177 research outputs found

    Rainbow domination and related problems on some classes of perfect graphs

    Full text link
    Let k∈Nk \in \mathbb{N} and let GG be a graph. A function f:V(G)→2[k]f: V(G) \rightarrow 2^{[k]} is a rainbow function if, for every vertex xx with f(x)=∅f(x)=\emptyset, f(N(x))=[k]f(N(x)) =[k]. The rainbow domination number γkr(G)\gamma_{kr}(G) is the minimum of ∑x∈V(G)∣f(x)∣\sum_{x \in V(G)} |f(x)| over all rainbow functions. We investigate the rainbow domination problem for some classes of perfect graphs

    Remarks on the existence of uniquely partitionable planar graphs

    Get PDF
    We consider the problem of the existence of uniquely partitionable planar graphs. We survey some recent results and we prove the nonexistence of uniquely (D1,D1)-partitionable planar graphs with respect to the property D1 "to be a forest"

    A Survey on Alliances and Related Parameters in Graphs

    Full text link
    In this paper, we show that several graph parameters are known in different areas under completely different names.More specifically, our observations connect signed domination, monopolies, α\alpha-domination, α\alpha-independence,positive influence domination,and a parameter associated to fast information propagationin networks to parameters related to various notions of global rr-alliances in graphs.We also propose a new framework, called (global) (D,O)(D,O)-alliances, not only in order to characterizevarious known variants of alliance and domination parameters, but also to suggest a unifying framework for the study of alliances and domination.Finally, we also give a survey on the mentioned graph parameters, indicating how results transfer due to our observations

    On Graphs Coverable by k Shortest Paths

    Get PDF
    We show that if the edges or vertices of an undirected graph G can be covered by k shortest paths, then the pathwidth of G is upper-bounded by a function of k. As a corollary, we prove that the problem Isometric Path Cover with Terminals (which, given a graph G and a set of k pairs of vertices called terminals, asks whether G can be covered by k shortest paths, each joining a pair of terminals) is FPT with respect to the number of terminals. The same holds for the similar problem Strong Geodetic Set with Terminals (which, given a graph G and a set of k terminals, asks whether there exist binom(k,2) shortest paths, each joining a distinct pair of terminals such that these paths cover G). Moreover, this implies that the related problems Isometric Path Cover and Strong Geodetic Set (defined similarly but where the set of terminals is not part of the input) are in XP with respect to parameter k
    • …
    corecore