3 research outputs found

    Robust Path Construction for Reliable Data Transmissions in Node Disjoint Multipath Routing

    Get PDF
    Wireless Sensor Networks (WSNs) are prone to node breakdowns due to energy constraints, which contribute to frequent topology changes. Moreover, since sensor nodes have restricted transmission range, multiple hops are needed by the node in order to forward the packets from one node to the other and this raises very challenging issues when designing routing protocols. Most of the proposed single path routing schemes use a periodic low-rate flooding of data in order to recover from path failures, which causes higher consumption in sensor node resources. So multipath routing is an optimal approach to enhance the network lifetime. In this paper, a robust path construction for a reliable data transmission in node-disjoint multipath routing (RNDMR) is proposed for WSNs. The proposed RNDMR has the ability to provide a low overhead path construction as well as provide data transmission reliability by using XOR-based coding algorithm, which entails low utilization of resources, such as low storage space and lesser computing power. In the proposed RNDMR, the procedure involves the splitting up of all transmitted messages into many different segments of equal size, before adding the XOR-based error correction codes and distributing it among multiple paths simultaneously in order to boost reliable data transmission and to be assured that the essential fragment of the packet arrives at the sink node without any additional consumption of energy and undue delay. By using simulations, the performance of RNDMR was assessed and compares it with ReInForm routing. The results illustrate that RNDMR attains low energy consumption, records low average delay and routing overhead, as well as increased packet delivery ratio when compared with ReInForm Routing

    Disjointed Multipath Routing for Real-Time Data in Wireless Multimedia Sensor Networks

    No full text
    Wireless multimedia sensor networks with sensing and processing abilities of multimedia data have recently emerged as one of the most important technologies for high quality monitoring. The routing scheme for multimedia data is an important research issue addressed in wireless multimedia sensor networks. In this paper, we propose a disjointed multipath routing scheme for real-time data transmission in wireless multimedia sensor networks. The proposed scheme uses a hybrid routing protocol based on Bluetooth and Zigbee in order to overcome the limitation of low bandwidth in conventional sensor networks. The proposed scheme also performs disjointed multipath routing based on competition to alleviate the delay of routing path setup. To show the superiority of our proposed scheme, we compare it with the existing scheme through performance evaluation. Our experimental results show that our proposed scheme reduces the end-to-end delay by about 30% and the routing path setup costs by about 22% over the existing scheme. Our scheme also increases data reception rates by about 690% over the existing scheme on average

    Industrial Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are penetrating our daily lives, and they are starting to be deployed even in an industrial environment. The research on such industrial wireless sensor networks (IWSNs) considers more stringent requirements of robustness, reliability, and timeliness in each network layer. This Special Issue presents the recent research result on industrial wireless sensor networks. Each paper in this Special Issue has unique contributions in the advancements of industrial wireless sensor network research and we expect each paper to promote the relevant research and the deployment of IWSNs
    corecore