research

Emotion Recognition from Acted and Spontaneous Speech

Abstract

Dizertační práce se zabývá rozpoznáním emočního stavu mluvčích z řečového signálu. Práce je rozdělena do dvou hlavních častí, první část popisuju navržené metody pro rozpoznání emočního stavu z hraných databází. V rámci této části jsou představeny výsledky rozpoznání použitím dvou různých databází s různými jazyky. Hlavními přínosy této části je detailní analýza rozsáhlé škály různých příznaků získaných z řečového signálu, návrh nových klasifikačních architektur jako je například „emoční párování“ a návrh nové metody pro mapování diskrétních emočních stavů do dvou dimenzionálního prostoru. Druhá část se zabývá rozpoznáním emočních stavů z databáze spontánní řeči, která byla získána ze záznamů hovorů z reálných call center. Poznatky z analýzy a návrhu metod rozpoznání z hrané řeči byly využity pro návrh nového systému pro rozpoznání sedmi spontánních emočních stavů. Jádrem navrženého přístupu je komplexní klasifikační architektura založena na fúzi různých systémů. Práce se dále zabývá vlivem emočního stavu mluvčího na úspěšnosti rozpoznání pohlaví a návrhem systému pro automatickou detekci úspěšných hovorů v call centrech na základě analýzy parametrů dialogu mezi účastníky telefonních hovorů.Doctoral thesis deals with emotion recognition from speech signals. The thesis is divided into two main parts; the first part describes proposed approaches for emotion recognition using two different multilingual databases of acted emotional speech. The main contributions of this part are detailed analysis of a big set of acoustic features, new classification schemes for vocal emotion recognition such as “emotion coupling” and new method for mapping discrete emotions into two-dimensional space. The second part of this thesis is devoted to emotion recognition using multilingual databases of spontaneous emotional speech, which is based on telephone records obtained from real call centers. The knowledge gained from experiments with emotion recognition from acted speech was exploited to design a new approach for classifying seven emotional states. The core of the proposed approach is a complex classification architecture based on the fusion of different systems. The thesis also examines the influence of speaker’s emotional state on gender recognition performance and proposes system for automatic identification of successful phone calls in call center by means of dialogue features.

    Similar works