2,693 research outputs found

    Urban Air Pollution Monitoring Using Wireless Sensor Networks: A Comprehensive Review

    Get PDF
    Air pollution is evolving as a severe environmental concern due to its enormous impact on the well being of the people, universal environment and also on the global economy. Conventional air pollution systems are not able to provide air pollution data of high spatiotemporal resolution due to non-scalability and limited data availability. With the advances in the areas of Micro Electro Mechanical Sensor (MEMS) and Wireless Sensor Network (WSN), the researchers had implemented various state-of-the-art air pollution monitoring systems with better and efficient results. A comprehensive review of continuous air pollution surveillance of both indoor and outdoor pollution by employing WSN was presented. In the proposed paper attempts to provide the details related to the existing methods for measuring major air pollutants like CO2, CO, O3, SO2, VOC and Particulate Matter (PM). It presents the various methods, algorithms and dedicated network designs in air pollution monitoring which are useful for generating new solutions to improve the performance through WSN. A comprehensive and detailed review of the existing methods of Air Quality Monitoring systems using WSN was done along with their comparison

    Zoom: A multi-resolution tasking framework for crowdsourced geo-spatial sensing

    Full text link
    Abstract—As sensor networking technologies continue to de-velop, the notion of adding large-scale mobility into sensor networks is becoming feasible by crowd-sourcing data collection to personal mobile devices. However, tasking such networks at fine granularity becomes problematic because the sensors are heterogeneous, owned by the crowd and not the network operators. In this paper, we present Zoom, a multi-resolution tasking framework for crowdsourced geo-spatial sensor networks. Zoom allows users to define arbitrary sensor groupings over heterogeneous, unstructured and mobile networks and assign different sensing tasks to each group. The key idea is the separation of the task information ( what task a particular sensor should perform) from the task implementation ( code). Zoom consists of (i) a map, an overlay on top of a geographic region, to represent both the sensor groups and the task information, and (ii) adaptive encoding of the map at multiple resolutions and region-of-interest cropping for resource-constrained devices, allowing sensors to zoom in quickly to a specific region to determine their task. Simulation of a realistic traffic application over an area of 1 sq. km with a task map of size 1.5 KB shows that more than 90 % of nodes are tasked correctly. Zoom also outperforms Logical Neighborhoods, the state-of-the-art tasking protocol in task information size for similar tasks. Its encoded map size is always less than 50 % of Logical Neighborhood’s predicate size. I

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF

    Development of an Adaptive Environmental Management System for Lejweleputswa District: A Participatory Approach through Fuzzy Cognitive Maps

    Get PDF
    Published ThesisEnvironmental pollution caused by mines within the district of Lejweleputswa in Free State is a major contributor to health issues and the inability to grow crops within the mining communities. Mining industries continue to develop environmental management systems/plans to mitigate the impact their operations has on the society. Even with these plans, there are still issues of environmental pollution affecting the society. Though there are Information Communication and Technology (ICT) based pollution monitoring solutions, their use is dismal due to lack of appreciation or understanding of how they disseminate information. Furthermore, non-adopting community members are being regarded as inherently conservative or irrational, but these community members argue that the recommendations and technologies brought to them are not always appropriate to their circumstances. There was concern that local people’s knowledge of their environment, farming systems, and their social as well as economic situation had been ignored and underestimated when ICTs solutions are being implemented (Warburton & Martin, 1999). Another challenge is that there is no station to monitor pollution for small communities such as Nyakallong in the district. This result in mining communities depending on their own local knowledge to observe and monitor mining related environmental pollution. However, this local knowledge has never been tested scientifically or analysed to recognize its usability or effectiveness. Mining companies tend to ignore this knowledge from the communities as it is treated like common information with no much scientific value. As a step towards verifying or validating this local knowledge, fuzzy cognitive maps were used to model, analyse and represent this linguistic local knowledge. Although this local knowledge assists in mitigating environmental pollution, incorporating it with scientific knowledge will improve its relevance, trustworthiness and acceptability by majority of community members and policy-makers. Information and Communication Technologies (ICTs) can accelerate this integration; this is the focus of this research. The increased usages of Information Technology being witnessed today makes it the most important factor for the world to depend on for solutions to many of today’s and tomorrow’s problems. These solutions make use of various forms for dissemination purposes, one of the most versatile dissemination device is a mobile phone since majority of the world’s population do own a mobile phone. In this way information is easily accessible by almost everyone that needs it. A novel environmental management solution was designed to work within the mining communities of Lejweleputswa. The research started off by designing a unique integration framework that creates the much-needed link between local knowledge and scientific knowledge. The framework was then converted into an adaptable environmental pollution management system prototype made up of three components; (1) gathering environmental pollution knowledge; (2) environmental monitoring and; (3) environmental dissemination and communication. To achieve sustainability, relevance and acceptability, local knowledge was integrated in each of the three components while mobile phones were used as both input and output devices for the system. In order to facilitate collection and conservation of local knowledge on environmental monitoring, an elaborate android-based mobile application was developed. Wireless sensor-based gas sensor boards were acquired, and deployed as a compliment to conventional monitoring stations, they were used to gather scientific knowledge. To allow for public access to the system’s data, a web portal and an SMS-based component were also implemented. In order to collect local knowledge from community, a case study of Nyakallong community in Lejweleputswa was carried out. On completion of the system prototype, it was evaluated by participants from the community; 90% of respondents gave a score of ‘excellent ‘

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    From Sensor to Observation Web with Environmental Enablers in the Future Internet

    Get PDF
    This paper outlines the grand challenges in global sustainability research and the objectives of the FP7 Future Internet PPP program within the Digital Agenda for Europe. Large user communities are generating significant amounts of valuable environmental observations at local and regional scales using the devices and services of the Future Internet. These communities’ environmental observations represent a wealth of information which is currently hardly used or used only in isolation and therefore in need of integration with other information sources. Indeed, this very integration will lead to a paradigm shift from a mere Sensor Web to an Observation Web with semantically enriched content emanating from sensors, environmental simulations and citizens. The paper also describes the research challenges to realize the Observation Web and the associated environmental enablers for the Future Internet. Such an environmental enabler could for instance be an electronic sensing device, a web-service application, or even a social networking group affording or facilitating the capability of the Future Internet applications to consume, produce, and use environmental observations in cross-domain applications. The term ?envirofied? Future Internet is coined to describe this overall target that forms a cornerstone of work in the Environmental Usage Area within the Future Internet PPP program. Relevant trends described in the paper are the usage of ubiquitous sensors (anywhere), the provision and generation of information by citizens, and the convergence of real and virtual realities to convey understanding of environmental observations. The paper addresses the technical challenges in the Environmental Usage Area and the need for designing multi-style service oriented architecture. Key topics are the mapping of requirements to capabilities, providing scalability and robustness with implementing context aware information retrieval. Another essential research topic is handling data fusion and model based computation, and the related propagation of information uncertainty. Approaches to security, standardization and harmonization, all essential for sustainable solutions, are summarized from the perspective of the Environmental Usage Area. The paper concludes with an overview of emerging, high impact applications in the environmental areas concerning land ecosystems (biodiversity), air quality (atmospheric conditions) and water ecosystems (marine asset management)

    Smart cities air pollution monitoring system - Developing a potential data collecting platform based on Raspberry Pi

    Get PDF
    >Magister Scientiae - MScAir pollution is becoming a challenging issue in our daily lives due to advanced industrialization. This thesis presents a solution to collection and dissemination of pollution data. Most of the devices that monitor air quality are costly and have limited features. The aim of this study is to revisit the issue of pollution in cities with the aim of providing a cheaper and scalable solution to the challenge of pollution data collection and dissemination. The solution proposed in this paper uses Raspberry Pi and Arduino micro-controller boards as the foundation, combined with specific sensors to facilitate the collection and transfer of pollution data reliably and effectively. While most traditional air pollution monitoring equipment and similar projects use memory cards as a medium for data storage, the system proposed in this research is built around a new network selection model that transfers data to the server by using either Bluetooth, Wi-Fi, GSM, or the LoRa protocol. The connectivity protocol is selected automatically and opportunistically by the network selection algorithm defined in the micro-controller board. The final data will be presented to the user through a mobile application and website interface effectively and intuitively after being processed in the server. This data transfer system can effectively reduce the cost and input of human resources. It is a viable solution. For other environmental research, this system can provide an air quality data support for analysis and reference. Modularity and cost-effectiveness are fully considered when designing the system. It is a viable solution. We can generalize the system by slightly changing the data transmission modules. In other case, it can be used as a platform for similar data transmission and offer help for other research directions

    International Conference on Computer Science

    Get PDF
    UBT Annual International Conference is the 11th international interdisciplinary peer reviewed conference which publishes works of the scientists as well as practitioners in the area where UBT is active in Education, Research and Development. The UBT aims to implement an integrated strategy to establish itself as an internationally competitive, research-intensive university, committed to the transfer of knowledge and the provision of a world-class education to the most talented students from all background. The main perspective of the conference is to connect the scientists and practitioners from different disciplines in the same place and make them be aware of the recent advancements in different research fields, and provide them with a unique forum to share their experiences. It is also the place to support the new academic staff for doing research and publish their work in international standard level. This conference consists of sub conferences in different fields like: Art and Digital Media Agriculture, Food Science and Technology Architecture and Spatial Planning Civil Engineering, Infrastructure and Environment Computer Science and Communication Engineering Dental Sciences Education and Development Energy Efficiency Engineering Integrated Design Information Systems and Security Journalism, Media and Communication Law Language and Culture Management, Business and Economics Modern Music, Digital Production and Management Medicine and Nursing Mechatronics, System Engineering and Robotics Pharmaceutical and Natural Sciences Political Science Psychology Sport, Health and Society Security Studies This conference is the major scientific event of the UBT. It is organizing annually and always in cooperation with the partner universities from the region and Europe. We have to thank all Authors, partners, sponsors and also the conference organizing team making this event a real international scientific event. Edmond Hajrizi, President of UBT UBT – Higher Education Institutio

    Internet of things

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Digital Earth was born with the aim of replicating the real world within the digital world. Many efforts have been made to observe and sense the Earth, both from space (remote sensing) and by using in situ sensors. Focusing on the latter, advances in Digital Earth have established vital bridges to exploit these sensors and their networks by taking location as a key element. The current era of connectivity envisions that everything is connected to everything. The concept of the Internet of Things(IoT)emergedasaholisticproposaltoenableanecosystemofvaried,heterogeneous networked objects and devices to speak to and interact with each other. To make the IoT ecosystem a reality, it is necessary to understand the electronic components, communication protocols, real-time analysis techniques, and the location of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly form interrelated infrastructures for addressing today’s pressing issues and complex challenges. In this chapter, we explore the synergies and frictions in establishing an efïŹcient and permanent collaboration between the two infrastructures, in order to adequately address multidisciplinary and increasingly complex real-world problems. Although there are still some pending issues, the identiïŹed synergies generate optimism for a true collaboration between the Internet of Things and the Digital Earth

    Mobile ad hoc networks in transportation data collection and dissemination

    Get PDF
    The field of transportation is rapidly changing with new opportunities for systems solutions and emerging technologies. The global economic impact of congestion and accidents are significant. Improved means are needed to solve them. Combined with the increasing numbers of vehicles on the road, the net economic impact is measured in the many billions of dollars. Promising methodologies explored in this thesis include the use of the Internet of Things (IoT) and Mobile Ad Hoc Networks (MANET). Interconnecting vehicles using Dedicated Short Range Communication technology (DSRC) brings many benefits. Integrating DSRC into roadway vehicles offers the promise of reducing the problems of congestion and accidents; however, it comes with risks such as loss of connectivity due to power outages as well as controlling and managing loading in such networks. Energy consumption of vehicle communication equipment is a crucial factor in high availability sensor networks. Sending critical emergency messaged through linked vehicles requires that there always be energy and communication reserves. Two algorithms are described. The first controls energy consumption to guarantee an energy reserve for sending alert signals. The second exploits Long Term Evolution (LTE) to guarantee a reliable communication path
    • 

    corecore