87 research outputs found

    Variance-constrained multiobjective control and filtering for nonlinear stochastic systems: A survey

    Get PDF
    The multiobjective control and filtering problems for nonlinear stochastic systems with variance constraints are surveyed. First, the concepts of nonlinear stochastic systems are recalled along with the introduction of some recent advances. Then, the covariance control theory, which serves as a practical method for multi-objective control design as well as a foundation for linear system theory, is reviewed comprehensively. The multiple design requirements frequently applied in engineering practice for the use of evaluating system performances are introduced, including robustness, reliability, and dissipativity. Several design techniques suitable for the multi-objective variance-constrained control and filtering problems for nonlinear stochastic systems are discussed. In particular, as a special case for the multi-objective design problems, the mixed H 2 / H ∞ control and filtering problems are reviewed in great detail. Subsequently, some latest results on the variance-constrained multi-objective control and filtering problems for the nonlinear stochastic systems are summarized. Finally, conclusions are drawn, and several possible future research directions are pointed out

    Nonlinear analysis of dynamical complex networks

    Get PDF
    Copyright © 2013 Zidong Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Complex networks are composed of a large number of highly interconnected dynamical units and therefore exhibit very complicated dynamics. Examples of such complex networks include the Internet, that is, a network of routers or domains, the World Wide Web (WWW), that is, a network of websites, the brain, that is, a network of neurons, and an organization, that is, a network of people. Since the introduction of the small-world network principle, a great deal of research has been focused on the dependence of the asymptotic behavior of interconnected oscillatory agents on the structural properties of complex networks. It has been found out that the general structure of the interaction network may play a crucial role in the emergence of synchronization phenomena in various fields such as physics, technology, and the life sciences

    State Estimation for Discrete-Time Fuzzy Cellular Neural Networks with Mixed Time Delays

    Get PDF
    This paper is concerned with the exponential state estimation problem for a class of discrete-time fuzzy cellular neural networks with mixed time delays. The main purpose is to estimate the neuron states through available output measurements such that the dynamics of the estimation error is globally exponentially stable. By constructing a novel Lyapunov-Krasovskii functional which contains a triple summation term, some sufficient conditions are derived to guarantee the existence of the state estimator. The linear matrix inequality approach is employed for the first time to deal with the fuzzy cellular neural networks in the discrete-time case. Compared with the present conditions in the form of M-matrix, the results obtained in this paper are less conservative and can be checked readily by the MATLAB toolbox. Finally, some numerical examples are given to demonstrate the effectiveness of the proposed results

    Dissipativity Analysis for Discrete Time-Delay Fuzzy Neural Networks With Markovian Jumps

    Full text link

    Dissipative Analysis and Synthesis of Control for TS Fuzzy Markovian Jump Neutral Systems

    Get PDF
    This paper is focused on stochastic stability and strictly dissipative control design for a class of Takagi-Sugeno (TS) fuzzy neutral time delayed control systems with Markovian jumps. The main aim of this paper is to design a strictly dissipative controller such that the closed-loop TS fuzzy control system is stochastically stable, and also the disturbance rejection attenuation is obtained to a given level by means of the H∞ performance index. Intensive analysis is carried out to obtain sufficient conditions for the existence of desired dissipative controller which ensures both the stochastic stability and the strictly dissipative performance. The main advantage of the proposed technique is that it is possible to obtain the dissipative controller with less control effort and also, as special cases, robust H∞ control with the prescribed H∞ performance under given constraints and passivity control can be obtained for the considered systems. Also, the existence condition of the fuzzy dissipative controller can be obtained in terms of linear matrix inequalities. Finally, a practical example based on truck-trailer model is provided to demonstrate the effectiveness and feasibility of the proposed design technique

    Further analysis of stability of uncertain neural networks with multiple time delays

    Get PDF
    This paper studies the robust stability of uncertain neural networks with multiple time delays with respect to the class of nondecreasing activation functions. By using the Lyapunov functional and homeomorphism mapping theorems, we derive a new delay-independent sufficient condition the existence, uniqueness, and global asymptotic stability of the equilibrium point for delayed neural networks with uncertain network parameters. The condition obtained for the robust stability establishes a matrix-norm relationship between the network parameters of the neural system, and therefore it can easily be verified. We also present some constructive numerical examples to compare the proposed result with results in the previously published corresponding literature. These comparative examples show that our new condition can be considered as an alternative result to the previous corresponding literature results as it defines a new set of network parameters ensuring the robust stability of delayed neural networks.Publisher's Versio

    Improved results on an extended dissipative analysis of neural networks with additive time-varying delays using auxiliary function-based integral inequalities

    Get PDF
    The issue of extended dissipative analysis for neural networks (NNs) with additive time-varying delays (ATVDs) is examined in this research. Some less conservative sufficient conditions are obtained to ensure the NNs are asymptotically stable and extended dissipative by building the agumented Lyapunov-Krasovskii functional, which is achieved by utilizing some mathematical techniques with improved integral inequalities like auxiliary function-based integral inequalities (gives a tighter upper bound). The present study aims to solve the H∞,L2−L∞ H_{\infty}, L_2-L_{\infty} , passivity and (Q,S,R) (Q, S, R) -γ \gamma -dissipativity performance in a unified framework based on the extended dissipativity concept. Following this, the condition for the solvability of the designed NNs with ATVDs is presented in the form of linear matrix inequalities. Finally, the practicality and effectiveness of this approach were demonstrated through four numerical examples

    Dynamical Behaviors of Stochastic Hopfield Neural Networks with Both Time-Varying and Continuously Distributed Delays

    Get PDF
    This paper investigates dynamical behaviors of stochastic Hopfield neural networks with both time-varying and continuously distributed delays. By employing the Lyapunov functional theory and linear matrix inequality, some novel criteria on asymptotic stability, ultimate boundedness, and weak attractor are derived. Finally, an example is given to illustrate the correctness and effectiveness of our theoretical results

    Mean almost periodicity and moment exponential stability of discrete-time stochastic shunting inhibitory cellular neural networks with time delays

    Get PDF
    summary:By using the semi-discrete method of differential equations, a new version of discrete analogue of stochastic shunting inhibitory cellular neural networks (SICNNs) is formulated, which gives a more accurate characterization for continuous-time stochastic SICNNs than that by Euler scheme. Firstly, the existence of the 2th mean almost periodic sequence solution of the discrete-time stochastic SICNNs is investigated with the help of Minkowski inequality, Hölder inequality and Krasnoselskii's fixed point theorem. Secondly, the moment global exponential stability of the discrete-time stochastic SICNNs is also studied by using some analytical skills and the proof of contradiction. Finally, two examples are given to demonstrate that our results are feasible. By numerical simulations, we discuss the effect of stochastic perturbation on the almost periodicity and global exponential stability of the discrete-time stochastic SICNNs
    • …
    corecore