25 research outputs found

    Hashmod: A Hashing Method for Scalable 3D Object Detection

    Full text link
    We present a scalable method for detecting objects and estimating their 3D poses in RGB-D data. To this end, we rely on an efficient representation of object views and employ hashing techniques to match these views against the input frame in a scalable way. While a similar approach already exists for 2D detection, we show how to extend it to estimate the 3D pose of the detected objects. In particular, we explore different hashing strategies and identify the one which is more suitable to our problem. We show empirically that the complexity of our method is sublinear with the number of objects and we enable detection and pose estimation of many 3D objects with high accuracy while outperforming the state-of-the-art in terms of runtime.Comment: BMVC 201

    Learning Descriptors for Object Recognition and 3D Pose Estimation

    Full text link
    Detecting poorly textured objects and estimating their 3D pose reliably is still a very challenging problem. We introduce a simple but powerful approach to computing descriptors for object views that efficiently capture both the object identity and 3D pose. By contrast with previous manifold-based approaches, we can rely on the Euclidean distance to evaluate the similarity between descriptors, and therefore use scalable Nearest Neighbor search methods to efficiently handle a large number of objects under a large range of poses. To achieve this, we train a Convolutional Neural Network to compute these descriptors by enforcing simple similarity and dissimilarity constraints between the descriptors. We show that our constraints nicely untangle the images from different objects and different views into clusters that are not only well-separated but also structured as the corresponding sets of poses: The Euclidean distance between descriptors is large when the descriptors are from different objects, and directly related to the distance between the poses when the descriptors are from the same object. These important properties allow us to outperform state-of-the-art object views representations on challenging RGB and RGB-D data.Comment: CVPR 201

    Self-tuned Visual Subclass Learning with Shared Samples An Incremental Approach

    Full text link
    Computer vision tasks are traditionally defined and evaluated using semantic categories. However, it is known to the field that semantic classes do not necessarily correspond to a unique visual class (e.g. inside and outside of a car). Furthermore, many of the feasible learning techniques at hand cannot model a visual class which appears consistent to the human eye. These problems have motivated the use of 1) Unsupervised or supervised clustering as a preprocessing step to identify the visual subclasses to be used in a mixture-of-experts learning regime. 2) Felzenszwalb et al. part model and other works model mixture assignment with latent variables which is optimized during learning 3) Highly non-linear classifiers which are inherently capable of modelling multi-modal input space but are inefficient at the test time. In this work, we promote an incremental view over the recognition of semantic classes with varied appearances. We propose an optimization technique which incrementally finds maximal visual subclasses in a regularized risk minimization framework. Our proposed approach unifies the clustering and classification steps in a single algorithm. The importance of this approach is its compliance with the classification via the fact that it does not need to know about the number of clusters, the representation and similarity measures used in pre-processing clustering methods a priori. Following this approach we show both qualitatively and quantitatively significant results. We show that the visual subclasses demonstrate a long tail distribution. Finally, we show that state of the art object detection methods (e.g. DPM) are unable to use the tails of this distribution comprising 50\% of the training samples. In fact we show that DPM performance slightly increases on average by the removal of this half of the data.Comment: Updated ICCV 2013 submissio

    3D Object Class Detection in the Wild

    Full text link
    Object class detection has been a synonym for 2D bounding box localization for the longest time, fueled by the success of powerful statistical learning techniques, combined with robust image representations. Only recently, there has been a growing interest in revisiting the promise of computer vision from the early days: to precisely delineate the contents of a visual scene, object by object, in 3D. In this paper, we draw from recent advances in object detection and 2D-3D object lifting in order to design an object class detector that is particularly tailored towards 3D object class detection. Our 3D object class detection method consists of several stages gradually enriching the object detection output with object viewpoint, keypoints and 3D shape estimates. Following careful design, in each stage it constantly improves the performance and achieves state-ofthe-art performance in simultaneous 2D bounding box and viewpoint estimation on the challenging Pascal3D+ dataset

    Multi-View Priors for Learning Detectors from Sparse Viewpoint Data

    Full text link
    While the majority of today's object class models provide only 2D bounding boxes, far richer output hypotheses are desirable including viewpoint, fine-grained category, and 3D geometry estimate. However, models trained to provide richer output require larger amounts of training data, preferably well covering the relevant aspects such as viewpoint and fine-grained categories. In this paper, we address this issue from the perspective of transfer learning, and design an object class model that explicitly leverages correlations between visual features. Specifically, our model represents prior distributions over permissible multi-view detectors in a parametric way -- the priors are learned once from training data of a source object class, and can later be used to facilitate the learning of a detector for a target class. As we show in our experiments, this transfer is not only beneficial for detectors based on basic-level category representations, but also enables the robust learning of detectors that represent classes at finer levels of granularity, where training data is typically even scarcer and more unbalanced. As a result, we report largely improved performance in simultaneous 2D object localization and viewpoint estimation on a recent dataset of challenging street scenes.Comment: 13 pages, 7 figures, 4 tables, International Conference on Learning Representations 201
    corecore