1,330 research outputs found

    Computing stable models by program transformation

    Get PDF
    In analogy to the Davis--Putnam procedure we develop a new procedure for computing stable models of propositional normal disjunctive logic programs, using case analysis and simplification. Our procedure enumerates all stable mofels without repetition and without the need for a minimality check. Since it is not necessary to store the set of stable models explicitly, the procedure runs in polynomial space. We allow clauses with empty heads, in order to represent truth or falsity of a proposition as a one--literal clause. In particular, a clause of form ∌A→ \sim A \rightarrow expresses that A A is contrained to be true, without providing a justification for A A . Adding this clause to a program restricts its stable models to those containing A, without introducing new stable models. Together with A→ A \rightarrow this provides the basis for case analysis. We present our procedure as a set of rules which transform a program into a set of solved forms, which resembles the standard method for presenting unification algorithms. Rules are sound in the sense that they preserve the set of stable models. A A subset of the rules is shown to be complete in the sense that for each stable model a solved form can be obtained. The method allows for concise presentation, flexible choice of a control strategy and simple correctness proofs

    The Design of the Fifth Answer Set Programming Competition

    Full text link
    Answer Set Programming (ASP) is a well-established paradigm of declarative programming that has been developed in the field of logic programming and nonmonotonic reasoning. Advances in ASP solving technology are customarily assessed in competition events, as it happens for other closely-related problem-solving technologies like SAT/SMT, QBF, Planning and Scheduling. ASP Competitions are (usually) biennial events; however, the Fifth ASP Competition departs from tradition, in order to join the FLoC Olympic Games at the Vienna Summer of Logic 2014, which is expected to be the largest event in the history of logic. This edition of the ASP Competition series is jointly organized by the University of Calabria (Italy), the Aalto University (Finland), and the University of Genova (Italy), and is affiliated with the 30th International Conference on Logic Programming (ICLP 2014). It features a completely re-designed setup, with novelties involving the design of tracks, the scoring schema, and the adherence to a fixed modeling language in order to push the adoption of the ASP-Core-2 standard. Benchmark domains are taken from past editions, and best system packages submitted in 2013 are compared with new versions and solvers. To appear in Theory and Practice of Logic Programming (TPLP).Comment: 10 page

    Logic Programming as Constructivism

    Get PDF
    The features of logic programming that seem unconventional from the viewpoint of classical logic can be explained in terms of constructivistic logic. We motivate and propose a constructivistic proof theory of non-Horn logic programming. Then, we apply this formalization for establishing results of practical interest. First, we show that 'stratification can be motivated in a simple and intuitive way. Relying on similar motivations, we introduce the larger classes of 'loosely stratified' and 'constructively consistent' programs. Second, we give a formal basis for introducing quantifiers into queries and logic programs by defining 'constructively domain independent* formulas. Third, we extend the Generalized Magic Sets procedure to loosely stratified and constructively consistent programs, by relying on a 'conditional fixpoini procedure

    Constraint programming in computational linguistics

    Get PDF
    Constraint programming is a programming paradigm that was originally invented in computer science to deal with hard combinatorial problems. Recently, constraint programming has evolved into a technology which permits to solve hard industrial scheduling and optimization problems. We argue that existing constraint programming technology can be useful for applications in natural language processing. Some problems whose treatment with traditional methods requires great care to avoid combinatorial explosion of (potential) readings seem to be solvable in an efficient and elegant manner using constraint programming. We illustrate our claim by two recent examples, one from the area of underspecified semantics and one from parsing

    Reasoning in description logics using resolution and deductive databases

    Get PDF
    • 

    corecore