11,946 research outputs found

    Emotion Recognition from Acted and Spontaneous Speech

    Get PDF
    Dizertační práce se zabývá rozpoznáním emočního stavu mluvčích z řečového signálu. Práce je rozdělena do dvou hlavních častí, první část popisuju navržené metody pro rozpoznání emočního stavu z hraných databází. V rámci této části jsou představeny výsledky rozpoznání použitím dvou různých databází s různými jazyky. Hlavními přínosy této části je detailní analýza rozsáhlé škály různých příznaků získaných z řečového signálu, návrh nových klasifikačních architektur jako je například „emoční párování“ a návrh nové metody pro mapování diskrétních emočních stavů do dvou dimenzionálního prostoru. Druhá část se zabývá rozpoznáním emočních stavů z databáze spontánní řeči, která byla získána ze záznamů hovorů z reálných call center. Poznatky z analýzy a návrhu metod rozpoznání z hrané řeči byly využity pro návrh nového systému pro rozpoznání sedmi spontánních emočních stavů. Jádrem navrženého přístupu je komplexní klasifikační architektura založena na fúzi různých systémů. Práce se dále zabývá vlivem emočního stavu mluvčího na úspěšnosti rozpoznání pohlaví a návrhem systému pro automatickou detekci úspěšných hovorů v call centrech na základě analýzy parametrů dialogu mezi účastníky telefonních hovorů.Doctoral thesis deals with emotion recognition from speech signals. The thesis is divided into two main parts; the first part describes proposed approaches for emotion recognition using two different multilingual databases of acted emotional speech. The main contributions of this part are detailed analysis of a big set of acoustic features, new classification schemes for vocal emotion recognition such as “emotion coupling” and new method for mapping discrete emotions into two-dimensional space. The second part of this thesis is devoted to emotion recognition using multilingual databases of spontaneous emotional speech, which is based on telephone records obtained from real call centers. The knowledge gained from experiments with emotion recognition from acted speech was exploited to design a new approach for classifying seven emotional states. The core of the proposed approach is a complex classification architecture based on the fusion of different systems. The thesis also examines the influence of speaker’s emotional state on gender recognition performance and proposes system for automatic identification of successful phone calls in call center by means of dialogue features.

    DNN adaptation by automatic quality estimation of ASR hypotheses

    Full text link
    In this paper we propose to exploit the automatic Quality Estimation (QE) of ASR hypotheses to perform the unsupervised adaptation of a deep neural network modeling acoustic probabilities. Our hypothesis is that significant improvements can be achieved by: i)automatically transcribing the evaluation data we are currently trying to recognise, and ii) selecting from it a subset of "good quality" instances based on the word error rate (WER) scores predicted by a QE component. To validate this hypothesis, we run several experiments on the evaluation data sets released for the CHiME-3 challenge. First, we operate in oracle conditions in which manual transcriptions of the evaluation data are available, thus allowing us to compute the "true" sentence WER. In this scenario, we perform the adaptation with variable amounts of data, which are characterised by different levels of quality. Then, we move to realistic conditions in which the manual transcriptions of the evaluation data are not available. In this case, the adaptation is performed on data selected according to the WER scores "predicted" by a QE component. Our results indicate that: i) QE predictions allow us to closely approximate the adaptation results obtained in oracle conditions, and ii) the overall ASR performance based on the proposed QE-driven adaptation method is significantly better than the strong, most recent, CHiME-3 baseline.Comment: Computer Speech & Language December 201

    Deep Learning for Environmentally Robust Speech Recognition: An Overview of Recent Developments

    Get PDF
    Eliminating the negative effect of non-stationary environmental noise is a long-standing research topic for automatic speech recognition that stills remains an important challenge. Data-driven supervised approaches, including ones based on deep neural networks, have recently emerged as potential alternatives to traditional unsupervised approaches and with sufficient training, can alleviate the shortcomings of the unsupervised methods in various real-life acoustic environments. In this light, we review recently developed, representative deep learning approaches for tackling non-stationary additive and convolutional degradation of speech with the aim of providing guidelines for those involved in the development of environmentally robust speech recognition systems. We separately discuss single- and multi-channel techniques developed for the front-end and back-end of speech recognition systems, as well as joint front-end and back-end training frameworks

    Exploring the Encoding Layer and Loss Function in End-to-End Speaker and Language Recognition System

    Full text link
    In this paper, we explore the encoding/pooling layer and loss function in the end-to-end speaker and language recognition system. First, a unified and interpretable end-to-end system for both speaker and language recognition is developed. It accepts variable-length input and produces an utterance level result. In the end-to-end system, the encoding layer plays a role in aggregating the variable-length input sequence into an utterance level representation. Besides the basic temporal average pooling, we introduce a self-attentive pooling layer and a learnable dictionary encoding layer to get the utterance level representation. In terms of loss function for open-set speaker verification, to get more discriminative speaker embedding, center loss and angular softmax loss is introduced in the end-to-end system. Experimental results on Voxceleb and NIST LRE 07 datasets show that the performance of end-to-end learning system could be significantly improved by the proposed encoding layer and loss function.Comment: Accepted for Speaker Odyssey 201

    Robust Speech Detection for Noisy Environments

    Get PDF
    This paper presents a robust voice activity detector (VAD) based on hidden Markov models (HMM) to improve speech recognition systems in stationary and non-stationary noise environments: inside motor vehicles (like cars or planes) or inside buildings close to high traffic places (like in a control tower for air traffic control (ATC)). In these environments, there is a high stationary noise level caused by vehicle motors and additionally, there could be people speaking at certain distance from the main speaker producing non-stationary noise. The VAD presented in this paper is characterized by a new front-end and a noise level adaptation process that increases significantly the VAD robustness for different signal to noise ratios (SNRs). The feature vector used by the VAD includes the most relevant Mel Frequency Cepstral Coefficients (MFCC), normalized log energy and delta log energy. The proposed VAD has been evaluated and compared to other well-known VADs using three databases containing different noise conditions: speech in clean environments (SNRs mayor que 20 dB), speech recorded in stationary noise environments (inside or close to motor vehicles), and finally, speech in non stationary environments (including noise from bars, television and far-field speakers). In the three cases, the detection error obtained with the proposed VAD is the lowest for all SNRs compared to Acero¿s VAD (reference of this work) and other well-known VADs like AMR, AURORA or G729 annex b
    corecore