1,810 research outputs found

    The effects of waste management on profitability in a flexible packaging company

    Get PDF
    A research report submitted to the Faculty of Engineering and Built Environment, University of the Witwatersrand, Johannesburg, in partial fulfilment of the requirements for the degree of Master of Science in Engineering, 2017Waste results in material loss and cascades to production processes, affecting a company’s profitability. This research sought to answer to what extent the implementation of a solid waste management protocol in a flexible packaging company (FPC) improves profitability. The research focused on reducing waste from the gravure printing process, which was analysed using a Lean Six Sigma tool, DMAIC, that has been shown to increase productivity, reduce cost, reduce defects and standardise operations. Processes were implemented to ensure that quality substrate was input at the correct levels and transformed efficiently into sellable product. Additionally, new protocols were employed to control and manage waste, further increasing the FPC’s savings. These modifications reduced waiting down time by 78%, rework by 53%, and job-specific waste by 6%, which translated into a 17% improvement in profit on average. Thus, the research effectively demonstrates that a waste management protocol increases the profitability of a FPC.XL201

    The boomerang returns? Accounting for the impact of uncertainties on the dynamics of remanufacturing systems

    Get PDF
    Recent years have witnessed companies abandon traditional open-loop supply chain structures in favour of closed-loop variants, in a bid to mitigate environmental impacts and exploit economic opportunities. Central to the closed-loop paradigm is remanufacturing: the restoration of used products to useful life. While this operational model has huge potential to extend product life-cycles, the collection and recovery processes diminish the effectiveness of existing control mechanisms for open-loop systems. We systematically review the literature in the field of closed-loop supply chain dynamics, which explores the time-varying interactions of material and information flows in the different elements of remanufacturing supply chains. We supplement this with further reviews of what we call the three ‘pillars’ of such systems, i.e. forecasting, collection, and inventory and production control. This provides us with an interdisciplinary lens to investigate how a ‘boomerang’ effect (i.e. sale, consumption, and return processes) impacts on the behaviour of the closed-loop system and to understand how it can be controlled. To facilitate this, we contrast closed-loop supply chain dynamics research to the well-developed research in each pillar; explore how different disciplines have accommodated the supply, process, demand, and control uncertainties; and provide insights for future research on the dynamics of remanufacturing systems

    Inventory control in production-inventory systems with random yield and rework: The unit-tracking approach

    Get PDF
    This paper considers a single-stage make-to-stock production–inventory system under random demand and random yield, where defective units are reworked. We examine how to set cost-minimizing production/order quantities in such imperfect systems, which is challenging because a random yield implies an uncertain arrival time of outstanding units and the possibility of them crossing each other in the pipeline. To determine the order/production quantity in each period, we extend the unit-tracking/decomposition approach, taking into account the possibility of order-crossing, which is new to the literature and relevant to other planning problems. The extended unit-tracking/decomposition approach allows us to determine the optimal base-stock level and to formulate the exact and an approximate expression of the per-period cost of a base-stock policy. The same approach is also used to develop a state-dependent ordering policy. The numerical study reveals that our state-dependent policy can reduce inventory-related costs compared to the base-stock policy by up to 6% and compared to an existing approach from the literature by up to 4.5%. From a managerial perspective, the most interesting finding is that a high mean production yield does not necessarily lead to lower expected inventory-related costs. This counterintuitive finding, which can be observed for the most commonly used yield model, is driven by an increased probability that all the units in a batch are either of good or unacceptable quality

    Improved aviation readiness and inventory reductions through repair cycle time reductions using modeling and simulation

    Get PDF
    This thesis research focuses on improved aviation readiness and reductions in pipeline inventory investment through repair Turn Around Time reductions related to the component repair processes internal to the Naval Aviation Depot (NADEP). Specific emphasis was given to the repair flow of a specific component from induction into the Depot for repair to the ultimate availability for sale to customers in a ready-for-issue status. The research models the current NADEP repair process flow and simulates enhancements to the process flow. These enhancements identify savings of over $52,000 in repair pipeline inventory investment for the candidate item. Our model and associated simulations provide NADEP with graphical and quantitative feedback which demonstrates the impact of process flow enhancements on repair Turn Around Time and Work in Process inventory efficiency.http://archive.org/details/improvedviationr1094531922NANAU.S. Navy (U.S.N.) authors.Approved for public release; distribution is unlimited

    Throughput and Yield Improvement for a Continuous Discrete-Product Manufacturing System

    Get PDF
    A seam-welded steel pipe manufacturing process has mainly four distinct major design and/or operational problems dealing with buffer inventory, cutting tools, pipe sizing and inspection-rework facility. The general objective of this research is to optimally solve these four important problems to improve the throughput and yield of the system at a minimum cost. The first problem of this research finds the optimal buffer capacity of steel strip coils to minimize the maintenance and downtime related costs. The total cost function for this coil feeding system is formulated as a constrained non-linear programming (NLP) problem which is solved with a search algorithm. The second problem aims at finding the optimal tool magazine reload timing, magazine size and the order quantity for the cutting tools. This tool magazine system is formulated as a mixed-integer NLP problem which is solved for minimizing the total cost. The third problem deals with different type of manufacturing defects. The profit function of this problem forms a binary integer NLP problem which involves multiple integrals with several exponential and discrete functions. An exhaustive search method is employed to find the optimum strategy for dealing with the defects and pipe sizing. The fourth problem pertains to the number of servers and floor space allocations for the off-line inspection-rework facility. The total cost function forms an integer NLP structure, which is minimized with a customized search algorithm. In order to judge the impact of the above-mentioned problems, an overall equipment effectiveness (OEE) measure, coined as monetary loss based regression (MLBR) method, is also developed as the fifth problem to assess the performance of the entire manufacturing system. Finally, a numerical simulation of the entire process is conducted to illustrate the applications of the optimum parameters setting and to evaluate the overall effectiveness of the simulated system. The successful improvement of the simulated system supports this research to be implemented in a real manufacturing setup. Different pathways shown here for improving the throughput and yield of industrial systems reflect not only to the improvement of methodologies and techniques but also to the advancement of new technology and national economy

    Application of Optimization in Production, Logistics, Inventory, Supply Chain Management and Block Chain

    Get PDF
    The evolution of industrial development since the 18th century is now experiencing the fourth industrial revolution. The effect of the development has propagated into almost every sector of the industry. From inventory to the circular economy, the effectiveness of technology has been fruitful for industry. The recent trends in research, with new ideas and methodologies, are included in this book. Several new ideas and business strategies are developed in the area of the supply chain management, logistics, optimization, and forecasting for the improvement of the economy of the society and the environment. The proposed technologies and ideas are either novel or help modify several other new ideas. Different real life problems with different dimensions are discussed in the book so that readers may connect with the recent issues in society and industry. The collection of the articles provides a glimpse into the new research trends in technology, business, and the environment

    Inventory Management and Supply Chain Coordination Mechanisms

    Get PDF
    This dissertation is on inventory management and supply chain coordination mechanisms within an economic order quantity framework. Specifically, this research focuses on modeling optimal order policies and coordination mechanisms for a supply chain involving items which experience probabilistic failure during storage. These items are common types of manufactured items which, nonetheless, require specialized order policy considerations due to their unique characteristics. We first develop the solution for the buyer’s problem through the use of an economic order quantity (EOQ) model incorporating item failure. We then proceed to model the manufacturer’s problem through the use of an economic production quantity (EPQ) model. Finally, we consider mechanisms to promote mutually-beneficial cooperation between the supplier and n buyers in service of coordinating the entire supply chain. While prior research has focused on items which can be repaired or sold at a discount upon failure, such models are inappropriate for systems where repair costs exceed or are equivalent to item costs and imperfect items are unacceptable. Examples of industries featuring these inventory conditions include the medical, defense, and electronics industries where defective items are largely useless. First, our EOQ model considers a buyer-supplier relationship featuring delivery and stocking of items which experience probabilistic failure in storage. Thereafter, our EPQ model considers in-house production of such items. Collectively, our EOQ and EPQ models provide methods for developing optimal order policies necessary to achieve practicable supply chain coordination. In order to validate the necessity of the developed models, we include an empirical analysis of item reliability for some common mechanical components used in the defense industry, thereby identifying items which fail in the manner modeled in this dissertation. Having considered optimal order policies for both buyers and suppliers, we next develop an optimal solution for a coordinated supply chain. The proposed solution allows the manufacturer to coordinate a supply chain consisting of n buyers in order to achieve a common replenishment time. Through this optimization framework, we minimize total system-wide costs and derive the cost savings associated with our coordinated solution. Numerical examples are then used to demonstrate the magnitude of cost savings achievable through our coordination framework. We conclude by proposing several mechanisms for leveraging the resulting cost savings to induce mutually-beneficial cooperation between the supplier and multiple buyers. Given the lack of buyer-supplier cooperation noted in empirical research related to supply chain coordination, our identification of specific mechanisms useful for inducing mutually-beneficial cooperation between buyers and suppliers represents an important practical contribution to the supply chain coordination literature. These models are accompanied by a thorough overview and discussion of economic order quantity theory, optimal order policies, and supply chain coordination mechanisms.Ph.D., Business Administration -- Drexel University, 201
    corecore