4,889 research outputs found

    Effects of Ground Manifold Modeling on the Accuracy of Stixel Calculations

    Get PDF
    This paper highlights the role of ground manifold modeling for stixel calculations; stixels are medium-level data representations used for the development of computer vision modules for self-driving cars. By using single-disparity maps and simplifying ground manifold models, calculated stixels may suffer from noise, inconsistency, and false-detection rates for obstacles, especially in challenging datasets. Stixel calculations can be improved with respect to accuracy and robustness by using more adaptive ground manifold approximations. A comparative study of stixel results, obtained for different ground-manifold models (e.g., plane-fitting, line-fitting in v-disparities or polynomial approximation, and graph cut), defines the main part of this paper. This paper also considers the use of trinocular stereo vision and shows that this provides options to enhance stixel results, compared with the binocular recording. Comprehensive experiments are performed on two publicly available challenging datasets. We also use a novel way for comparing calculated stixels with ground truth. We compare depth information, as given by extracted stixels, with ground-truth depth, provided by depth measurements using a highly accurate LiDAR range sensor (as available in one of the public datasets). We evaluate the accuracy of four different ground-manifold methods. The experimental results also include quantitative evaluations of the tradeoff between accuracy and run time. As a result, the proposed trinocular recording together with graph-cut estimation of ground manifolds appears to be a recommended way, also considering challenging weather and lighting conditions

    Study of Computational Image Matching Techniques: Improving Our View of Biomedical Image Data

    Get PDF
    Image matching techniques are proven to be necessary in various fields of science and engineering, with many new methods and applications introduced over the years. In this PhD thesis, several computational image matching methods are introduced and investigated for improving the analysis of various biomedical image data. These improvements include the use of matching techniques for enhancing visualization of cross-sectional imaging modalities such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI), denoising of retinal Optical Coherence Tomography (OCT), and high quality 3D reconstruction of surfaces from Scanning Electron Microscope (SEM) images. This work greatly improves the process of data interpretation of image data with far reaching consequences for basic sciences research. The thesis starts with a general notion of the problem of image matching followed by an overview of the topics covered in the thesis. This is followed by introduction and investigation of several applications of image matching/registration in biomdecial image processing: a) registration-based slice interpolation, b) fast mesh-based deformable image registration and c) use of simultaneous rigid registration and Robust Principal Component Analysis (RPCA) for speckle noise reduction of retinal OCT images. Moving towards a different notion of image matching/correspondence, the problem of view synthesis and 3D reconstruction, with a focus on 3D reconstruction of microscopic samples from 2D images captured by SEM, is considered next. Starting from sparse feature-based matching techniques, an extensive analysis is provided for using several well-known feature detector/descriptor techniques, namely ORB, BRIEF, SURF and SIFT, for the problem of multi-view 3D reconstruction. This chapter contains qualitative and quantitative comparisons in order to reveal the shortcomings of the sparse feature-based techniques. This is followed by introduction of a novel framework using sparse-dense matching/correspondence for high quality 3D reconstruction of SEM images. As will be shown, the proposed framework results in better reconstructions when compared with state-of-the-art sparse-feature based techniques. Even though the proposed framework produces satisfactory results, there is room for improvements. These improvements become more necessary when dealing with higher complexity microscopic samples imaged by SEM as well as in cases with large displacements between corresponding points in micrographs. Therefore, based on the proposed framework, a new approach is proposed for high quality 3D reconstruction of microscopic samples. While in case of having simpler microscopic samples the performance of the two proposed techniques are comparable, the new technique results in more truthful reconstruction of highly complex samples. The thesis is concluded with an overview of the thesis and also pointers regarding future directions of the research using both multi-view and photometric techniques for 3D reconstruction of SEM images

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Paths forward for sustainable maritime transport : A techno-economic optimization framework for next generation vessels

    Get PDF
    Climate change is omnipresent in our society. It is known that climate change is occurring, and that additional warming is unavoidable. Therefore, the decarbonization of industrial sectors has gained increased importance in the last years. The maritime transport sector is one of the most targeted industries as it contributes to approximately 3% of global GHG emissions. Nevertheless, maritime transport accounts for up to 80% of the global trade volume, underlying its importance for the world economy. A technical feasible and reliable solution is, thus, essential for the shipping industry to reach the ambitious climate goals established by the Paris Agreement. In the past, the maritim sector has been highly reliant on fossil fuels, using heavy fuel oil as the major energy input. Heavy fuel oil has been the most dominant fuel in the industry due to its cost advantage and high energy density. Recent developments in the maritime industry promote the emergence of dual fuel engines (e.g. LNG and HFO). Even though increased efficiencies and low carbon fuels can reduce maritime pollution, they cannot achieve carbon neutrality. In the long-term, it will be necessary to implement zero emission fuels including green hydrogen, ammonia, methanol, and LNG. The implementation of new sustainable technologies and fuels in the maritime sector will however depend on their economic competitiveness compared to alternative solutions. Therefore, the following research question arises: When can sustainable maritime transport achieve cost parity compared to conventional technologies? The master thesis investigates the break-even point of sustainable shipping technologies in order to achieve climate targets. Thereby, the focus is set on the life cycle costs of different maritime technologies. A techno-economic framework is necessary to decide on the most suitable options for the industry in prospective years. The framework should be able to analyze current as well as prospective technologies, and guide during the technological decision-making process. Therefore, the definition of key performance indicators (KPI) is essential to set a standard for further assessments. The KPIs will be the main value to compare technologies from an economic perspective. In order to answer the research question a case study is developed. The case study is formed by an extensive literature review on current and next-generation sustainable energy systems for vessels. A priority lies on potential carbon neutral technologies and engines such as fuel cells and battery systems based on a predetermined shipping route and shipping class. In a first step, a simulation model for the developed case is established. The output of the simulation model will then be used in the techno-economic framework, connecting components of the system through thermodynamic and physical properties. In a last step, cost functions translate the systems behavior into economic behavior. Once the case study is analyzed, a statistical model is applied on the results in order to evaluate the system under varying boundary conditions. This sensitivity approach is further necessary to underline the impact of the aforementioned KPIs. By that, the robustness of the framework is tested and secured. Finally, the results of the analysis are explained and interpreted with regard to the research question. A conclusion is drawn regarding the potential economic benefits of sustainable maritime transport technologies within the light of potential market access.The results of the thesis are to be documented in a scientifically appropriate manner and discussed within the context of existing literature and regulatory targets for the industry

    Pertanika Journal of Science & Technology

    Get PDF
    corecore