinct information contained in the different images in successive steps.

For example, in the proposed algorithm, the initial step for rough spinal cord segmentation

is based on the b=0 image, which is acquired without diffusion-sensitizing gradient pairs

and so in general is a T2-weighted (T2W) image. The next steps provide further, more

exact, segmentation based jointly on the diffusion-weighted images (DWIs). To our knowl-

edge, no previous work on automatic in vivo transaxial MRI spinal cord segmentation has

incorporated the information in T2W images in addition to the DWIs [14, 16, 61].

Additionally, to our knowledge the CEM algorithm has not been used for spine segmentation.

Our algorithm differs greatly from previous, contour-based cord segmentation approaches in

that our algorithm is a voxel classification algorithm—voxels are classified individually rather

than grouped according to a single contour. In contrast to existing contour-based algorithms,

the proposed algorithm defines contours only as a means to generate localization constraints

on which voxels may be classified as particular tissue types.
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In Section 3.2, I present the challenges for injured spinal cord segmentation. In Section 3.3,

I introduce the proposed CEM-based segmentation algorithm. In Sections 3.4 and 3.5, I

present and then discuss results for both manual and automatic segmentation of MR images

of injured spinal cords.

3.2 Background

Spinal cord histology allows high resolution tissue segmentation with clear separation be-

tween the tissue types. The goal for MRI spinal cord segmentation is to use in vivo imaging

to approximate, as closely as possible, the tissue types that one could generate via histology,

thus aiding the treatment and evaluation of spinal cord injuries. MRI is, however, much

lower in resolution, and therefore generating these accurate segmentations is nontrivial. In

this section, we discuss the relevant attributes of spinal cord diffusion MR images, and the

challenges faced when automatically segmenting these images, particularly in the case of

injured cords.

3.2.1 Characteristics of DTI

DTI provides microstructural information with greater sensitivity to tissue integrity than

conventional MRI. Many studies have reported the potential of six-direction DTI-derived

parameters to reveal the morphological integrity and pathophysiological changes of living

tissue in rodent spinal cord studies [32, 5, 11, 26].

In the T2W image, the brightest area is located within the spinal canal, containing both cord

and cerebrospinal fluid (CSF), with minimal differentiation in voxel intensity level between

the white and gray matter tissue types. In severely injured cords, the intensity level of

the CSF can on occasion differ slightly from that of the cord; however, even when there is

variation between the cord and CSF, the difference in intensity level between the background

and the spinal cavity is always much greater.

DWIs are brightest only in the region corresponding to spinal cord, not CSF. The voxel

intensity level of the CSF in the DWIs is equivalent to that of the background tissues. This
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is because the signal from CSF attenuates significantly in diffusion weighted imaging in any

direction. Voxel intensities in DWIs differentiate strongly between white and gray matter; in

some diffusion gradient directions, the white matter is brighter than the gray matter, while

in other directions, the gray matter is brightest.

From the DWIs, DTI maps can be calculated. These DTI maps—in particular, the relative

anisotropy, the axial diffusivity, and the radial diffusivity—do not have the same useful

properties as the T2W image or the DWIs to allow for simple segmentation of the spine

from the background tissue. However, they have clearer intensity separation between the

white and gray matter than the DWIs, particularly in the case of injured cords.

3.2.2 Challenges for Automatic Segmentation

There are many challenges for accurate voxel-by-voxel classification of the spinal MR images.

For instance, there are frequently scattered bright spots in both the T2W image and in the

DWIs that lie outside the spinal cord. Because the two types of images are sensitive to

different tissue properties (spin-spin relaxation and diffusion), these extraneous bright spots

are in general not colocated in the T2W image and the DWIs. Thus, by using both types of

images, we can achieve more accurate voxel-by-voxel classification of the tissues.

Additionally, there are occasionally colocated bright areas in both the T2W image and the

DWIs, e.g., at points where nerves branch off from the spinal cord. Because such nerve

tissue is similar to the cord tissue, it cannot be classified as background by voxel intensity

alone. Therefore, accurate segmentation requires localization constraints in addition to the

pure voxel classification of the CEM algorithm.

Finally, in assessing chronic posttraumatic changes in injured cords, we observe two major

effects of injury—atrophy and hemorrhage. As the cord atrophies, the size of the spinal cord

decreases, making the shape of the injured cord, as well as white and gray matter areas,

unpredictable. The additional space within the spinal cavity is filled by CSF. In addition,

the tissue contrast of the surviving white and gray matter in injured cords is much less clear

than in the control cords.
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In injured cords, the presence of hemorrhage appears as dark areas within the bright spinal

cord. Hemorrhage has a similar voxel intensity distribution to background, non-cord voxels in

the MR images because its relaxation and diffusion properties differ from those of the spinal

cord, for example, the T2? value is shorter in hemorrhage. It is useful to automatically

produce two spinal cord segmentations, one including hemorrhage and one excluding it.

This allows quantitative analysis of the size of the hemorrhage relative to the whole cord

size, which is useful in spinal cord injury evaluation.

By using a multistep approach to the automatic spine segmentation problem, we are able

to take advantage of the unique tissue differentiation abilities of the MR image types. Our

multidimensional approach allows us to generate segmentations that are more robust to noise

in individual images than existing approaches that rely on a single MR image.

3.3 Methods

3.3.1 Theory: Classification Using the CEM Algorithm

We propose using intensity levels for automatic segmentation rather than the existing contour-

fitting approaches, to allow more accurate segmentation of injured spinal cords. We as-

sume the intensity values in the T2W image come from a sum of two distinct Gaussian

distributions—that of the background and that of the cord and CSF. Similarly, we assume

the intensity values in each DWI come from a sum of three distinct Gaussian distributions—

those of the background (all non-spinal cord tissues, including bone), the white matter, and

the gray matter (Fig. 3.1). Although we make the assumption that the above distributions

are Gaussian for the purposes of our classification algorithm, these distributions are known to

be Rician. We also compute results under a Rician assumption for purposes of comparison.
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Figure 3.1: Histogram of a representative cropped and normalized DWI for a control spine

(see image in Figure 3.2.b). The distributions of the automatically segmented tissue types

(background, white matter, and gray matter) are superimposed assuming data comes from

(a) Gaussian and (b) Rician distributions.

To find an optimal, unbiased separation of voxels into these classes, we employ the CEM

algorithm in a series of stages. Each stage of our algorithm separates the voxels into one of

two classes, e.g., initially, the pixels are classified as either background or spinal cord, and

then in a later stage, the cord voxels are classified as either spared white or gray/injured

white matter.

We observe the vector of image intensity values xi ∈ RD from voxels i = 1, . . . , n in D input

images. These intensity values come from K possible tissue classifications k = 1, . . . , K,

where K is known. Let yi denote the classification corresponding to xi (i = 1, . . . , n), taking

a value from 1 to K. The intensity distribution, fk(x|µk,Σk), for each class k is assumed

to be a multidimensional Gaussian with mean µk and covariance matrix Σk both unknown.

Each classification has prior probability πk, which is also assumed to be unknown. We

assume noise independence within an individual voxel across the T2W image and the six

DWIs, and across the three DTI maps used; this reduces Σk to a diagonal matrix. Therefore,

the estimated distribution parameters are reduced to the priors πk, means µk, and variances

σk of multidimensional Gaussian intensity distributions.

The CEM algorithm [8] is a variation of the EM algorithm [13], with a classification step

(C-step) added between the expectation step (E-step) and the maximization step (M-step).
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It finds a classification maximum likelihood estimate of yi, maximizing the classification

likelihood, Cl:

Cl =
K∑
k′=1

∑
i|yi=k

log f(xi|µk,Σk). (3.1)

Starting from initial cluster parameter values, the CEM algorithm iteratively converges to a

maximum a posteriori estimate of yi, which is known to be in general initialization-sensitive.

For example, if the initial cluster parameter values are far from the optimal parameters, the

estimate for yi may be locally, not globally, optimal. To avoid such ’bad’ initialization, for

each CEM initialization in our method, we apply the commonly used K-means algorithm

with random sample seeding to find a preliminary clustering of the data. For our application,

30 random K-means seedings produced exactly identical final spine segmentations for each

MRI data set.

Given our assumptions, the steps of the CEM algorithm for iteration m are as follows [8],

assuming Gaussian distributions:

� E-step: Compute the current posterior probabilities pi,k for all data points i = 1, . . . , n

and all clusters k = 1, . . . , K

pi,k =
π
(m)
k f(xi|µ(m)

k ,Σ
(m)
k )∑K

k′=1 πk′f(xi|µ(m)
k′ ,Σ

(m)
k′ )

. (3.2)

� C-step: Assign each data point xi to the cluster with the largest posterior probability.

y
(m+1)
i = arg max

k
pi,k. (3.3)
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� M-step: Compute the maximum likelihood estimates for the parameters, π
(m+1)
k , µ

(m+1)
k ,

and Σ
(m+1)
k :

π
(m+1)
k =

∑n
i=1 p̂i,k
n

, (3.4)

µ
(m+1)
k =

∑n
i=1 p̂i,kxi∑n
i=1 p̂i,k

, (3.5)

σ
(m+1)
k,d =

∑n
i=1 p̂i,k(xi,d − µ

(m+1)
k,d )2∑n

i=1 p̂i,k
, and (3.6)

Σ
(m+1)
k =


σ
(m+1)
k,1 0 · · · 0

0 σ
(m+1)
k,2

...
...

. . . 0

0 · · · 0 σ
(m+1)
k,D

 , (3.7)

where p̂i,k =

1 if y
(m+1)
i = k

0 else
.

These steps repeat until the algorithm converges, i.e., when no voxel changes classification

from one iteration to the next.

3.3.2 Method for Automatic Segmentation

The MRI output in this study consists of seven images of a specific slice of the spinal

column—one T2W image and six DWIs from independent diffusion gradient directions. Fig-

ures 3.2 and 3.3 show examples of these images for a control animal and an injured animal,

respectively. We choose to use the DWIs for all cord/background tissue segmentation because

of their useful properties, as described in the Background section.
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Figure 3.2: Representative example of cropped and normalized MRI data for a control spine

slice: (a) T2W image; (b)-(g) diffusion weighted images (DWIs); (h)-(j) DTI maps (relative

anisotropy (RA), axial diffusivity (λ‖), and radial diffusivity (λ⊥), respectively); (k)-(o)

manual segmentations of spinal cord (red curves) and spared white matter (blue curves),

superimposed over the DWI in (b), for the five separate manual segmentations.
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Figure 3.3: Representative example of cropped and normalized MRI data for an injured spine

slice: (a) T2W image; (b)-(g) diffusion weighted images (DWIs); (h)-(j) DTI maps (relative

anisotropy (RA), axial diffusivity (λ‖), and radial diffusivity (λ⊥), respectively); (k)-(o)

manual segmentations of spinal cord and hemorrhage (red curves) and spared white matter

(blue curves), superimposed over the DWI in (b), for the five separate manual segmentations.

Find initial spinal cord segmentation In the T2W image of each spinal slice (Figs. 3.2.a

and 3.3.a), we use the CEM algorithm to classify voxels into two sets, background and

spinal cavity. We refer to this set of spinal cavity voxels as ST2W. This step provides a loose

constraint on the spinal cord’s location, since the T2W image does not generally differentiate

between CSF and spinal cord, so the bright region will be larger than the cord but should

completely encapsulate it.

Next, we apply the multidimensional CEM algorithm to the set of DWIs (Figs. 3.2.b-g

and 3.3.b-g) to jointly classify voxels as background or as spinal cord according to all six

DWIs. We refer to this set of spinal cavity voxels as SDWI. This step more accurately

separates the spinal cord from the background than the T2W image step. By accepting

voxels as spinal cord, S0, only when they are so classified according to both the T2W image
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and the DWIs, i.e.,

S0 = ST2W ∩ SDWI, (3.8)

most outlying bright spots are correctly classified as background, without loss of correctly

classified cord voxels.

Constrain by location We automatically classify outlying voxels as background by adding

a localization constraint. In most cases, the previous two steps will cleanly differentiate be-

tween background and spinal cord. This step accounts for potential colocated bright areas

in both image types, such as nerve tissues, that are not actually within the cord.

To correctly classify bright, noncord areas as background, we reclassify all small bright areas

in S0 as background, a process demonstrated in Figure 3.4. First, we find the set of boundary

curves B0 that separate the voxels currently classified as spinal cord from the rest of the

image (Fig. 3.4.c,i,o). Finding these boundary curves is very simple, unlike the usual contour

methods, because we find the boundaries using edge detection on the binary image of voxel

classifications, in which voxels have an intensity value of 1 if they are members of S0 and 0

intensity otherwise. Then, we refine the set of spinal cord voxels by including in the new set

S1 only the voxels in S0 that lie within the largest such curve (B0,max) (Fig. 3.4.d,j,p).
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Figure 3.4: Representative examples of spine and hemorrhage segmentation for a control

spine slice (a-f) and for injured spine slices with hemorrhage within (g-l) and along (m-r) the

spinal cord boundary: (a,g,m) sample cropped, normalized DWI; (b,h,n) after application of

the CEM algorithm to the DWIs; (c,i,o) with boundary curves outlined; (d,j,p) after removal

of small boundary curves; (e,k,q) after inclusion of holes from T2W image; (f,l,r) after

application of composite superellipse bounding shape, with hemorrhage also outlined.
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Account for regions of hemorrhage If a region of hemorrhage exists that is completely

contained within nonhemorrhaging spinal cord tissue, as in Figure 3.4.g-l, generating two

segmentations, one excluding the hemorrhage (Sexcl) and one including it (Sincl), does not

require additional work. The segmentation excluding hemorrhage is simply

Sexcl = S1, (3.9)

while in this case, the segmentation including hemorrhage is the set of all voxels enclosed by

B0,max.

Unfortunately, regions of hemorrhage can lie along the cord boundary, as in Figure 3.4.m-r,

and in such cases, producing the second segmentation is more challenging. However, because

the whole cord including hemorrhage is surrounded by CSF, it is possible to identify regions

of hemorrhage by locating holes in the set ST2W, which contains spinal cord and all of its

surrounding CSF, even if the hemorrhage is not encapsulated by surviving spinal cord. To

identify these holes, first, we find the set of boundary curves BT2W around the voxels in ST2W.

Next, we exclude all outliers, retaining only the largest boundary curve BT2W,max. BT2W,max

therefore encapsulates spinal cord, hemorrhage, and CSF. We then classify as hemorrhage,

H, all points encapsulated by BT2W,max that are not members of the set ST2W, thus removing

the voxels containing CSF and surviving spinal cord.

By combining the two sets, that of hemorrhage H and that of cord excluding hemorrhage

Sexcl, we are able to find a segmentation for the entire spinal cord,

Sincl = Sexcl ∪H. (3.10)

The final boundary curve around the entire cord is then simply the curve separating the

voxels in Sincl from the rest of the image. This step is applied to all cords. In the case of

healthy spine, this step will not change the segmentation. In the case where there are regions

of hemorrhage, this step allows us to identify the actual boundary of the spinal cord along

with precisely where hemorrhage is, and therefore allows us to calculate, for instance, the

amount of hemorrhage relative to the area of the total cord.
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Apply a bounding shape The final step in segmenting the spinal cord is the application

of a bounding shape. We fit a modified superellipse to the set of voxels in Sincl to remove

possible protrusions from the cord, such as nerve tissues branching away from the spine.

This modified superellipse is described as follows:∣∣∣∣(x− x0)a

∣∣∣∣2 +

∣∣∣∣(y − y0)b

∣∣∣∣2 ≤ 1 if y > 0,∣∣∣∣(x− x0)a

∣∣∣∣3 +

∣∣∣∣(y − y0)b

∣∣∣∣3 ≤ 1 if y < 0, (3.11)

where (x0, y0) is the center of the superellipse, a is the horizontal semidiameter, and b is the

vertical semidiameter. This pair of equations generates a shape that can somewhat tightly

encapsulate the spinal cord over the range of shapes it takes in varying states of injury and

at varying points along its length. No tight bounding shape can be chosen because of the

wide array of injured spinal cord shapes.

Segment spared white matter The final step is the automatic classification of the spared

white matter within the segmented cord tissue (Fig. 3.5). We use the multidimensional

CEM algorithm to create an initial spared white matter segmentation. Next, we apply a

localization constraint by first finding boundary curves around each disjoint group of voxels

that the CEM step classified as spared white matter and then reclassifying the smallest such

groups into the gray/injured white matter classification. For this step, only voxel groups

with a boundary length of at least 20 pixels retain their classification as spared white matter.
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Figure 3.5: Representative examples of spared white matter segmentation for control (a-d)

and injured (e-h) spine slices: (a,e) sample cropped, normalized relative anisotropy (RA)

map after spinal cord segmentation; (b,f) after application of the CEM algorithm to the

three DTI maps; (c,g) with boundary curves outlined; (d,h) after removal of small boundary

curves.

3.3.3 Rodent Spinal Cord MRI Experiments

We evaluated the segmentation performance of our algorithm using in vivo MR images of

uninjured and injured rodent spinal cords.1,2 Ten twelve-week-old female C57BL/6 mice

weighing 18 ∼ 20 g (Harlan, Indianapolis, IN) were anesthetized with an isoflurane and

oxygen mixture (7% for knock out and 1.5% for maintenance). After dorsal laminectomy

at the T8 and T9 vertebral levels, the mice received contusive spinal cord injury utilizing a

modified Ohio State University device [27]. The injury group underwent contusion injury at

0.2 m/s with 0.6 mm impact displacement. After impact, the site was closed in layers with

4-0 silk sutures. Enrofloxacin (2.5 mg/kg) and lactated Ringer’s (1 ml) were administered

subcutaneously. The control group received sham operations including laminectomy and

1All surgical interventions and both pre- and post-surgical care were performed in accordance with the
Public Health Service Policy on Humane Care and Use of Laboratory Animals, Guide for the Care and Use
of Laboratory Animals (Institute of Laboratory Animal Resources, National Research Council, 1996), and
with the approval of the Washington University Institutional Care and Use Committee.

2Standard postoperative care including bladder expression was provided in accordance to the manual
of Spinal Cord Injury Research Training Program held at Spinal Trauma and Repair Laboratories in Ohio
State University (http://medicine.osu.edu/sci/).
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zero point contact of impactor tip on the surface of the spinal cord to establish a reference

position, but no impact.

Animal preparation for in vivo DTI All mice were delivered to the MR facility

and anesthetized with an isoflurane and oxygen mixture (1.0 - 1.5% for maintenance) at

14 days postinjury. The body temperatures were maintained at 37◦C with a circulating

warm water pad. An inductively coupled surface coil covering T8 - T10 vertebral segments

(15 mm × 8 mm) was used as the radio frequency receiver. A 9-cm-inner-diameter Helmholtz

coil was employed as the radio frequency transmitter. The entire preparation was placed in

an Oxford Instruments (Oxford, UK) 200/330 magnet (4.7 T, 33-cm clear bore) equipped

with an actively shielded, Magnex Scientific (Oxford, UK) gradient coil (10–15-cm-inner-

diameter, 18 G/cm, 200-µs rise time). The magnet, gradient coil, and Techron gradient

power supply were interfaced with a Varian UNITY-INOVA console (PaloAlto, CA) con-

trolled by a Sun Microsystems Blade 1500 workstation.

In vivo DTI A conventional spin-echo imaging sequence was modified by adding Stejskal-

Tanner diffusion weighting gradients [56]. The pulse repetition time (∼1.2 sec) was varied

according to the period of the respiratory cycle (∼270 ms). The spin echo time = 38 ms,

time between application of gradient pulses (∆) = 20 ms, and diffusion gradient on time

(δ) = 7 ms were fixed throughout the experiment. For each animal, three consecutive

slices were collected to cover the epicenter of the contusion-injured cord, with a total scan

time of 2 hours. DWIs were obtained with diffusion sensitizing gradients applied in six

orientations, (Gx,Gy,Gz) = (1, 1, 0), (1, 0, 1), (0, 1, 1), (−1, 1, 0), (0,−1, 1), and (1, 0,−1),

using diffusion sensitizing factors (b values) of 1.0 ms/µm2. One image (the b=0 or T2W

image) was collected without diffusion sensitizing gradient to serve as a reference. Six scans

were averaged per k-space line. The field of view was 10×10mm2 with 1.0mm slice thickness

and the image data matrix for each slice was 128 (phase encoding)× 256 (read out) (zero

filled to 256×256). Of the total image area for control animals, on average 1100 voxels

contain spinal cord.

A weighted linear least-squares method was used to estimate diffusion tensors for each voxel

from the DWIs [34]. The eigenvalue decomposition was then applied to each tensor, yielding

a set of eigenvalues (λ1 ≥ λ2 ≥ λ3) and eigenvectors for each voxel. Maps of diffusion
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indices including relative anisotropy (RA) and axial and radial diffusivities (λ‖ and λ⊥) were

generated by applying the following equations for each voxel:

λ‖ = λ1, (3.12)

λ⊥ =
λ2 + λ3

2
, (3.13)

< D > =
λ1 + λ2 + λ3

3
, (3.14)

RA =

√∑3
i=1(λi −< D >)2
√

3< D >
. (3.15)

3.3.4 Quantification of Segmentation Accuracy

We automatically segmented the spinal cords and the white matter from the MRI images

of all ten mice at each of the spinal slice locations. Because the MRI data we use to test

our algorithm have a very large field of view relative to the size of the spine (the area of

the spine is roughly 2% of the entire field of view), the data are manually cropped prior to

application of the algorithm to a rectangle around the spine. This cropping yields an image

for segmentation in which the spine comprises roughly 20% of the field of view.

The spinal cord contains an area of white matter called the dorsal column, which is dis-

connected from the rest of the white matter and is not included in the white matter seg-

mentations of our experts. Because of this, to compare our automatic segmentations to the

manual segmentation, the dorsal column needs to be excluded from the automatic white

matter segmentations. To eliminate this area, we automatically exclude the pixels in a small

trapezoidal section of the spinal cord, defined relative to the superellipse of (3.11), with four

vertices at (x0− a/4, y0 + b/2), (x0 + a/4, y0 + b/2), (x0 + a/2, y0 + b), and (x0− a/2, y0 + b).

We then apply a localization constraint to remove any small sections of dorsal white matter

than may not have been fully contained in the trapezoid.

Our algorithm ran in an average of 0.709 seconds (using DWIs for all segmentation) per spinal

slice using MATLAB (Mathworks, Natick, MA) on an Intel Core 2 Quad CPU, 2.4 GHz

personal computer. We compared the performance of the algorithm when using only DTI

maps, using only DWIs, or using both for the spared white matter segmentation. The
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algorithm ran in an average of 0.448 seconds when using DWIs for the cord/hemorrhage tissue

segmentations and DTI maps for the spared white matter segmentation, and 0.515 seconds

when using DWIs for the cord/hemorrhage tissue segmentations and all data (DWIs and

DTI maps) for the spared white matter segmentation.

For verification of our algorithm’s performance, three types of manual segmentations were

created. The entire spinal cord (gray and white matter), the cord excluding hemorrhage,

and the white matter were manually segmented by five experts for both control and injured

cords utilizing DWIs and calculated diffusion maps. This was done for one spinal slice from

the MR images of each animal, at the location of the sham operation for control animals and

at the epicenter of surgically induced SCI for injury group animals. From the five expert

segmentations for each tissue type, we are able to find a measure of the variation in manual

segmentations across experts, to which we can compare the variation between manual and

automatic segmentations.

Because our study uses in vivo imaging, there is no ground truth available, such as histology.

Lacking a ground truth by which to calculate percent error, we instead evaluate our algorithm

using the overlap of our automatic segmentation results with manual segmentations of the

same data. This overlap is calculated using the binary classification images, i.e., images that

take a value of 1 only the in region of cord, of cord excluding hemorrhage, or of white matter,

and a value of 0 outside that region. We calculate overlap as

Overlap(A,B) =
A ∩B

A ∪B
, (3.16)

where A and B are the two binary classification images to be compared.

3.4 Results

Table 3.1 shows the average overlap between each pair of independently drawn manual

segmentations. This establishes a baseline for variation in manual segmentations to which

the variation between the manual and automatic segmentations (Table 3.2) can be compared.

It is clear from the poor correspondence of the injured cord segmentations of hemorrhage
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and particularly white matter that manual segmentation cannot be treated as the ground

truth, as it is in some works.

Table 3.1: Average Percent Overlap between the Five Manual MRI Tissue Segmentations

Control Group Injury Group

Entire Spinal Cord 91.47± 1.78 90.43± 2.45

Spinal Cord Excluding Hemorrhage 91.47± 1.78 68.10± 12.53

Spared White Matter 80.21± 3.28 51.41± 9.14

Values are given as the mean ± standard deviation

Table 3.2: Average Percent Overlap between the Automatic Segmentations and the Five

Manual MRI Tissue Segmentations

Control Group Injury Group

Entire Spinal Cord 91.32± 2.39 90.20± 2.13

Spinal Cord Excluding Hemorrhage 91.28± 2.27 72.18± 9.39

Spared White Matter Using DWIs 73.24± 6.80 11.87± 8.32

Spared White Matter Using DTI Maps 79.65± 5.48 54.82± 9.88

Spared White Matter Using All Data 77.76± 4.93 37.26± 16.13

Values are given as the mean ± standard deviation

Table 3.2 shows the total average overlap of our segmentation results with the manual seg-

mentations. For segmentation of the tissue regions of control spinal cords, the performance

of our algorithm is on average equivalent to that of the expert manual segmentations. Sim-

ilarly, for all segmentations of the injured cords—the whole cords, the spinal cord excluding

hemorrhage, and the white matter—our automatic segmentations are on average at least

as good as the expert manual segmentations. The extreme lack of consistency between ex-

pert segmentations of injured white matter makes it impossible for our algorithm to have

a high overlap with all experts, but considering the overlap between expert segmentations,

the relative performance is strong.
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3.5 Discussion

In comparison of our algorithm to the individual manual segmentations, we note that the

maximum overlap between our algorithm and any manual segmentation is always greater

than the minimum overlap between any two manual segmentations, for all tissue-type seg-

mentations. That is to say, our algorithm performs at least as well as the worst human

expert, given that we do not know which is the most accurate segmentation in the group. It

is important to note that, as we do not have a ground truth segmentation, it is not possible

to say if a particular manual segmentation is superior or inferior to our automatic segmenta-

tion. We can only say with certainty that our algorithm has higher consistency with manual

segmentations than the consistency between manual segmentations for injured spinal cords.

We found that, although the properties of DWIs are very useful for segmentation of spinal

cord and hemorrhage, our results for white matter segmentation using the DTI maps were

both qualitatively and quantitatively more accurate for moderately to severely injured cords

and also more robust with respect to image quality. In fact, the relative noise level in the

DWIs as compared to the DTI maps is such that consideration of all the data, both DWIs

and DTI maps, reduces the segmentation performance.

As a point of comparison, in Ellingson et al. [16, 17] and in Younis et al. [61], intensity-

based, fuzzy classification methods are used for spine and white/gray matter segmentation.

However, the method in Younis et al. [61] relies on the fact that the spinal cord is excised

for finding the spinal mask and so cannot be applied to in vivo images. Additionally, they

do not measure the agreement between manual segmentations and their segmentation, but

compare only the intensity statistics of the two regions, so the segmentation accuracy of their

method is not validated even for excised spines. Ellingson et al. [16] attempt to validate their

method on five uninjured spinal cords, taking a fixed template as the ground truth. The

percent overlap between their automatic results and the fixed template ranged from 84.4%

to 89.2% for the spinal cord segmentation, and their percent correct classifications for white

and gray matter were 67.1% and 86.5%, respectively. The authors [16] then validate only the

manual template-alignment step for estimation of the anisotropy statistics of white matter,

gray matter, and CSF from test images, not the final segmentation performance in the case

of injured cords.
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As a final note, if, instead of assuming Gaussian distributions, we treat the intensity distri-

butions as Rician, our algorithm is slower and performs equivalently with respect to overlap

with the manual segmentations. The algorithm is slower because there is no analytical ex-

pression for the maximum likelihood estimate for Rician parameters, given samples from

the distribution, so an iterative estimation method is necessary. This iterative method

must be applied at each iteration of the CEM algorithm, which causes slowing of the total

algorithm run time. The average run times are 6.047 seconds for using DWIs for all seg-

mentations, 3.412 seconds using DWIs for the cord/hemorrhage tissue segmentations and

DTI maps for the spared white matter segmentation, and 3.462 seconds using DWIs for the

cord/hemorrhage tissue segmentations and all data (DWIs and DTI maps) for the spared

white matter segmentation. Table 3.3 shows the total average overlap of our segmentation

results with the manual segmentations.

Table 3.3: Average Overlap between the Automatic Segmentations Assuming Rician Distri-

butions and the Five Manual MRI Tissue Segmentations

Control Group Injury Group

Entire Spinal Cord 91.56± 2.22 87.31± 3.25

Spinal Cord Excluding Hemorrhage 91.58± 2.20 69.60± 8.58

Spared White Matter Using DWIs 43.31± 22.47 3.61± 7.58

Spared White Matter Using DTI Maps 80.14± 4.70 54.58± 9.24

Spared White Matter Using All Data 79.15± 4.58 48.26± 8.43

Values are given as the mean ± standard deviation

These results are roughly equivalent to the results when the Gaussian assumption is used

because the distributions of the white and gray matter are nearly Gaussian. In addition,

although a Gaussian is not a good fit for the background distribution, it can be seen in

Figure 3.1 that the decision threshold for spinal cord and background will not be affected

significantly by assuming a Gaussian rather than a Rician distribution.
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3.6 Conclusion

We have proposed a new multistep, CEM-based approach to spinal cord and white matter

segmentation from in vivo MR images and we have validated that its performance is on

par with that of expert manual segmentation. We have demonstrated that our algorithm,

unlike previous approaches, remains reliable for spinal cord segmentation in the presence

of moderate and severe cord injury, not just extremely mild injury. In addition, we have

demonstrated that our algorithm is as reliable as the average human expert for hemorrhage

and white matter segmentation for injured rodent spinal cords. Future work includes in-

corporation of a more detailed physical model for the spinal tissues, as well as comparison

of manual and automatic MRI segmentation results to spinal histology results. We expect

that our algorithm will yield closer agreement with histology than an average manual expert

segmentation does. Future work also includes adaptation of the algorithm to MR images of

human spinal cords, which have lower resolution than MR images of rodent cords.
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Chapter 4

Automatic Segmentation of Human

Glioblastoma MR Images

Access to large collections of magnetic resonance imaging data enables scientifically rigorous

study of cancers like glioblastoma multiforme, the most common form of malignant primary

brain tumor, but only if the data can be analyzed. In order to process and analyze large

sets of MR imaging data, automated segmentation methods are required. In this chapter,

I propose an efficient and effective automated segmentation method, the Enhanced Classi-

fication Expectation Maximization (ECEM) algorithm. The ECEM algorithm is novel in

its ability to introduce spatial information into the classical CEM algorithm with low ad-

ditional computational complexity. I compare the ECEM’s performance on simulated data

to the standard finite Gaussian mixture EM algorithm, which is not spatially aware, and

to the hidden-Markov random field EM (HMRF-EM) algorithm, a commonly-used spatially

aware automated segmentation method for MR brain images. I also show sample results

demonstrating the ECEM algorithm’s ability to segment MR images of glioblastoma.

4.1 Introduction

Glioblastoma multiforme is the most common malignant primary brain tumor and is almost

always fatal—the 10 year survival rate is only 2.3% [15]. Median survival time without

aggressive treatment is less than three months, and with aggressive treatment, only four-

teen [29]. Because of the disease’s prevalence and poor prognosis, a better understanding of

glioblastoma is critical.
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In order to more fully understand cancer, and thereby to aid in the development of treatments

and diagnostic techniques, The National Cancer Institute (NCI) and the National Human

Genome Research Institute, both parts of the National Institutes of Health, together released

a large collection of anonymized gene data from various cancers, including cerebral glioblas-

toma, as part of The Cancer Genome Atlas (TCGA) initiative. In conjuction with this, the

Cancer Imaging Archive (TCIA), a project funded by the NCI and hosted at Washington

University in St Louis, released a collection of Magnetic Resonance (MR) images for the

TCGA glioblastoma patient set. Access to a large collection of patient data enables scien-

tifically rigorous study, but only if the data can be analyzed. However, the very size of the

TCIA glioblastoma data set makes manual analysis impractical, and bias in manual analysis

can make quantitative analysis unreliable. In order to process and analyze data sets like the

TCIA gliblastoma data set, fast and accurate automated methods are required.

Accurate quantification of brain tumor is important at all stages of cancer research and

treatment—in preclinical studies, for the evaluation of treatment efficacy; during patient

care, for diagnosis and treatment monitoring; and in postclinical analysis of data sets such as

the TCIA data set. Automated methods can aid researchers in performing this quantitative

analysis via segmentation. By segmenting the brain tissue types—e.g., white matter, gray

matter, and cerebral-spinal fluid— and also the abnormal regions—e.g., contrast-enhancing

tumor, necrotic core, and edema— it is possible, for instance, to quantify a patient’s response

to the current treatment. This information in turn enables clinicians to make objective, well-

informed decisions about how to proceed with future treatment.

FAST is a commonly used toolkit for MRI brain segmentation, from the Oxford Centre

for Functional MRI of the Brain’s (FRMIB) Software Library (FSL) [28]. It uses a hidden

Markov random field (HMRF) model and the expectation-maximization (EM) algorithm [62].

The EM algorithm classifies MR image voxels into classes based on estimated intensity dis-

tributions. However, unlike the standard finite mixture EM (FM-EM) algorithm [60], which

is spatially agnostic, the use of a hidden Markov random field model incorporates spatial

information into the algorithm. The HMRF-EM framework allows for accurate and robust

segmentation, even in the presence of noise inherent in MR images. However, segmentation

in the HMRF-EM framework requires additional steps at each iteration of the traditional

EM-algorithm, and one of those steps is itself iterative. These additional iterations make

the computational cost potentially prohibitive for processing large amounts of data.
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One of the key features of MR imaging is the availability of different imaging methods that

can be used to differentiate tissue based on its structural and molecular properties. For

instance, diffusion tensor imaging (DTI) captures information about the diffusion character-

istics of tissues—e.g., white matter is highly anisotropic in its diffusivity, while gray matter

is more or less isotropic, which translates to a difference in DT image intensity between

the two tissue types. The various MR methods allow differentiation with greater or lesser

contrast between different tissue types. This feature of MR imaging only exacerbates the

problem of large data volumes as each 3D brain scan comprises not only many 2D slices, but

multiple channels for each 2D slice, one per imaging method utilized. Thus the volume of

data for even a single 3D scan can be very large. Advances in medical imaging technology

promise to compound this issue as the volume of imaging data increases, for example, with

longitudinal studies and time series data such as that from fMRI. Based on these factors,

automated segmentations techniques must strike a balance between computational efficiency

and accurate segmentation, even in the presence of noise common to MR images, in order

to process the volume of data emerging medical imaging technologies demand.

In this chapter I propose a variant of the Classification EM (CEM) algorithm, the Enhanced

CEM algorithm (ECEM) that incorporates spatial data for segmenting tissue types in MRI

data. This method has two novel aspects. First, the ECEM algorithm produces segmen-

tations with only small quality loss compared to the HMRF-EM framework but with much

less computational complexity. Second, it can take advantage of multi-channel information

in segmenting tissue types without sacrificing computational efficiency. Finally, I show that

the ECEM algorithm is appropriate for segmentation of abnormal tissue, not only healthy

tissue.

In Section 4.2, I describe the TCIA data set and the HMRF-EM algorithm in more detail.

In Section 4.3, I introduce the proposed ECEM algorithm. In Sections 4.4 and 4.5, I present

and then discuss results for simulated images and for real MR images of glioblastoma.

51



4.2 Background

4.2.1 TCIA Data Set

The TCIA data set contains a large collection of anonymized multi-channel MR images of

cerebral glioblastoma. Glioblastoma is one of approximately twenty types of cancer chosen

for inclusion in the TCGA data set. Like all cancer types chosen for inclusion in the data set,

glioblastoma meets three criteria: (1) seriousness of prognosis, (2) breadth of public health

impact, and (3) availability of quality data for public release.

For each subject included in the TCIA glioglastoma data set, images were gathered for multi-

ple MR imaging subtypes. Some common MRI channels included in the TCIA glioblastoma

data set are T1 pre-Gd , T1 post-Gd, FLAIR, DTI, FA map, and ADC map. Gadolinium-

based contrast agents are useful for demarcating abnormal areas in the brain. Contrast

agents can pass into the brain from the blood stream in places where tumor has compro-

mised the blood-brain barrier. Some Gd-based agents accumulate at tumor sites, target

markers of angiogenesis, or target the necrotic parts of a tumor [24]. FLAIR, which stands

for FLuid Attenuated Inversion Recovery, reduces the affects of cerebrospinal fluid on the

image and reduces contrast between white and gray matter, improving the visibility of le-

sions and edema [55]. DTI (diffusion tensor imaging), from which FA (fractional anisotropy)

and ADC (apparent diffusion coefficient) maps can be calculated, is useful for differentiating

among tumor types [58].

Challenges for Automatic Segmentation Despite its potential as a data source, there

are several difficulties inherent in working with the TCIA glioblastoma data set, which stem

from the fact that it is collected from different imaging centers and MRI machines. The

data are very heterogenous—images from different subjects may have different resolutions,

contrasts, artifacts, and bias fields. The channels included in each image set also may vary,

as may the contrast agents used. In addition, the file labeling conventions differ from subject

to subject, making identification of the MR image type in each channel, a crucial step for

applying automated segmentation methods, a non-trivial task. Finally, the images may

require registration to account for movement of the subject’s head during the MRI scan.
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This registration attempts to translate and rotate the images from each channel so that the

signal in a voxel from any one channel will come from the same volume of brain tissue as

the signal in the same voxel from each other channel.

Preprocessed TCIA Data To demonstrate the ability of the ECEM algorithm to seg-

ment MR images with large abnormal regions, I use a subset of the TCIA glioblastoma

data set provided by David Gutman of Emory, MD, PhD, Assistant Professor of Biomedical

Informatics at Emory Healthcare. This subset contains only data for cases where all six of

the T1 pre-Gd , T1 post-Gd, FLAIR, DTI, FA map, and ADC map channels are present.

Several preprocessing steps have been used to prepare the data for automatic segmentation.

First, the images are labeled uniformly, so that all of the images can be loaded and iden-

tified programmatically, rather than selected and labeled manually. Next, the images are

registered so that all channels are aligned with the T1 pre-Gd channel.

4.2.2 FM-EM and HMRF-EM

In image segmentation, the finite Gaussian mixture model assumes that pixel intensities in

an image are samples from a distribution that is a weighted sum of Gaussians. Generally,

the proportion, mean, and covariance of each Gaussian are estimated using an expectation-

maximization (EM) algorithm. This FM-EM algorithm [60] does not allow for any spatial

information, although fixed spatial priors for each pixel, e.g., based on an atlas image, are

sometimes used.

The HMRF framework incorporates spatial information into image segmentation by model-

ing pixel-to-pixel influences as a conditional Markov random field distribution [62]. Under

this framework, the influence of each pixel on the pixels in its neighborhood must be esti-

mated, in addition to the estimation of the intensity distribution parameters. FM-EM can

be understood as a special, degenerate case of HMRF-EM, where there are no other pixels

in any pixel’s neighborhood, and therefore no influence between pixels.
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FM-EM is a simple and computationally efficient method, but the lack of spatial awareness

reduces its ability to find accurate segmentations in the presence of noise. In contrast, be-

cause it incorporates spatial awareness, HMRF-EM is very robust to noise but has significant,

sometimes prohibitive, computational cost [9].

4.3 Method

I propose a modification of the CEM algorithm that incorporates spatial information - the

ECEM algorithm. The steps of the standard CEM algorithm for iteration m are as follows [8],

assuming Gaussian distributions:

� E-step: Compute the current posterior probabilities pi,k for all data points i = 1, . . . , n

and all clusters k = 1, . . . , K

pi,k =
π
(m)
k f(xi|µ(m)

k ,Σ
(m)
k )∑K

k′=1 π
(m)
k′ f(xi|µ(m)

k′ ,Σ
(m)
k′ )

. (4.1)

� C-step: Assign each data point xi to the cluster with the largest posterior probability.

y
(m+1)
i = arg max

k
pi,k. (4.2)
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� M-step: Compute the maximum likelihood estimates for the parameters, π
(m+1)
k , µ

(m+1)
k ,

and Σ
(m+1)
k :

π
(m+1)
k =

∑n
i=1 p̂i,k
n

, (4.3)

µ
(m+1)
k =

∑n
i=1 p̂i,kxi∑n
i=1 p̂i,k

, (4.4)

σ
(m+1)
k,d =

∑n
i=1 p̂i,k(xi,d − µ

(m+1)
k,d )2∑n

i=1 p̂i,k
, and (4.5)

Σ
(m+1)
k =


σ
(m+1)
k,1 0 · · · 0

0 σ
(m+1)
k,2

...
...

. . . 0

0 · · · 0 σ
(m+1)
k,D

 , (4.6)

where p̂i,k =

1 if y
(m+1)
i = k

0 else
.

These steps repeat until the algorithm converges, i.e., when no voxel changes classification

from one iteration to the next.

4.3.1 ECEM

The standard CEM algorithm is not specifically an image segmentation technique—it is a

data clustering algorithm, and as such does not consider the spatial interdependencies within

images. To incorporate spatial information, I propose expanding the E-step computation of

the posterior probability by adding a voxel-specific prior probability, π
(m)
k,i , for each class k.

In the expanded M-step, each voxel j in the neighborhood Ni of voxel i contributes a ‘vote’

on what class k voxel i should be assigned, with the votes being weighted by a function of

the vector ∇ij from i to j. Choosing this weighting function to be a Gaussian with mean µ
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and covariance Σ, the sum π
(m)
k,i of the weighted votes for class k is given by

π
(m)
k,i ∝

∑
{j|y(m)

j =k,jεNi}

exp(−1

2
(∇ij − µ)TΣ−1(∇ij − µ)), (4.7)

or, equivalently,

π
(m)
k,i ∝

∑
jεNi

p̂
(m)
j,k exp(−

1

2
(∇ij − µ)TΣ−1(∇ij − µ)). (4.8)

Thus, with the additional spatial prior in the expanded E-step, (4.1) becomes

p
(m)
i,k ∝ π

(m)
k π

(m)
k,i f(xi|µ(m)

k ,Σ
(m)
k ). (4.9)

A voxel j is defined to lie in the neighborhood Ni of voxel i if the distance ||∇ij||W between

the two voxels is less than a set threshold δ. Here the distance is defined as the weighted

norm

||∇ij||W = ∇T
ijW∇ij, (4.10)

where W is a diagonal matrix whose entries reflect the relative dimensions of the MRI voxels.

Generally, MRI tissue voxels are not cubes—slice depth is often larger than the height and

width of the voxel. In a 2D image, ||∇ij||W reduces to the Euclidean norm, because the

voxels correspond to square regions of tissue.

Similarly, for 2D multi-channel MR images, Σ and µ reduce to σI and µ1. For 3D or even

4D (3D time-series) data, the relative spatial and temporal distance between voxels in each

dimension will be reflected in W, Σ, and µ.

Note that π
(m)
k,i can be very efficiently calculated by convolution of the chosen distance func-

tion, here a Gaussian filter, with the binary classification image, where the intensity for voxel

i is equal to p̂
(m)
i,k . Therefore, the additional computational cost of the ECEM algorithm rel-

ative to the CEM algorithm is K convolutions per iteration. Note also that the proposed

ECEM algorithm, like the CEM algorithm, is highly parallelizable. In each iteration, the

E-step and C-step for each voxel are completely independent, can can therefore be calculated
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in parallel. Thus, this simple proposed extension of the standard, spatially agnostic CEM

algorithm integrates spatial awareness in a straightforward and computationally efficient

manner.

4.3.2 ECEM Segmentation of Glioblastoma

For the specific case of segmentation of glioblastoma from MR images of human brain, I follow

a similar procedure as in Chapter 3.3, but the necessity to remove outlying misclassified

voxels post-ECEM is greatly reduced relative to simple CEM. As a preprocessing step, I

first automatically isolate the brain from the skull and other background, by applying the

ECEM algorithm assuming two classes. I next assume the intensity values in the multi-

channel image come from a sum of three Gaussian distributions—those of the white matter,

the gray matter, and the abnormal region. Once the abnormal region has been isolated, I

then segment the abnormal region. In the image sets tested, segmentation into four classes

seemed to best capture the subregions of abnormal tissue.

For the image sets tested, no significant bias field was present. For MRI segmentation where

the bias field is significant, a bias-field estimation step can be added to the ECEM algorithm

in the same way it is added in HMRF-EM [62].

4.4 Experiments

In order to demonstrate the ECEM algorithm’s segmentation capabilities in the presence of

noise, I compare segmentation accuracy for the ECEM, the standard FM-EM, the standard

CEM, and the HMRF-EM algorithms on simulated data. I show the effect of noise on

pixel misclassification rates for three- and five-class simulated images. Next, I show sample

results demonstrating the ECEM algorithm’s ability to segment MR images of glioblastoma

multiforme on real patient multichannel data from the TCIA glioblastoma data set.
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4.4.1 Segmentation of Simulated Data

I evaluate the ECEM algorithm’s performance on simulated images in comparison to the

FM-EM, the CEM, and the HMRF-EM algorithms, using the simulated piecewise-constant

images from Zhang, et al. [62].

Three-class Image The first simulated image used for testing is shown in Figure 4.1.a.

The pixels in the noiseless image have three intensity values—30, 125, and 220—with pro-

portions of 0.372, 0.299, and 0.329, respectively. Performance is tested in the presence of

additive Gaussian noise, with standard deviations of σ = 28 (CNR=3.4), σ = 47 (CNR=2.0),

and σ = 95 (CNR=1.0) (Fig. 4.1.b-d). Here contrast-to-noise ratio (CNR) is defined as the

average intensity difference from one class mean to the next, divided by the standard devi-

ation σ of the added Gaussian noise. After the addition of Gaussian noise, values that drop

below zero or rise above 255 are truncated to zero and 255, respectively.
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Figure 4.1: Test three-class image. (a) Original, noiseless image. (b)-(d) Image with additive

Gaussian noise, CNR = 3.4, 2.0, and 1.0, respectively.

Standard FM-EM converges only for the lowest noise level, with misclassification rate (MCR)

of 10.50%, as shown in Figure 4.2 and Table 4.1. The misclassification rate (MCR) is defined

simply as the percentage of incorrectly classified voxels.
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Figure 4.2: Three-class segmentation results from FM-EM for CNR = 3.4, MCR = 10.50%.

Table 4.1: Three-Class Parameter Estimation Using the FM-EM Algorithm

class Class 1 Class 2 Class 3

parameter µ1 σ1 ω1 µ2 σ2 ω2 µ3 σ3 ω3

σ = 28 24.5 19.3 0.301 122.3 43.9 0.422 224.6 21.7 0.277

Standard CEM converges for all three levels, with MCR=5.9%, 20.73%, 39.41%, as shown

in Figure 4.3 and Table 4.2.

Figure 4.3: Three-class segmentation results from CEM for CNR = (a) 3.4, (b) 2.0, and (c)

1.0. MCR = 5.90%, 20.73%, and 39.41%, respectively.
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Table 4.2: Three-Class Parameter Estimation Using the CEM Algorithm

class Class 1 Class 2 Class 3

parameter µ1 σ1 ω1 µ2 σ2 ω2 µ3 σ3 ω3

σ = 0 30.0 0 0.372 125.0 0.0 0.299 220.0 0.0 0.329

σ = 28 30.0 22.2 0.368 124.6 25.0 0.302 219.9 23.4 0.324

σ = 47 33.0 28.5 0.392 128.4 24.0 0.279 219.9 28.2 0.329

σ = 95 27.0 29.9 0.404 126.0 22.5 0.233 227.2 30.3 0.363

HMRF-EM converges for all three levels, with MCR=0.12%, 1.04%, and 8.73%, respectively,

as shown in Figure 4.4 and Table 4.3 (reproduced from Zhang, et al. [62]).

Figure 4.4: Three-class segmentation results from HMRF-EM for CNR = (a) 3.4, (b) 2.0,

and (c) 1.0. MCR = 0.12%, 1.04%, and 8.73%, respectively. (reproduced from Zhang, et

al. [62])

Table 4.3: Three-Class Parameter Estimation Using the HMRF-EM Algorithm

class Class 1 Class 2 Class 3

parameter µ1 σ1 ω1 µ2 σ2 ω2 µ3 σ3 ω3

σ = 28 32.0 24.6 0.378 124.9 27.8 0.300 219.2 24.8 0.332

σ = 47 36.1 35.6 0.377 124.6 46.1 0.304 213.5 38.1 0.320

σ = 95 52.1 61.7 0.355 127.7 80.5 0.363 203.6 62.1 0.281
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The ECEM method also converges for all three levels, with MCR=0.40%, 4.07%, and 43.66%,

as shown in Figure 4.5 and Table 4.4, although its classification accuracy is nearly identical

to that of standard CEM for the lowest CNR case.

Figure 4.5: Three-class segmentation results from ECEM for CNR = (a) 3.4, (b) 2.0, and

(c) 1.0. MCR = 0.40%, 4.07%, and 43.66%, respectively.

Table 4.4: Three-Class Parameter Estimation Using the ECEM Algorithm

class Class 1 Class 2 Class 3

parameter µ1 σ1 ω1 µ2 σ2 ω2 µ3 σ3 ω3

σ = 0 30.0 0 0.372 125.0 0.0 0.299 220.0 0.0 0.329

σ = 28 31.4 24.3 0.373 125.2 28.2 0.298 219.1 25.1 0.330

σ = 47 35.5 35.0 0.372 127.2 43.1 0.315 216.6 34.7 0.313

σ = 95 2.6 9.9 0.199 121.5 63.4 0.604 248.1 18.9 0.197

Five-class Image The second simulated image used for testing (Fig. 4.6.a) is also from

Zhang, et al. [62]. The pixels in the noiseless image take on five intensity values—30, 77,

125, 172, and 220—with proportions of 0.280, 0.273, 0.113, 0.187, and 0.147, respectively.

Performance is tested in the presence of additive Gaussian noise, with standard deviations

of σ = 23 (CNR=2.0), σ = 33 (CNR=1.4), and σ = 47 (CNR=1.0) (Fig. 4.6.b-d). After the

addition of Gaussian noise, values that drop below zero or rise above 255 are truncated to

zero and 255, respectively.
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Figure 4.6: Test five-class image. (a) Original, noiseless image. (b)-(d) Image with additive

Gaussian noise, CNR = 2.0, 1.4, and 1.0, respectively.

Standard FM-EM does not converge, even for the highest CNR. The CEM method converges

for all three levels, with MCR=25.38%, 37.69%, and 48.40%, as shown in Figure 4.7 and

Table 4.5.
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Figure 4.7: Five-class segmentation results from CEM for CNR = (a) 2.0, (b) 1.4, and (c)

1.0. MCR = 25.38%, 37.69%, and 48.40%, respectively.

Table 4.5: Five-Class Parameter Estimation Using the CEM Algorithm

class Class 1 Class 2 Class 3 Class 4 Class 5

parameter µ1 σ1 ω1 µ2 σ2 ω2 µ3 σ3 ω3 µ4 σ4 ω4 µ5 σ5 ω5

σ = 0 30 0 0.28 77 0 0.27 125 0 0.11 172 0 0.19 220 0 0.15

σ = 23 27 16 0.27 73 12 0.23 119 15 0.17 170 13 0.16 220 18 0.17

σ = 33 25 18 0.28 77 13 0.23 125 15 0.18 173 13 0.15 226 19 0.16

σ = 47 21 19 0.29 78 13 0.18 125 14 0.18 171 13 0.14 228 21 0.18

HMRF-EM converges for all three levels, with MCR=0.2%, 1.36%, and 7.68%, as shown in

Figure 4.8 and Table 4.6 (reproduced from Zhang, et al. [62]).
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Figure 4.8: Five-class segmentation results from HMRF-EM for CNR = (a) 2.0, (b) 1.4, and

(c) 1.0. MCR = 0.2%, 1.36%, and 7.68%, respectively. (reproduced from Zhang, et al. [62])

Table 4.6: Five-Class Parameter Estimation Using the HMRF-EM Algorithm

class Class 1 Class 2 Class 3 Class 4 Class 5

parameter µ1 σ1 ω1 µ2 σ2 ω2 µ3 σ3 ω3 µ4 σ4 ω4 µ5 σ5 ω5

σ = 23 31 22 0.28 76 23 0.27 124 23.5 0.11 171 24 0.19 219 22 0.14

σ = 33 33 38 0.29 77 32.5 0.26 123 32.6 0.11 171 33 0.19 217 28.5 0.15

σ = 47 40 37 0.33 81 44 0.25 125 44 0.08 174 45 0.21 216 37 0.12

The ECEM method also converges for all three levels, with MCR=2.26%, 21.93%, and

46.28%, as shown in Figure 4.9 and Table 4.7, although it performs poorly for the lower

CNR cases.
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Figure 4.9: Five-class segmentation results from ECEM for CNR = (a) 2.0, (b) 1.4, and (c)

1.0. MCR = 2.26%, 21.93%, and 46.28%, respectively.

Table 4.7: Five-Class Parameter Estimation Using the ECEM Algorithm

class Class 1 Class 2 Class 3 Class 4 Class 5

parameter µ1 σ1 ω1 µ2 σ2 ω2 µ3 σ3 ω3 µ4 σ4 ω4 µ5 σ5 ω5

σ = 0 30 0 0.28 77 0 0.27 125 0 0.11 172 0 0.19 220 0 0.15

σ = 23 31 20 0.28 78 22 0.27 125 22 0.11 172 23 0.19 220 21 0.15

σ = 33 33 25 0.33 92 26 0.29 140 9 0.02 174 29 0.26 233 19 0.10

σ = 47 7 12 0.15 72 34 0.42 157 34 0.28 190 3 0.01 229 26 0.14

4.4.2 Segmentation of MR Images of Human Brains with Glioblas-

toma

Figure 4.10 illustrates the performance of the ECEM algorithm on multichannel MRI data for

glioblastoma. Figure 4.10.a.i-iii shows the input, from three separate patients, to the ECEM

segmentation algorithm, the multichannel MR data for a single brain slice. The MR image

types used for the segmentations were T1 (without contrast agent), T1 post-Gd contrast

enhancement (pre-contrast subtracted from postcontrast T1), FLAIR, DTI, FA map, and

ADC map. As described in Section 4.2.1, these images have been registered to the T1 pre-Gd

image. Figure 4.10.b.i-iii shows the results of the ECEM preprocessing to isolate first the
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brain (highlighted in teal) from the background, and then the abnormal region (highlighted

in red) from the rest of the brain. Figure 4.10.c.i-iii shows the results of four-class ECEM

segmentation of the abnormal regions.
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Figure 4.10: (a.i-iii) Multichannel MRI data for a single slice of brain from three subjects.

Top row, left to right: T1 pre-Gd, T1 post-Gd contrast enhancement (pre-post contrast dif-

ference), FLAIR. Bottom row, left to right: DTI, FA map, ADC map. (b.i-iii) Automatic

segmentation of whole brain—red is abnormal, teal is normal—overlaid on the FLAIR im-

age. (c.i-iii) Automatic segmentation of abnormal region into four unlabeled tissue classes,

overlaid on the FLAIR image.

68



4.5 Discussion

4.5.1 Segmentation of Simulated Data

Clearly, in comparison with FM-EM, the ECEM algorithm’s performance is a drastic im-

provement at all noise levels. The ECEM algorithm converges where the FM-EM does not.

The classification results are significantly more accurate for the one case where FM-EM did

converge. The parameter estimation of the ECEM algorithm also outperformed FM-EM.

In comparison with the CEM algorithm, the ECEM enhances classification significantly for

the higher CNR cases. The performance gains decrease as noise increases, and in low CNR

cases, the misclassification rate of ECEM is on par with CEM. Interestingly, despite the

higher misclassification rate, the CEM algorithm actually does a better job of estimating

the class means. It is possible that this discrepancy is a byproduct of the way the simulated

images were created. In the highest noise images, the distribution of pixel intensities is

nearly uniform, and therefore, with no spatial information, the CEM more-or-less uniformly

distributes the pixel class means. In these test images, it happens that the actual class means

are uniformly distributed, but that is clearly not always the case in real images.

In comparison to HMRF-EM, for low noise levels, the difference in performance is insignif-

icant. As seen in Tables 4.4 and 4.7, the results for the ECEM algorithm and HMRF-EM

algorithm are similar in the cases where the CNR is 3.4 and 2.0. For these higher CNR tests,

the parameter estimation of the ECEM algorithm was also on par with results shown for the

HMRF-EM algorithm in Zhang, et al. [62].

For the three-class image with a CNR of 1.0, the performance of the ECEM algorithm relative

to the HMRF-EM algorithm deteriorates sharply. For the five-class case, the inflection point

where performance diverges is somewhere between the CNR levels of 2.0 and 1.4. While this

shows that there are CNR levels for which HMRF-EM is clearly a better choice, despite its

additional computational complexity, a CNR of 1.0 is outside of the range of CNR levels that

would realistically be present in brain MR images. This is because, to a certain extent, CNR

is controllable in MR imaging—for example, CNR can be increased by increasing the voxel

size (i.e., decreasing the image resolution) or by increasing the time spent on the scan [48].

Most importantly, an MR image that is 50% data and 50% noise would be unacceptable for a
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clinician or researcher attempting to label tissues or make a diagnosis. While results at this

noise level are useful to show the limit to the ECEM approach, the performance degradation

at reasonable noise levels (i.e., those that would be present in images for diagnostic or pre-

clinical purposes) is very satisfactory. The ECEM algorithm, in exchange for potentially

mislabeling a small percentage of voxels compared to HMRF-EM, allows very large data sets

to be analyzed more quickly due to its lower computational complexity.

4.5.2 Segmentation of MR Images

The results shown in Figure 4.10 demonstrate the ECEM algorithm’s potential for MR

brain segmentation of tumor and related abnormalities. Qualitatively, the algorithm appears

to correctly differentiate some of the abnormal regions, for example, edema and tumor.

However, some regions of interest in the brain images—e.g., the ‘ring’ of contrast-enhancing

tumor which can be seen clearly in the post-Gd contrast images in Figure 4.10.a.i-iii—are

not visible in the automatic segmentations. This is at least partially due to the insufficiently

precise registration of the image sets. The contrast-enhancing regions are often only two to

three voxels wide, and from comparison of set points in the brain between the six channels,

the set points frequently shift four or five voxels from channel to channel.

4.6 Conclusion

In this chapter, I have proposed a novel extension to the CEM algorithm that is spatially

aware: the ECEM algorithm. The ECEM algorithm incorporates spatial awareness in an

elegant, mathematically simple, and computationally efficient manner while producing seg-

mentations that are robust to noise. I compared the performance of the ECEM algorithm to

that of the FM-EM, standard CEM, and HMRF-EM algorithms. The experiments presented

in this chapter show that the segmentation results from ECEM are significantly better than

those from FM-EM, and that incorporating spatial information into the CEM algorithm in

general improves the accuracy of the CEM segmentation. For data with high to moderate

CNR, the ECEM is a good choice for rapid and robust segmentation, while for very low

CNR data HMRF-EM is preferable.
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The significance of a robust and efficient segmentation algorithm like the ECEM algorithm is

that it allows large data sets to be processed, whether for postclinical analysis of collections

such as the TCIA glioblastoma data set, or for clinical use for patient data with multichannel

and/or time series components. Fast and efficient methods also may facilitate real-time

user interaction, so, for instance, clinicians could manually refine and reseed automatic

segmentations. Such an interactive algorithm could combine human expertise with fast and

unbiased statistical methods.

Numerous potential modifications of the ECEM algorithm may improve accuracy in high

noise data sets with minimal additional computational complexity. For instance, it is possi-

ble for the parameters of the Gaussian filter from (4.8) to vary with iteration number; e.g.,

the neighborhood-based prior can consider a larger neighborhood for early iterations of the

ECEM algorithm and a smaller neighborhood for later iterations, or vice versa. Informal

testing has demonstrated improvement in final segmentation accuracy when the filter pa-

rameters are allowed to vary. Finding an algorithmic method for varying the parameters,

rather than manual parameter tuning, remains as potential future work.
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Chapter 5

Conclusion

Automatic segmentation techniques based on robust statistical methods are necessary to

overcome the challenges of noisy, multichannel MRI data. In this dissertation, I have pro-

posed automated segmentation methods that fall into two classes—segmentation via opti-

mization of a parametric boundary (Chapter 2) and segmentation via multistep, spatially

constrained intensity classification (Chapters 3 and 4). These two approaches are applicable

in different segmentation scenarios. Parametric boundary segmentation is useful and nec-

essary for segmentation of noisy images where the tissue of interest has predictable shape

but poor boundary delineation, as in the case of lung with heavy or diffuse tumor. Spatially

constrained intensity classification is appropriate for segmentation of noisy images with mod-

erate contrast between tissue regions, where the areas of interest have unpredictable shapes,

as is the case in spinal injury and brain tumor. The proposed automated segmentation tech-

niques address the need for MR image analysis in three specific applications: (1) preclinical

rodent studies of primary and metastatic lung cancer, (2) preclinical rodent studies of spinal

cord lesion, and (3) postclinical analysis of human brain cancer.

In Chapter 2, I demonstrated that corrected average MR image intensity in mouse lung

is an accurate metric of total tumor burden. The tumor measurements were validated by

correlating MR image intensities with the weight of the excised lungs. By measuring average

MR lung intensity, tumor burden can be estimated in vivo, even in cases of diffuse disease

where individual tumors cannot be segmented from the MR images. Thus, relative measures

of tumor burden for a single animal can be established simply by comparing average lung

intensities from images collected at different time points. Absolute tumor burden measures

can also be determined following establishment of a calibration curve between MR image
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intensities and lung weights. Because this average image intensity approach requires accurate

lung segmentation, I proposed a novel method for automated segmentation of the MR images

of murine lungs and pulmonary tumors. I developed a new, two-dimensional parametric

model for mouse lung that accurately preserves the overall shape of the lungs, and a novel cost

function for optimization of the model parameter values for each lung image. Qualitatively,

my segmentation results are well fitted to the lungs. Quantitatively, the correlation between

the corrected average intensity tumor-burden metric and the lung weight is excellent, and

comparable to that of fully-manual expert segmentation. These promising findings suggest

multiple applications of this method. For example, to assess treatment efficacy, clinicians

can automatically measure tumor burden over time.

In Chapter 3, I proposed a new multistep, CEM-based approach to spinal cord and white

matter segmentation from in vivo MR images, and I validated that its performance is on

par with that of expert manual segmentation. I demonstrated that my algorithm, unlike

previous approaches, remains reliable for spinal cord segmentation in the presence of mod-

erate and severe cord injury, not just extremely mild injury. In addition, I demonstrated

that the algorithm is as reliable as the average human expert for hemorrhage and white mat-

ter segmentation for injured rodent spinal cords. By replacing manual segmentation, this

method will, for example, allow researchers to analyze time-series images of mice to evaluate

experimental treatments.

In Chapter 4, I proposed a novel extension to the CEM algorithm that is spatially aware: the

ECEM algorithm. The ECEM algorithm incorporates spatial data in an elegant, mathemat-

ically simple, and computationally efficient manner while producing segmentations that are

robust to noise. I compared the performance of the ECEM algorithm to that of the FM-EM,

CEM, and HMRF-EM algorithms. The experiments presented in this chapter show that the

segmentation results from ECEM are significantly better than those from FM-EM, and that

incorporating spatial information into the CEM algorithm in general improves the accuracy

of the CEM segmentation. For data with high to moderate CNR, the ECEM is a good choice

for rapid and robust segmentation, while for very low CNR data HMRF-EM is preferable.

The ECEM method will allow fast analysis of very large data sets, such as MRI collections

which may contain time-series, high resolution, multichannel image sets.
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In this dissertation, I identified several potential areas for future work. The lung segmenta-

tion method presented requires manual input in order to seed segmentation; fully automating

the segmentation would speed analysis. In addition, the lung segmentation method could

be successfully adapted to other problems where parametric models are of use, including

prostate cancer analysis. My spinal tissue segmentation methods could be improved by

incorporation of a more detailed physical model for the spinal tissues, and comparison of

manual and automatic MRI segmentation results to spinal histology results could validate

these segmentations relative to ground truth. In addition, adaptation of this algorithm to

MR images of human spinal cords, which have lower resolution than MR images of rodent

cords, is another potential research area. The proposed ECEM algorithm also presents sev-

eral future research directions. Informal testing showed that allowing algorithm parameters

to vary between iterations of the ECEM algorithm improved results. Exploration of these

parameters is left as future work.
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